
Modeling Software Development Projects Using Fuzzy
Cognitive Maps

Wojciech Stach
Department of Electrical and Computer Engineering

University of Alberta,
Edmonton T6G 2V4, Canada
wstach@ece.ualberta.ca

Lukasz Kurgan
Department of Electrical and Computer Engineering

University of Alberta,
Edmonton T6G 2V4, Canada
lkurgan@ece.ualberta.ca

Abstract
Fuzzy cognitive maps (FCM) are a tool that is used for
analyzing and aiding decision making. They incorporate
elements of fuzzy logic and neural networks. FCMs are applied
in problems involving complex webs of casual relationships,
which often include feedback, and where qualitative rather than
quantitative measures of influences are available. They are very
easy to understand, use, and analyze. On the other hand, they
require domain expertise during the design process.

This paper presents application of FCMs in the software
engineering domain. Two models, which concern software
development, are proposed and discussed. They are used to
describe and analyze factors, which affect pace of work
progress during software project. The performed simulations
show very interesting relationships that agree with the
theoretical results reported in the literature.

Keywords
Fuzzy Cognitive Maps, Management of Software Project,
Project Communication.

1. Introduction
Project management is a technique for matching available
resources (time, money, and people) against business project
aims (early completion date and final cost) [10]. Products of
software projects have some features, such as invisibility,
complexity and flexibility, which makes software project
different from projects in other disciplines. Some methods of
general project management are not valid to software project
management [5]. According to statistical analyses, the most
frequent challenge to software project manager is coping with
keeping deadlines [18]. Origin of this phenomenon is
connected to difficulties in estimation of software projects.
What is worse, the progress of software projects is also hard to
foreseen. As a result, many projects exceed time and budget,
e.g. the ₤339 million United Kingdom air traffic control system
was reported as being two years behind schedule [3]. Objective
of this paper is to analyze factors, which affect progress in
software project. The paper is concentrated on effects that result
from communication among workers during software projects.
This issue plays a very important role, which is often
underestimated. Additionally, an evaluation of effects after
adding new people to a project in order to complete it faster is
also performed.

Software development requires collaboration among people.
Many people who have different backgrounds, such as domain
experts, analysts, designers, programmers, managers, technical
writers, graphic designers, and users, need to be involved in a
software development process to make it successful [14]. It is
essential to share information among these people in an

accurate and timely manner. Communication forms and types
are widely described in literature [1], [14]. It is commonly
known that communication is an inseparable element of
software development project, and it significantly affects
progress of the development. The range of this impact varies
and is connected with ability be partition the project. This paper
examines the above relationships by analyzing project progress
with respect to the number of people involved in it and
communication among the project’s participants.

Many software projects are not successful due to a lack of time
to complete them. Brooks lists five essential elements which
contribute to such troubling situations [1]. One of them is
incorrect reaction to the situation when schedule slippage
occurs. The most common response when a project is behind
schedule, which is adding additional manpower, is often
ineffective. What is worse, it sometimes causes even greater
delay according to the Brook’s Law that states that “…adding
manpower to a late software project makes it later…” [1].
Software managers usually act on the basis of an assumption
that increase in number of workers involved in project is the
best solution to finish it on time. Such reasoning steams from
fallacious thought that progress can be expressed in the man-
month unit of effort. Unfortunately this is not true. This
measure is good for describing cost of a software development
project, but it is not suitable for describing the progress. Brooks
reports that the length of a project depends on its sequential
constraints and the maximum number of men that develop the
software depends on number of independent subtasks [1]. Thus,
it is vital to establish these two quantities to properly schedule
project. It is very important to understand that exceeding
maximum number of workers involved in the project may result
in decreasing the relative progress. This results from costs
associated with both training people and repartitioning of the
tasks, which are necessary when new workers are added to help
finishing project faster. This paper aims to verify the
hypotheses stated above.

There are many techniques used to model dynamic systems. In
general, they can be divided into two major groups [11]. The
first one concerns quantitative techniques. They can be applied
both to well-understood systems, such as mathematical
programming techniques of operation research, and to less-
understood ones, such as statistically based methods of data
mining. However, significant effort and specialized knowledge
outside the domain of interest is required to develop these
models. What is more, some dynamic systems can be nonlinear,
which sometimes makes impossible to use the quantitative
models. The modeling techniques from the second group
concern qualitative approach. They allow developing models on
the basis of knowledge in the domain of application, and often
incorporate feedback mechanism. Since the relationships that
concern software development project fall into the second

group, the Fuzzy Cognitive Maps, which are one of the
quantitative models, were used to perform simulations.

2. Fuzzy Cognitive Maps
Cognitive Map is a tool, which can be used for modeling and
simulation of complex systems [7], [8]. It allows simulating
behaviour of black box systems through use of cause and effect
relationships. They consist of a collection of nodes linked by
edges, which are used to describe a given system. The nodes
represent concepts, or variables, relevant to a given domain,
whereas the causal links between them are represented by
edges. The edges are directed to indicate the direction of causal
relationships. Additionally, each edge includes information on
type of the relationship. The relationships can be positive (a
promoting effect) or negative (an inhibitory effect). The
drawback of cognitive maps is that they do not allow feedback,
which significantly limits its usefulness.

Fuzzy Cognitive Maps are an extension of Cognitive Maps [7],
[8]. Two significant improvements introduced in the FCMs are
that:
1. Causal relationships between nodes are fuzzified. This

feature enriches description of connection by numerical value
instead of only using signs. It allows using varying degrees of
causal influence.

2. The system is dynamic, which means that it evolves with
time, and involves feedback mechanisms. Specifically, the
effect of change in a concept node may affect other concept
nodes, which eventually can affect back the node that
initiated the change.

The strength of relationship between two nodes usually takes on
any value in the [-1, 1] range [7], [8]. Value -1 represents full
negative, whereas +1 full positive causal effect. Zero denotes no
causal effect. Other values correspond to different fuzzy levels
of causal effect. Definition of system relationships can be
described by a matrix, called connection matrix. Considering
the system with n concept nodes, we have n by n matrix, which
elements are the causal link strengths.

State of the system is determined by a state vector, denoted Ck,
which specifies current values of all system variables, which
can be understood as a kth state of the system. The FCMs
iteratively update the state of the system. During each iteration
value of each node is calculated based on the current values of
every node (concept), which exerts influence on it through a
causal link. After multiplying these values by edge weight
between the two nodes, which represents the strength of the
relationship between the nodes, the sum of these products is
taken as the input to a transformation function. The function is
used to reduce unbounded inputs to a certain range. This
function usually generates either binary, when threshold
function is used, or continuous, when sigmoid squashing
function is used, concept values.

The value of each node in any iteration is computed from values
of nodes in preceding state, using approach shown in Figure 1
and the following equation [7]:

∑ ⋅=+))(()1(ijij ekNfkN

Figure 1. Computation of a new concept node's value.

where Ni(k) is the value of ith node in the kth iteration (system
state), eij is edge weight between nodes Ni and Nj, and f is the
transformation function.

Three types of transformation function which are commonly
used are shown below [11]:
1. Bivalent

>
≤

=
0,1
0,0

)(
x
x

xf

2. Trivalent

≥
<<−

−≤−
=

5.0,1
5.05.0,0

5.0,1
)(

x
x

x
xf

3. Logistic signal

cxe
xf −+
=

1
1)(

The last function is a continuous-output function. The constant
c is critical in determining the degree of fuzzification of the
function.

The possible results of a simulation performed with FCM
depend on transformation function [7]. Using function which
results in binary values, the simulation of a FCM system heads
for either fixed pattern of node values, which are called hidden
pattern or fixed-point attractor, or keeps cycling between a
number of fixed states, which are known as the limit cycle.
Using a continuous-output transformation function may result
in a different outcome. System may continue to produce
different state vector values for successive cycles. This unstable
situation is called chaotic attractor.

FCMs have been applied in many different areas. Examples
include modeling of plant control [4], modeling of political
affairs is South Africa in the apartheid era [9], analysis of
electrical circuits [15], disease diagnosis [17], modeling of
virtual worlds [2], analysis of failure modes effects [13], fault
management in distributed network environment [12],
modeling and analysis of business performance indicators [6],
and modeling of supervisors [16].

3. Experiments
The paper proposes and simulates two models, which concern
management of a software development project.

N1(k)

N2(k)

Nn(k)

∑ ⋅)ije(k)iNf(

e1j

e2j

enj

Nj(k+1)

The first model describes initial development phase. It
characterizes a situation when a team of workers starts to do a
software development project. Successive states of the modeled
system show changes in considered nodes, which represent
software management aspects. Values of the nodes describe
trends, i.e. qualitative changes evolving with time, of the
considered aspects. The final state achieved by the model shows
the development state where equilibrium between the
considered concepts, with respect to the initial human
resources, is achieved. The final state shows the relative
development progress speed that is achieved for the modeled
system.

The second model extends the first model. It is used to analyze
what happens in case when any corrections to the equilibrium
state need to be performed. In particular, it allows simulating
influence of adding new workers to a project that is already in
progress.

The experiments was carried out using the logistic signal
function as a threshold function, which is a continuous-output
transformation function and thus provides true fuzzy conceptual
node states. The constant c was set to 5.

3.1. First Model
The first model presents relations, which are essential during
software development project. It consists of three concept
nodes, and is shown in Figure 2.

Figure 2. FCM describing software development project.

The following nodes are their representations are used:
- people base (N1) – people involved in project, which

includes both designers and implementers.
- communication (N2) – communication effort, which

reflects effort connected with cooperation among people
working on a project.

- progress (N3) – development abilities, which can be
interpreted as a factor, which describes rapidity of the
development of the project.

The casual relationships between nodes, which are represented
by directed edges, can be interpreted as follows. Increase in
number of people who are assigned to work has positive effect
on progress (+1 directed edge between N1 and N3). However,
the effect is not as simple as it looks at a first glance. This
forces higher level of communication among workers (+0.5
directed edge between N1 and N2), which is essential to ensure
proper partitioning of tasks and cohesion of their work.
Furthermore, this negatively influences the progress (-0.5

directed edge between N2 and N3). On the other hand, increase
in progress can lead to limiting number of people involved in
project, e.g. they can be transferred to develop other projects
(-0.5 directed edge between N3 and N1). However, higher value
of progress also implies increase in communication (+0.5
directed edge between N3 and N2). This, in turn, can cause a
trend to increase number of workers (+0.25 directed edge
between N2 and N1). The strength of the relationships was
established experimentally, and reflects common perception of
the strength of these relationships.

3.1.1. Simulation
Next, the developed model was simulated. The starting vector is
denoted C0. Each state vector consists of three numbers, which
correspond to conceptual nodes as follows: people base (N1),
communication (N2), and progress (N3). The experiment makes
possible to examine the mutual relationships among these
elements. The simulation begins with following start state
vector C0 = (0.5, 0, 0), which represent a situation when people
base concept is active and set at value 0.5, and other concepts
are inactive.
This state can be interpreted as the beginning stage of software
development project. Software project manager assigns some
people to work on a given project. Communication and progress
nodes are inactive, i.e. their values are set as zero, what
indicates that the workers did not start to work yet.

As the simulation continues successive values of nodes show
trends which occur with the progressing time. By analyzing
states of nodes in consequent system states, relationships
between the nodes can be learned and analyzed.

Rounding to three significant digits, during the simulation the
following states are achieved:
C0 = (0.500, 0.000, 0.000)
C1 = (0.500, 0.777, 0.924)
C2 = (0.208, 0.972, 0.636)
C3 = (0.408, 0.892, 0.199)
C4 = (0.650, 0.820, 0.452)
C5 = (0.474, 0.940, 0.768)
C6 = (0.322, 0.957, 0.504)
C7 = (0.484, 0.888, 0.314)

where Ci is the ith state of the system.
Next, the model steadily reaches equilibrium, which is state C79
= (0.469, 0.920, 0.511).

3.1.2. Analysis of the Simulation
In order to better understanding achieved results, values of all
nodes for first 20 states are presented in Figure 3.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

state number

va
lu

e
of

 n
od

e

people base communication progress

Figure 3. Results of the simulation of the first model.

N1
people
base

N2
commu-
nication

N3

progress

0.5

1

0.25

- 0.5 - 0.5

0.5

The first state (C1) shows that progress node achieves the
highest value. This reflects situation when tasks have been
partitioned and assigned to workers. In this phase they can start
their work separately, so the progress rate is high. However
communication problems occur and increase rapidly, which has
strong negative impact on progress. It can be interpreted as
actions taken by a manager in order to ensure the cohesion, or
another words intellectual integrity of the project [1]. In
general, as described in the introduction, communication effort
is present during all phases of development of software project.

The next states show very interesting trends. Communication
remains at high level all the time and, along with people base,
they influence progress, which significantly oscillates during
the several initial states. The oscillations are mainly caused by
adjustments in the values of people base, which in turn are
performed in reaction to the amount of progress. This situation
can cause problems in proper estimation of project effort, and
therefore will have impact on scheduling. The simulation ends
in reaching an equilibrium state.

Comparing the state C1 with the equilibrium state, one can see
that value of people base node remains approximately at the
same level, yet initial progress node value decreases almost
twice. This means that mutual relationship between these two
factors is not linear, and therefore it is not possible to easily
control progress by means of number of people assigned to
project. The analysis shows that the manager must wait some
time before making any judgments based on the progress to
accommodate for the communication between the team
workers.

3.2. Second Model
The second model describes situation when new people are
added to help completing project faster. This results from a
situation when a prognosis based on current progress shows that
the project’s deadline will not be met, and therefore a corrective
action needs to be performed. The FCM proposed to model this
situation is presented in Figure 4

Figure 4. FCM describing adding new workers to an existing

software development project.

The following nodes are their representations were added with
to the first model to build the second model:

- training (N4) – effort connected with introducing new
people to project

- new people (N5) – workers added to project, which can be
interpreted as a factor, which describes strength of a trend
of adding new personnel to the project

Meaning of the other nodes remains the same.
This model introduces both new concepts nodes and new casual
relationships among them. The relationships, which are
represented by directed edges between nodes, can be interpreted
as follows. By adding new workers the people base increases
(+0.5 directed edge between N5 and N1). However, this process
does not influence progress directly, because they have to be
trained first (+0.5 directed edge between N5 and N4). Training
requires communication among people, so the positive
connection between these nodes is present (+0.5 directed edge
between N4 and N2). It also influences increase in people base
(+0.25 directed edge between N4 and N1). On the other hand,
the progress negatively influences both adding new people (-0.5
directed edge between N3 and N5) and training (-0.5 directed
edge between N3 and N4).

3.2.1. Simulation
This time the simulation is started with a vector, which
describes equilibrium state from the first model. This is because
the second model concern the same project as the first model,
where an equilibrium state has been achieved, i.e. the project is
set according initial human resources. The second model shows
what happens when the existing pace of software development
project is insufficient. A common reaction to this situation is to
add new people to increase development speed. The model
reflects this situation, and therefore the simulation starts with
the following state:
C0 = (0.469, 0.920, 0.511, 0.000, 0.500)

In this case, each state vector consists of five numbers, which
correspond with nodes values as follows: people base,
communication, progress, training, and new people. The initial
state vector C0 uses three initial values from the first model, the
value of new people node is set on 0.5, and training is set to be
inactive, i.e. with value of zero. This describes circumstances
just after new workers are added to project.

Rounding to three significant digits, the simulation of the model
results in obtaining the following states:

C0 = (0.469, 0.920, 0.511, 0.000, 0.500)
C1 = (0.917, 0.921, 0.511, 0.493, 0.218)
C2 = (0.910, 0.992, 0.907, 0.324, 0.218)
C3 = (0.899, 0.995, 0.888, 0.151, 0.094)
C4 = (0.841, 0.992, 0.882, 0.121, 0.098)
C5 = (0.837, 0.990, 0.849, 0.124, 0.099)
C6 = (0.838, 0.989, 0.847, 0.133, 0.107)
C7 = (0.842, 0.989, 0.847, 0.136, 0.107)

where Ci is the ith state of the system.
Next, the model steadily reaches equilibrium, which is state C12
= (0.842, 0.990, 0.850, 0.135, 0.107).

3.2.2. Analysis of the Simulation
In order to help analyzing the results, the node values are shown
in Figure 5.

N1
people
base

N2
commu-
nication

N5
new

people

0.5

0.25

N4

training

N3

progress

1 - 0.5
0.5

- 0.5

- 0.5

0.25 0.5
0.5

0.5

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8

state number

va
lu

e
of

 n
od

e

people base communication progress
training new people

Figure 5. Results of the simulation of the second model.

The expected result in this simulation is to observe rapid
increase in progress upon adding new people to the team. The
simulation shows that this effect does not come immediately.
The new workers have to be introduced to project and tasks
must be repartitioned. This effort limits their usefulness to
improving progress, resulting in progress remaining unchanged
between the initial and the first state, i.e. transition between C0
and C1.

At the state C1, the manager faces the situation when increase of
cost of project development connected with paying new
workers has happened, but the expected boost in progress does
not come. This is a very dangerous state when the manager can
be tempted to add even more people to the project, which
results in so called regenerative schedule disaster [1]. It can be
seen that instead of progress, the training efforts rise rapidly. In
the states following the second state, an increase in progress can
be observed, since the new staff is trained and prepared for
work.

Focusing our attention on progress node, some interesting
observations can be made. After achieving its maximum value
in state C3, progress value starts to decline. This trend remains
unchanged until the model reaches the equilibrium state. It is
caused by diminishing values of people base and achieving the
maximum value by communication node.

Two conclusions can be drawn from analysis of the simulation.
First, the manager again must wait some time before making
any judgments based on the progress to accommodate for the
training of the new team workers. (S)he should not add
additional manpower too early since this may result in
additional costs in terms of training and communication, which
can even result in decreasing the progress. Second, adding new
workers, when little time is left to finish the project is not a
good idea, since initially the costs in introducing new people
may be higher that the gains.

3.3. Other Simulations
Several additional simulations were also performed with the
second model. This time, the initial state vector was changed
and the influence of these changes on the behaviour of the
entire system was studied. Several experiments, which illustrate
how the initial value of the new people node impacts on the
progress, were performed. Initial values of the other nodes
remained unchanged, which allows observing and comparison
of influence of varying initial values of the new people node on
the system behaviour. The obtained results are summarized in
Figures 6, 7, and 8.

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8

state number

va
lu

e
of

 n
od

e

people base communication progress
training new people

Figure 6. Simulation results for initial value of new people set

to 0.1.

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8

state number
va

lu
e

of
 n

od
e

people base communication progress
training new people

Figure 7. Simulation results for initial value of new people set

to 0.22.

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8

state number

va
lu

e
of

 n
od

e

people base communication progress
training new people

Figure 8. Simulation results for initial value of new people set

to 0.9.

The analysis of the above results shows that the final progress
value does not change, no matter what is the level of the initial
state of the new people node. However, these results differ from
each other significantly in the value of training node in the first
state of the simulation. In general, the higher is the value of this
node the greater the cost of project. It is important to notice that
the training and communication forces to trim the amount of
newly introduced people to the same levels despite different
initial costs. Therefore, the effort that has been spent on training
new people in the last simulation (state C0) is unjustified. What
is worse, the progress in the last simulation tends to decrease
very little over time. This can lead to difficulties in creating
proper project schedule, if higher value of progress than in fact
it is would be presumed. All these results confirm the
observation noted in the introduction, that duration of software
project cannot be controlled by simply adding new workers.
The other factors, like communication, training, and
susceptibility of a given project to partitioning, have to be taken
into consideration. If one will not accommodate for these

factors, the expected results will substantially differ from his or
her expectations.

4. Summary and Conclusions
FCMs are convenient to simulate systems when relationships
are not easy to describe by mathematical formulas. Problems
that are considered in this paper belong to this category. FCMs
allow building and simulating models just on the basis of
knowledge about mutual relationships between factors which
are present in a given problem.

This paper describes development and analysis of two models
that were used to observe influence of factors, such as
communication and training, on the pace of the software
development project. Literature indicates that communication
efforts are often underestimated, which often leads to missed
project deadlines.

The experiment, which was carried out using one of the models,
confirms that communication has a great effect on the progress
of software development project. Neglecting it can lead to false
assumptions concerning project schedule and, in consequence,
cause exceeding its planned time. The manager must wait some
time before making any judgments to be able to observe a true
progress value that accommodates the cost do this factor.

The other model was used to describe situation that often occurs
when software project is behind schedule. In this case, the usual
response is to add new people to the project. The obtained
results agree with those found in the literature. Namely, adding
new people should be performed very carefully, because
initially it does not bring wanted effects, but rather leads to
increase of the costs. Here also the manager must wait some
time before making any judgments based on the current
progress to accommodate for the training of the new workers.
Also, adding new people to project that are soon to be finished
should not be pursued since again the initial costs may be
higher that the future gains. What is more, the model shows that
a larger value of progress cannot be gained by just increasing
the number of new workers, which is mainly caused by the cost
of both training of new workers and the cost of increased
communication.

In the nutshell, proper estimation of software development
project before its beginning is of great importance, and of great
difficulty. One needs to accommodate for many factors, like
communication and training when performing the estimation.
This paper shows that tools, such as FCMs, can provide
valuable helps in both understanding and modeling
relationships that can improve accuracy of the estimates.

5. References
[1] Brooks, F., The Mythical Man-Month: Essays on

Software Engineering, Anniversary Edition, Addison-
Wesley, 1995.

[2] Dickerson, J., and Kosko, B., Fuzzy Virtual Worlds,
Artificial Intelligence Expert, vol.7, pp.25-31, 1994.

[3] Flower, S., Software Failure, Management Failure,
Wiley & Sons, 1996.

[4] Gotoh, K., Murakami, J., Yamaguchi, T. and Yamanaka,
Y, Application of Fuzzy Cognitive Maps to Supporting for
Plant Control, Proceedings of the SICE Joint
Symposium of Fifteenth Systems Symposium and
Tenth Knowledge Engineering Symposium, pp.99-104,
1989.

[5] Hughes B., and Cotterell M., Software Project
Management, McGraw-Hill, 1999.

[6] Kardaras D., Mentzas G., Using Fuzzy Cognitive Maps to
Model and Analyze Business Performance Assessment, In
Advances in Industrial Engineering Applications and
Practice II, Chen, J., and Mital, A., (Eds), pp.63-68,
1997.

[7] Khan, M., and Quaddus, M., Fuzzy Cognitive Map as a
Tool for Group Decision Support, Proceedings of the
2002 Group Decision and Negotiation Conference,
2002.

[8] Kosko, B., Fuzzy Cognitive Maps, International Journal
of Man-Machine Studies, vol.24, issue 1, pp.65-75,
1986.

[9] Kosko, B., Neural Networks an Fuzzy Systems,
Prentice-Hall, 1992.

[10] Microsoft Encarta Encyclopedia, 1993-2002 Microsoft
Corporation, 2003.

[11] Mohr, S., The Use and Interpretation of Fuzzy
Cognitive Maps, Master’s Project, Rensselaer
Polytechnic Institute, 1997.

[12] Ndousse, T., and T. Okuda, Computational Intelligence for
Distributed Fault Management in Networks Using Fuzzy
Cognitive Maps, Proceedings of the IEEE
International Conference on Communications
Converging Technologies for Tomorrow’s
Application, pp.1558-1562, 1996.

[13] Pelaez, C.E. and J.B. Bowles. 1995. Applying Fuzzy
Cognitive Maps Knowledge Representation to Failure
Modes Effects Analysis, Proceedings of the IEEE
Annual Symposium on Reliability and
Maintainability, pp.450-456, 1995.

[14] Project Communication, draft, available at http://citeseer.
nj.nec.com/323780.html, 1999.

[15] Styblinski, M., and Meyer, B., Signal Flow Graphs versus
Fuzzy Cognitive Maps in Application to Qualitative
Circuit Analysis, International Journal of Man-
Machine Studies, vol.35, pp.175-186, 1991.

[16] Stylios, C., and Groumpos, P., the Challenge of Modeling
Supervisory Systems using Fuzzy Cognitive Maps,
Journal of Intelligent Manufacturing, vol.9, issue 4,
pp.339-345, 1998.

[17] Taber, R., Knowledge Processing with Fuzzy Cognitive
Maps, Expert Systems with Applications, vol.2, pp.83-
87, 1991.

[18] Thamhain, H., Wilemon, D., Criteria for Controlling
Software According to Plan, Project Management
Journal, pp.75-81, 1986.

