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Abstract 
Fuzzy cognitive maps (FCM) are a tool that is used for 
analyzing and aiding decision making. They incorporate 
elements of fuzzy logic and neural networks. FCMs are applied 
in problems involving complex webs of casual relationships, 
which often include feedback, and where qualitative rather than 
quantitative measures of influences are available. They are very 
easy to understand, use, and analyze. On the other hand, they 
require domain expertise during the design process. 
 
This paper presents application of FCMs in the software 
engineering domain. Two models, which concern software 
development, are proposed and discussed. They are used to 
describe and analyze factors, which affect pace of work 
progress during software project. The performed simulations 
show very interesting relationships that agree with the 
theoretical results reported in the literature. 
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1. Introduction 
Project management is a technique for matching available 
resources (time, money, and people) against business project 
aims (early completion date and final cost) [10]. Products of 
software projects have some features, such as invisibility, 
complexity and flexibility, which makes software project 
different from projects in other disciplines. Some methods of 
general project management are not valid to software project 
management [5]. According to statistical analyses, the most 
frequent challenge to software project manager is coping with 
keeping deadlines [18]. Origin of this phenomenon is 
connected to difficulties in estimation of software projects. 
What is worse, the progress of software projects is also hard to 
foreseen. As a result, many projects exceed time and budget, 
e.g. the ₤339 million United Kingdom air traffic control system 
was reported as being two years behind schedule [3]. Objective 
of this paper is to analyze factors, which affect progress in 
software project. The paper is concentrated on effects that result 
from communication among workers during software projects. 
This issue plays a very important role, which is often 
underestimated. Additionally, an evaluation of effects after 
adding new people to a project in order to complete it faster is 
also performed. 
 
Software development requires collaboration among people. 
Many people who have different backgrounds, such as domain 
experts, analysts, designers, programmers, managers, technical 
writers, graphic designers, and users, need to be involved in a 
software development process to make it successful [14]. It is 
essential to share information among these people in an 

accurate and timely manner. Communication forms and types 
are widely described in literature [1], [14]. It is commonly 
known that communication is an inseparable element of 
software development project, and it significantly affects 
progress of the development. The range of this impact varies 
and is connected with ability be partition the project. This paper 
examines the above relationships by analyzing project progress 
with respect to the number of people involved in it and 
communication among the project’s participants. 
 
Many software projects are not successful due to a lack of time 
to complete them. Brooks lists five essential elements which 
contribute to such troubling situations [1]. One of them is 
incorrect reaction to the situation when schedule slippage 
occurs. The most common response when a project is behind 
schedule, which is adding additional manpower, is often 
ineffective. What is worse, it sometimes causes even greater 
delay according to the Brook’s Law that states that “…adding 
manpower to a late software project makes it later…” [1]. 
Software managers usually act on the basis of an assumption 
that increase in number of workers involved in project is the 
best solution to finish it on time. Such reasoning steams from 
fallacious thought that progress can be expressed in the man-
month unit of effort. Unfortunately this is not true. This 
measure is good for describing cost of a software development 
project, but it is not suitable for describing the progress. Brooks 
reports that the length of a project depends on its sequential 
constraints and the maximum number of men that develop the 
software depends on number of independent subtasks [1]. Thus, 
it is vital to establish these two quantities to properly schedule 
project. It is very important to understand that exceeding 
maximum number of workers involved in the project may result 
in decreasing the relative progress. This results from costs 
associated with both training people and repartitioning of the 
tasks, which are necessary when new workers are added to help 
finishing project faster. This paper aims to verify the 
hypotheses stated above. 
 
There are many techniques used to model dynamic systems. In 
general, they can be divided into two major groups [11]. The 
first one concerns quantitative techniques. They can be applied 
both to well-understood systems, such as mathematical 
programming techniques of operation research, and to less-
understood ones, such as statistically based methods of data 
mining. However, significant effort and specialized knowledge 
outside the domain of interest is required to develop these 
models. What is more, some dynamic systems can be nonlinear, 
which sometimes makes impossible to use the quantitative 
models. The modeling techniques from the second group 
concern qualitative approach. They allow developing models on 
the basis of knowledge in the domain of application, and often 
incorporate feedback mechanism. Since the relationships that 
concern software development project fall into the second 



group, the Fuzzy Cognitive Maps, which are one of the 
quantitative models, were used to perform simulations. 

2. Fuzzy Cognitive Maps 
Cognitive Map is a tool, which can be used for modeling and 
simulation of complex systems [7], [8]. It allows simulating 
behaviour of black box systems through use of cause and effect 
relationships. They consist of a collection of nodes linked by 
edges, which are used to describe a given system. The nodes 
represent concepts, or variables, relevant to a given domain, 
whereas the causal links between them are represented by 
edges. The edges are directed to indicate the direction of causal 
relationships. Additionally, each edge includes information on 
type of the relationship. The relationships can be positive (a 
promoting effect) or negative (an inhibitory effect). The 
drawback of cognitive maps is that they do not allow feedback, 
which significantly limits its usefulness.  
 
Fuzzy Cognitive Maps are an extension of Cognitive Maps [7], 
[8]. Two significant improvements introduced in the FCMs are 
that: 
1. Causal relationships between nodes are fuzzified. This 

feature enriches description of connection by numerical value 
instead of only using signs. It allows using varying degrees of 
causal influence. 

2. The system is dynamic, which means that it evolves with 
time, and involves feedback mechanisms. Specifically, the 
effect of change in a concept node may affect other concept 
nodes, which eventually can affect back the node that 
initiated the change.  

 
The strength of relationship between two nodes usually takes on 
any value in the [-1, 1] range [7], [8]. Value -1 represents full 
negative, whereas +1 full positive causal effect. Zero denotes no 
causal effect. Other values correspond to different fuzzy levels 
of causal effect. Definition of system relationships can be 
described by a matrix, called connection matrix. Considering 
the system with n concept nodes, we have n by n matrix, which 
elements are the causal link strengths. 
 
State of the system is determined by a state vector, denoted Ck, 
which specifies current values of all system variables, which 
can be understood as a kth state of the system. The FCMs 
iteratively update the state of the system. During each iteration 
value of each node is calculated based on the current values of 
every node (concept), which exerts influence on it through a 
causal link. After multiplying these values by edge weight 
between the two nodes, which represents the strength of the 
relationship between the nodes, the sum of these products is 
taken as the input to a transformation function. The function is 
used to reduce unbounded inputs to a certain range. This 
function usually generates either binary, when threshold 
function is used, or continuous, when sigmoid squashing 
function is used, concept values.  
 
The value of each node in any iteration is computed from values 
of nodes in preceding state, using approach shown in Figure 1 
and the following equation [7]:  
 

∑ ⋅=+ ))(()1( ijij ekNfkN  

 
Figure 1. Computation of a new concept node's value. 

 
where Ni(k) is the value of ith node in the kth iteration (system 
state), eij is edge weight between nodes Ni and Nj, and f is the 
transformation function.   
 
Three types of transformation function which are commonly 
used are shown below [11]:   
1. Bivalent 

 




>
≤

=
0,1
0,0

)(
x
x

xf  

2. Trivalent 

  








≥
<<−

−≤−
=

5.0,1
5.05.0,0

5.0,1
)(

x
x

x
xf  

3. Logistic signal 

cxe
xf −+
=

1
1)(  

 
The last function is a continuous-output function. The constant 
c is critical in determining the degree of fuzzification of the 
function. 
 
The possible results of a simulation performed with FCM 
depend on transformation function [7]. Using function which 
results in binary values, the simulation of a FCM system heads 
for either fixed pattern of node values, which are called hidden 
pattern or fixed-point attractor, or keeps cycling between a 
number of fixed states, which are known as the limit cycle. 
Using a continuous-output transformation function may result 
in a different outcome. System may continue to produce 
different state vector values for successive cycles. This unstable 
situation is called chaotic attractor. 
 
FCMs have been applied in many different areas. Examples 
include modeling of plant control [4], modeling of political 
affairs is South Africa in the apartheid era [9], analysis of 
electrical circuits [15], disease diagnosis [17], modeling of 
virtual worlds [2], analysis of failure modes effects [13], fault 
management in distributed network environment [12], 
modeling and analysis of business performance indicators [6], 
and modeling of supervisors [16]. 

3. Experiments 
The paper proposes and simulates two models, which concern 
management of a software development project. 
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The first model describes initial development phase. It 
characterizes a situation when a team of workers starts to do a 
software development project. Successive states of the modeled 
system show changes in considered nodes, which represent 
software management aspects. Values of the nodes describe 
trends, i.e. qualitative changes evolving with time, of the 
considered aspects. The final state achieved by the model shows 
the development state where equilibrium between the 
considered concepts, with respect to the initial human 
resources, is achieved. The final state shows the relative 
development progress speed that is achieved for the modeled 
system. 
 
The second model extends the first model. It is used to analyze 
what happens in case when any corrections to the equilibrium 
state need to be performed. In particular, it allows simulating 
influence of adding new workers to a project that is already in 
progress.  
 
The experiments was carried out using the logistic signal 
function as a threshold function, which is a continuous-output 
transformation function and thus provides true fuzzy conceptual 
node states. The constant c was set to 5. 

3.1. First Model 
The first model presents relations, which are essential during 
software development project. It consists of three concept 
nodes, and is shown in Figure 2. 
 

 
Figure 2. FCM describing software development project. 

 
The following nodes are their representations are used: 
- people base (N1) – people involved in project, which 

includes both designers and implementers. 
- communication (N2) – communication effort, which 

reflects effort connected with cooperation among people 
working on a project. 

- progress (N3) – development abilities, which can be 
interpreted as a factor, which describes rapidity of the 
development of the project. 

 
The casual relationships between nodes, which are represented 
by directed edges, can be interpreted as follows. Increase in 
number of people who are assigned to work has positive effect 
on progress (+1 directed edge between N1 and N3). However, 
the effect is not as simple as it looks at a first glance. This 
forces higher level of communication among workers (+0.5 
directed edge between N1 and N2), which is essential to ensure 
proper partitioning of tasks and cohesion of their work. 
Furthermore, this negatively influences the progress (-0.5 

directed edge between N2 and N3). On the other hand, increase 
in progress can lead to limiting number of people involved in 
project, e.g. they can be transferred to develop other projects 
(-0.5 directed edge between N3 and N1). However, higher value 
of progress also implies increase in communication (+0.5 
directed edge between N3 and N2). This, in turn, can cause a 
trend to increase number of workers (+0.25 directed edge 
between N2 and N1). The strength of the relationships was 
established experimentally, and reflects common perception of 
the strength of these relationships. 

3.1.1. Simulation  
Next, the developed model was simulated. The starting vector is 
denoted C0. Each state vector consists of three numbers, which 
correspond to conceptual nodes as follows: people base (N1), 
communication (N2), and progress (N3). The experiment makes 
possible to examine the mutual relationships among these 
elements. The simulation begins with following start state 
vector C0 = (0.5, 0, 0), which represent a situation when people 
base concept is active and set at value 0.5, and other concepts 
are inactive. 
This state can be interpreted as the beginning stage of software 
development project. Software project manager assigns some 
people to work on a given project. Communication and progress 
nodes are inactive, i.e. their values are set as zero, what 
indicates that the workers did not start to work yet.  
 
As the simulation continues successive values of nodes show 
trends which occur with the progressing time. By analyzing 
states of nodes in consequent system states, relationships 
between the nodes can be learned and analyzed. 
 
Rounding to three significant digits, during the simulation the 
following states are achieved: 
C0 = (0.500, 0.000, 0.000) 
C1 = (0.500, 0.777, 0.924) 
C2 = (0.208, 0.972, 0.636) 
C3 = (0.408, 0.892, 0.199) 
C4 = (0.650, 0.820, 0.452) 
C5 = (0.474, 0.940, 0.768) 
C6 = (0.322, 0.957, 0.504) 
C7 = (0.484, 0.888, 0.314) 

where Ci is the ith state of the system. 
Next, the model steadily reaches equilibrium, which is state C79 
= (0.469, 0.920, 0.511). 

3.1.2. Analysis of the Simulation 
In order to better understanding achieved results, values of all 
nodes for first 20 states are presented in Figure 3. 
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Figure 3. Results of the simulation of the first model. 
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The first state (C1) shows that progress node achieves the 
highest value. This reflects situation when tasks have been 
partitioned and assigned to workers. In this phase they can start 
their work separately, so the progress rate is high. However 
communication problems occur and increase rapidly, which has 
strong negative impact on progress. It can be interpreted as 
actions taken by a manager in order to ensure the cohesion, or 
another words intellectual integrity of the project [1]. In 
general, as described in the introduction, communication effort 
is present during all phases of development of software project. 
 
The next states show very interesting trends. Communication 
remains at high level all the time and, along with people base, 
they influence progress, which significantly oscillates during 
the several initial states. The oscillations are mainly caused by 
adjustments in the values of people base, which in turn are 
performed in reaction to the amount of progress. This situation 
can cause problems in proper estimation of project effort, and 
therefore will have impact on scheduling. The simulation ends 
in reaching an equilibrium state.  
 
Comparing the state C1 with the equilibrium state, one can see 
that value of people base node remains approximately at the 
same level, yet initial progress node value decreases almost 
twice. This means that mutual relationship between these two 
factors is not linear, and therefore it is not possible to easily 
control progress by means of number of people assigned to 
project. The analysis shows that the manager must wait some 
time before making any judgments based on the progress to 
accommodate for the communication between the team 
workers. 

3.2. Second Model 
The second model describes situation when new people are 
added to help completing project faster. This results from a 
situation when a prognosis based on current progress shows that 
the project’s deadline will not be met, and therefore a corrective 
action needs to be performed. The FCM proposed to model this 
situation is presented in Figure 4 

 
Figure 4. FCM describing adding new workers to an existing 

software development project. 

 
The following nodes are their representations were added with 
to the first model to build the second model: 

- training (N4) – effort connected with introducing new 
people to project 

- new people (N5) – workers added to project, which can be 
interpreted as a factor, which describes strength of a trend 
of adding new personnel to the project  

Meaning of the other nodes remains the same. 
This model introduces both new concepts nodes and new casual 
relationships among them. The relationships, which are 
represented by directed edges between nodes, can be interpreted 
as follows. By adding new workers the people base increases 
(+0.5 directed edge between N5 and N1). However, this process 
does not influence progress directly, because they have to be 
trained first (+0.5 directed edge between N5 and N4). Training 
requires communication among people, so the positive 
connection between these nodes is present (+0.5 directed edge 
between N4 and N2). It also influences increase in people base 
(+0.25 directed edge between N4 and N1). On the other hand, 
the progress negatively influences both adding new people (-0.5 
directed edge between N3 and N5) and training (-0.5 directed 
edge between N3 and N4). 

3.2.1. Simulation 
This time the simulation is started with a vector, which 
describes equilibrium state from the first model. This is because 
the second model concern the same project as the first model, 
where an equilibrium state has been achieved, i.e. the project is 
set according initial human resources. The second model shows 
what happens when the existing pace of software development 
project is insufficient. A common reaction to this situation is to 
add new people to increase development speed. The model 
reflects this situation, and therefore the simulation starts with 
the following state: 
C0 = (0.469, 0.920, 0.511, 0.000, 0.500) 
 
In this case, each state vector consists of five numbers, which 
correspond with nodes values as follows: people base, 
communication, progress, training, and new people. The initial 
state vector C0 uses three initial values from the first model, the 
value of new people node is set on 0.5, and training is set to be 
inactive, i.e. with value of zero. This describes circumstances 
just after new workers are added to project.  
 
Rounding to three significant digits, the simulation of the model 
results in obtaining the following states: 
 
C0 = (0.469, 0.920, 0.511, 0.000, 0.500) 
C1 = (0.917, 0.921, 0.511, 0.493, 0.218) 
C2 = (0.910, 0.992, 0.907, 0.324, 0.218) 
C3 = (0.899, 0.995, 0.888, 0.151, 0.094) 
C4 = (0.841, 0.992, 0.882, 0.121, 0.098) 
C5 = (0.837, 0.990, 0.849, 0.124, 0.099) 
C6 = (0.838, 0.989, 0.847, 0.133, 0.107) 
C7 = (0.842, 0.989, 0.847, 0.136, 0.107) 

where Ci is the ith state of the system. 
Next, the model steadily reaches equilibrium, which is state C12 
= (0.842, 0.990, 0.850, 0.135, 0.107). 

3.2.2. Analysis of the Simulation 
In order to help analyzing the results, the node values are shown 
in Figure 5. 
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Figure 5. Results of the simulation of the second model. 

The expected result in this simulation is to observe rapid 
increase in progress upon adding new people to the team.  The 
simulation shows that this effect does not come immediately. 
The new workers have to be introduced to project and tasks 
must be repartitioned. This effort limits their usefulness to 
improving progress, resulting in progress remaining unchanged 
between the initial and the first state, i.e. transition between C0 
and C1.  
 
At the state C1, the manager faces the situation when increase of 
cost of project development connected with paying new 
workers has happened, but the expected boost in progress does 
not come. This is a very dangerous state when the manager can 
be tempted to add even more people to the project, which 
results in so called regenerative schedule disaster [1]. It can be 
seen that instead of progress, the training efforts rise rapidly. In 
the states following the second state, an increase in progress can 
be observed, since the new staff is trained and prepared for 
work.  
 
Focusing our attention on progress node, some interesting 
observations can be made.  After achieving its maximum value 
in state C3, progress value starts to decline. This trend remains 
unchanged until the model reaches the equilibrium state. It is 
caused by diminishing values of people base and achieving the 
maximum value by communication node. 
 
Two conclusions can be drawn from analysis of the simulation. 
First, the manager again must wait some time before making 
any judgments based on the progress to accommodate for the 
training of the new team workers. (S)he should not add 
additional manpower too early since this may result in 
additional costs in terms of training and communication, which 
can even result in decreasing the progress.  Second, adding new 
workers, when little time is left to finish the project is not a 
good idea, since initially the costs in introducing new people 
may be higher that the gains. 

3.3. Other Simulations 
Several additional simulations were also performed with the 
second model. This time, the initial state vector was changed 
and the influence of these changes on the behaviour of the 
entire system was studied. Several experiments, which illustrate 
how the initial value of the new people node impacts on the 
progress, were performed. Initial values of the other nodes 
remained unchanged, which allows observing and comparison 
of influence of varying initial values of the new people node on 
the system behaviour. The obtained results are summarized in 
Figures 6, 7, and 8. 
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Figure 6. Simulation results for initial value of new people set 

to 0.1. 
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Figure 7. Simulation results for initial value of new people set 

to 0.22. 
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Figure 8. Simulation results for initial value of new people set 

to 0.9. 

The analysis of the above results shows that the final progress 
value does not change, no matter what is the level of the initial 
state of the new people node. However, these results differ from 
each other significantly in the value of training node in the first 
state of the simulation. In general, the higher is the value of this 
node the greater the cost of project. It is important to notice that 
the training and communication forces to trim the amount of 
newly introduced people to the same levels despite different 
initial costs. Therefore, the effort that has been spent on training 
new people in the last simulation (state C0) is unjustified. What 
is worse, the progress in the last simulation tends to decrease 
very little over time. This can lead to difficulties in creating 
proper project schedule, if higher value of progress than in fact 
it is would be presumed. All these results confirm the 
observation noted in the introduction, that duration of software 
project cannot be controlled by simply adding new workers. 
The other factors, like communication, training, and 
susceptibility of a given project to partitioning, have to be taken 
into consideration. If one will not accommodate for these 



factors, the expected results will substantially differ from his or 
her expectations. 

4. Summary and Conclusions 
FCMs are convenient to simulate systems when relationships 
are not easy to describe by mathematical formulas. Problems 
that are considered in this paper belong to this category. FCMs 
allow building and simulating models just on the basis of 
knowledge about mutual relationships between factors which 
are present in a given problem.  
 
This paper describes development and analysis of two models 
that were used to observe influence of factors, such as 
communication and training, on the pace of the software 
development project. Literature indicates that communication 
efforts are often underestimated, which often leads to missed 
project deadlines.  
 
The experiment, which was carried out using one of the models, 
confirms that communication has a great effect on the progress 
of software development project. Neglecting it can lead to false 
assumptions concerning project schedule and, in consequence, 
cause exceeding its planned time. The manager must wait some 
time before making any judgments to be able to observe a true 
progress value that accommodates the cost do this factor.  
 
The other model was used to describe situation that often occurs 
when software project is behind schedule. In this case, the usual 
response is to add new people to the project. The obtained 
results agree with those found in the literature. Namely, adding 
new people should be performed very carefully, because 
initially it does not bring wanted effects, but rather leads to 
increase of the costs. Here also the manager must wait some 
time before making any judgments based on the current 
progress to accommodate for the training of the new workers. 
Also, adding new people to project that are soon to be finished 
should not be pursued since again the initial costs may be 
higher that the future gains. What is more, the model shows that 
a larger value of progress cannot be gained by just increasing 
the number of new workers, which is mainly caused by the cost 
of both training of new workers and the cost of increased 
communication. 
 
In the nutshell, proper estimation of software development 
project before its beginning is of great importance, and of great 
difficulty. One needs to accommodate for many factors, like 
communication and training when performing the estimation. 
This paper shows that tools, such as FCMs, can provide 
valuable helps in both understanding and modeling 
relationships that can improve accuracy of the estimates.  
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