
Battlecity Revived: Game Design with BDI.net

Yifan Li, Petr Musilek, and Lukasz Kurgan
Department of Electrical and Computer Engineering, W5-020 ECERF

University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
yifan@ee.ualberta.ca

Abstract
Can interactive entertainment industry benefit from intelligent
agents? The answer is: quite possible. This paper strives to
demonstrate this possibility through a sample arcade style game.
Modern computer games are, without doubt, complex software
systems, and they have grown more and more reliant on AI
techniques in order to better entertain the customers. These two
properties make agent-oriented approach an ideal candidate for
game development as it addresses both the complexity issue and
the intelligence issue.

Keywords
Agent, BDI, Game

1. Introduction
The exact meaning of the term agent has never been unanimously
agreed upon; however, there is an increasing consensus on the
following properties described as the weak notion of agency [1]:
• Autonomy providing agents with control over both their

internal states and their actions, i.e. the ability to operate
without direct human intervention;

• Reactivity giving agents the power to feel their environments
and act upon them;

• Pro-activeness meaning that agents can actively pursue after
their goals. In other words, agents may take initiatives; and

• Social ability allowing agents to communicate with human or
other agents.

To some extent, one can think of an agent as a ‘living’ software
entity that carries its own purposes.
There is no prescription on which, if any, specific AI techniques
agents should employ. However, the nature of the agents as
autonomous entities with clearly defined borders against their
environments does make them excellent media for AI
applications, since the complexity of the environments is
effectively separated from the complexity of the problems of
concern.
By treating agents as basic entities of software systems – in the
same way that classes (or objects) are regarded as basic building
blocks in the object-oriented software engineering approach,
additional benefits can be expected from the software engineering
processes. Due to their higher granularity and tighter
encapsulation, complex systems can be better modeled, designed,
and built with agents. In fact agent-oriented approach has been
proposed as one of the next main stream software engineering
paradigms due to its suitability for constructing complex systems
[2].
Both of the aforementioned benefits should appeal to the
interactive entertainment industry. Players seek the sense of

fulfillment in games, and the games meet their needs by providing
adequate challenges. There are excellent simple games, such as
Tetris, that achieve this without sophisticated plot or intelligence.
Yet in most other games the challenges have to be provided by
the virtual creatures that inhabit the games. A common practice in
game design is to use hard-coded scripting to control the storyline
and provide creature behaviors. This design works especially well
in situations where a firm grasp of the storyline is needed,
however at the cost of the flexibility of creature behaviors and
overall design. On the other hand, the agent-based approach
provides excellent flexibility – each creature becomes an
autonomous entity that has sensory input, reasoning and reaction
of its own, allowing easy modification of its behaviors, and even
online learning. In addition, there is the bonus of endless
combinations of emergent behaviors. Since the end users (players)
perceive the game creatures as intelligent individuals, modeling
them as such in the beginning would make it easier to meet that
expectation during later development stages. The software
architectures of the games gain flexibility from the new approach
as well. Agents guard not only their implementation details but
also their states from the rest of the system and interact through
high level communication languages. The design of such
interactions is focused on the contents being exchanged rather
than the action of exchange itself, posing a sharp contrast to the
rigid stipulations that glues the objects together.
This paper tries to provide an anatomy of how agent technology
can be applied to game design. It is organized as follows: A brief
introduction to the Belief-Desire-Intention (BDI) agent theory [3],
[4], [5] and an overview of the BDI.net agent framework [6] is
first given in section 2, followed by close examinations of
BattleCity.net, a re-implementation of the old arcade game
BattleCity, in section 3. Finally, section 4 summarizes the main
conclusions and indicates possible directions for future work.

2. Background
The above-mentioned agent definition provides no hint about the
internal structures and operations of an agent. These are usually
defined by a particular agent theory. Among the many theories of
agent surveyed in [1], the BDI model is probably the most
popular and influential one.
During the past decade, the BDI model has been well studied and
formal models have been established [7], [8]. The strong
theoretical basis is also supplemented by a number of successful
industrial applications ranging from the early NASA projects [9]
to the recent air traffic management [10] and air combat
simulation [11].
The BDI model is rooted in the philosophical work of Bratman
[12], which studies intention and its relations with other mental

attitudes. As its name implies, BDI features three major mental
attitudes as its building blocks - belief, desire, and intention:
• Belief is the agent’s knowledge about its environment and

itself.
• Desire describes the agent’s goal: a system state that the agent

wants to achieve.
• Intention is the course of action that the agent has chosen to

achieve that goal.
Another important concept in the BDI model is plan. Plans are
used as recipes for achieving certain goals, guiding the
deliberation process of the agents so they do not have to search
through the entire space of possible solutions [13].
BDI.net is a Microsoft Visual C# [14] implementation of the
AgentSpeak [15] BDI model. It is designed to be a lightweight
framework for easy BDI implementation by casual programmers.
This design philosophy leads to some favorable characteristics in
comparison to the other existing BDI implementations, such as
UM-PRS [16], JACK [17], JAM [18], dMARS [7], and ZEUS
[19]. In particular, BDI.net brings the following advantages:
• Better exposure to the programmers. BDI.net is written using

a popular programming language, and can be interfaced with
all programming languages that support the .NET
framework.

• Better alignment with the programmers’ habits. Programmers
have always embedded their knowledge in code and BDI.net
respects that tradition instead of forcing them to resort to
symbolic logic.

• Testability: BDI.net is designed with testability in mind,
providing special facilities and considerations to aid the
debugging process.

• Explicit communication support: facilities for agent
communication are built-in.

A BDI.net agent operates through iterations of its execution cycle
as depicted in Figure 1.

Figure 1: BDI.net execution cycle

At the beginning of each cycle, the agent senses its environment
and updates its belief. Consequently, desires may arouse in
response to the stimulations it has just perceived. To fulfill its
desires, the agent starts to search through its stock recipes (plans)
for ones that match the desires. One desire may have several
matching plans or no corresponding plans at all, in which case the
desire is simply omitted. Only the best plan is selected for each
desire to form a new intention for execution. At the end of the
cycle, the intention with the highest utility value will be chosen
from the intention library to be actually carried out. Sometimes
during execution one plan may need to achieve a certain sub-goal

that is beyond its control. In such scenarios it can stimulate a new
desire and the agent will try to find proper plans to fulfill the
desire in a similar fashion to that described earlier. For the
originating plan, this is a synchronous call – it waits until the sub-
goal is achieved or is believed to be unobtainable and devise
further actions based on the results.
It is hard to overestimate the importance of the role that
communication plays in any serious agent application – without
communication, it is almost impossible to exercise any control on
a multi-agent system, let alone collaborative problem solving. The
Agent Communication Language (ACL) [20], along with the
content language and ontology specifications, are the enabling
technologies of agent communication. BDI.net implements the
Foundation for Intelligent Physical Agents (FIPA) [21] ACL, a
standard message language that specifies the encoding, semantics
and pragmatics of the messages. Compared to the equally popular
KQML [22], the FIPA ACL provides formal semantics, support
for XML (which is relatively easy to parse), and other benefits
such as specifications for interaction protocols

3. BattleCity Revived
BattleCity (Figure 2) is an old Nintendo Entertainment System
(NES) game released by Namco group in 1985. The plot of the
game is simple: the players (2 maximum) are supposed to protect
their own base (the eagle on the bottom) and destroy all enemy
tanks, then move on to the next stage. The game provides
different terrain elements – rivers, bricks, stones, and trees, each
featuring unique behavior. The players are supposed to conceive
strategies in correspondent with the terrain configurations of the
stages to protect themselves and effectively clear the hostile
tanks.

Figure 2: BattleCity

The game is certainly interesting but is not a particularly
challenging one. There are different kinds of enemy tanks that
come with various speed and armor, but they all share the same
stochastic behavior and can be easily destroyed.
BattleCity.net is a remake of the old BattleCity game using the
BDI.net framework. The rules and graphic elements are
transplanted as is, but for the convenience of research the new
game changed the plot to a computer vs. computer battle. While
the enemy tanks remain stochastic, the player tanks and the base

 Desire A

Plan Instance
A1

Plan Recipe
Library

Plan Instance A1

Intention Stack
Perceive

Desires aroused

Find plan recipes that
match the desire

Create Intention Stack

Plan A2
Plan A1

Applicable Plans

The matching plans
are called Applicable Plans

The best of the applicable
plans is selected and

instantiated

Plan Instance X11
Plan Instance X1

Intention
Library

Add Intention Stack to Intention Library

Select the best
intention for execution

Execute the
plan on

top of the
stack

are taken over by intelligent agents, so there is no human
intervention needed.

3.1 Design
In an agent-oriented approach the target system is decomposed
into autonomous entities and inanimate objects. The first step is to
decompose the system properly and identify the agents. It does
not take much effort to find out that there are nine types of
entities – four terrain elements, three different enemy tanks, the
base, and the player tank. In theory, all entities can be agents but
that would result in a waste of precious resources. So which
entities should be designed as agents? As in many other design
issues there is no straightforward answer here. However a simple
rule of thumb can provide some hint: if an entity has to perform
actions to change the environment, and the motivation for
performing these actions originates from the environment, it can
be made an agent. In BattleCity.net, the player tank and the base
are designed as agents, leaving the rest as plain objects. To get a
more realistic behavior, the player agents have limited sight,
which in turn demand the base to monitor its own vicinity and
alert the player agents when enemies approach.

Figure 3 BattleCity.net Design (Selected Parts)

The agent-oriented approach is not a radical departure from the
object-oriented approach, but rather its natural extension. Agent-
based games can still take advantage of existing game
development frameworks. BattleCity.net makes use of a 2D grid
game development framework that provides rendering, sound,

collision detection, and basic object prototypes. BDI agents are
embedded into the game objects to control their behaviors, but the
actual actions are still performed by the objects, cf. Figure 3. This
approach is analogous to replacing the puppets used in a puppet
show with robots – the investments on the costume and stage is
preserved, the puppet show is getting more interesting, but the
hassle of manipulating the puppets directly with threads is
exempted.

3.2 Implementation
The game framework provides a control loop driven by an
external timer to handle animations and collisions. It also gives
the game entities a chance to handle their own affairs by calling
their Action method through the IActiveObject interface,
as illustrated in Figure 4.

Figure 4 IActiveObject Interface

The enemy tanks take this chance to make random moves and fire
occasionally; the player tanks and the base pass the control to
their ‘brains’, i.e. the agents. The terrain elements do not
implement the IActiveObject interface as they are not active
entities.
While the agent framework covers the mental operations of an
agent, plans have to be set up to instruct the agent what can be
done and how to do it. There are six major tasks for the player
agent: to avoid bullets, to protect the base, to destroy enemies that
can be fired at, to track the enemies down, to avoid collision with
teammates, and to explore the battlefield when there is nothing
better to do. Each of these situations has to be completely handled
by at least one plan. Taken that the game is not complicated, one
plan is conceived for each respective task. Similarly, for the base
agent, only one plan is needed, which is to call for help.
Aside from the main control loop described earlier, each BDI
agent also runs its own execution cycle in a separate thread. These
loops have to be synchronized with the main control loop
properly in order to avoid undesirable results. In other words,
considering each timer event as one step, the agents should only
be able to perform one set of actions at any step. BDI.net provides
support synchronization at two levels – the agent execution cycle
and the plans, both through semaphores. At the agent execution
cycle level, agents can be configured to wait for a ready-to-go
signal at the beginning of each cycle. The plans can also be
interrupted and resumed at a later execution cycle, which is useful
when a plan, such as chasing the enemy, takes multiple steps to
finish. However special care has to be taken when implementing
such plans – the agent’s status has to be closely monitored to
make sure that the plans are still valid under the current

GameObject

MobileObject StaticObject

Robot Bullet

Tank Enemy 1

FlatGame

Enemy 2

Enemy 3

Stone

Grass

Brick

WaterH

WaterV

Home

Player Player 1

Player 2 BattleCityGame

BDIAgent Plan

PlayerAgent HomeAgent

ChaseEnemyPlan

DestroyEnemyPlan

AvoidTeammatePlan

BDI

BattleCity

Game

FollowRoutePlan

BattleCity::Tank

+Action()
«interface»Framework::IActiveObject

Framework::FlatGame

foreach (GameObject obj in m_Objects)
{
 //for objects to take care of their own affairs
 if (obj is IActiveObject)
 ((IActiveObject) obj). Action();
}«uses»

BattleCity::Home

circumstances, because new situations may arise while a plan is
temporarily suspended and other plans of higher importance may
be executed, invalidating the original conditions when the plan
resumes.
Without centralized control, the game agents have to coordinate
among themselves. Calling for help is one situation that demands
such coordination. As illustrated below in Figure 5, when the base
senses enemy tanks around, it sets up a contract net
conversation with both player agents by broadcasting a Call for
Proposal (CFP) message that indicates the enemy’s position and
the deadline of proposal submission. If a player agent is not too
busy it will reply with the cost of performing such rescue, i.e. the
time it takes to reach the spot. The base agent then chooses a
winner from the submitted proposals. Once a contract is awarded
to the player agent, it initiates a subscribe conversation with
the base agent so that it will be kept posted the up-to-date
information about the threat.

Figure 5 Call for Help Contract Net Conversation

At the current stage the rule-based approach (in which a set of if-
else statements define the stimuli and the corresponding reactions)
is used to generate the behaviors of the agents, and the standard
A* search algorithm [23] is responsible for path finding. The
same configuration would be used without problem in a game that
does not employ the agent-based design. However, since all the
agents are planning their own paths locally, there is a possibility
that the player agents may run into each other and, in the worst
case, result in a deadlock. One solution to this problem is to have
the agents negotiate with each other in case of collision, but a
simpler approach is taken here: both parties in collision will stop
and wait for a random period of time and re-evaluate their
situation. This way the first recovered from the ‘coma’ will
always have to find a new path.
Figure 6 is a portrait of BattleCity.net in action showing the
player tanks (and) actively engaged in battle. The small
filled circles (, , and the two near)indicate the agents’
intended destinations and the dotted lines leading to the circles
depict the paths that the agents ought to follow. As shown in the

screenshot, both player agents have multiple intentions. Player
is committed in chasing after one of the enemy tanks () but has
not forgotten about its original intention of visiting a nearby spot
(). Similarly, player is attacking one of the enemies () but
also has chasing and visiting in mind.

Figure 6 BattleCity.net Screenshot

4. Conclusions
The Agent-oriented approach to game development offers many
benefits throughout the development cycle. It provides a natural
way of modeling the game creatures at the very beginning,
followed by a software architecture of high flexibility and low
coupling which in turn paves the way to large scale and parallel
development. In addition, developers can easily integrate their old
game development frameworks with the new design approach.
Agents will certainly play a key role in game development in the
near future. However the agent-oriented approach is not without
drawbacks. The most serious problem is the conflict between the
need to maintain a storyline and the autonomous nature of the
agents. The storyline often demands precise control over certain
creature’s properties, but the autonomous agents may exhibit
undesirable emergent behaviors due to the absence of centralized
planning and control. Such unwanted emergent behaviors can be
eliminated on a per-problem basis, like the teammate avoidance
problem described earlier. While patch works can also be
effective, the general solution to this kind of problems will be a
hybrid architecture that features both centralized control and
autonomous agents with ‘back doors’ for external control.

5. Acknowledgments
Support provided by Alberta Software Engineering Research
Consortium is gratefully acknowledged.

6. References
[1] M. Wooldridge and N. R. Jennings, “Intelligent agents:

Theory and practice”, The Knowledge Engineering Review,
10(2), pp.115-152, 1995.

[2] N. R. Jennings, “On agent-based software engineering”,
Artificial Intelligence, 177:277-296, 2000

Base Agent Player Agent

Enemy In Sight

CFP (Enemy Location , Proposal Deadline)

[Free]Propose (Cost)

Refuse (I am Busy) [Occupied]

Deadline

Accept - Proposal

Inform (Done)

Failure

[Done]

[Failed]

Reject - Proposal

alt

alt

alt
[Cheap]

[Expensive]

[3] M. E. Bratman, D. Israel, M. Pollack, “Plans and Resource-
Bounded Practical Reasoning”, Computational Intelligence,
4:349-355, 1988

[4] M. P. Georgeff and A. L. Lansky, “Reactive Reasoning and
Planning”, Proceedings of the Sixth National Conference on
Artificial Intelligence, volume 2, pp.677-682, Seattle, WA,
1987

[5] A. S. Rao and M. P. Georgeff, “Modeling Rational Agents
within a BDI-architecture”, Proceedings of Knowledge
Representation and Reasoning, pp.473-484, 1991

[6] Y. Li and P. Musílek, “BDI.net: A Lightweight Framework”,
Proceedings of the Third ASERC Workshop on Quantitative
and Soft Computing Based Software Engineering, pp. 49-53,
2003

[7] M. d'Inverno, D. Kinny, M. Luck, and M. Wooldridge, “A
formal specification of dMARS”, Intelligent Agents IV, M.
P. Singh, A. S. Rao, and M. Wooldridge, eds, pp. 155--176.
Springer Verlag, Berlin, 1998

[8] M. d'Inverno and M. Luck, “Engineering AgentSpeak(L): A
formal computational model”, Journal of Logic and
Computation, 8(3), pp.233-260, 1998

[9] M. P. Georgeff and F. F. Ingrand, “Decision-Making in an
Embedded Reasoning System”, Proc. Int'l Joint Conf. on
Artificial Intelligence, pp. 972--978, August 1989

[10] M. Ljungberg and A. Lucas, “The oasis air traffic
management system”, Proceedings of the Second Pacific
Rim International Conference on Artificial Intelligence, 1992

[11] A. S. Rao, A. Lucas, D. Morley, M. Selvestrel, G. Murray.
“Agent-oriented architecture for air-combat simulation”,
Technical Report Technical Note 42, The Australian
Artificial Intelligence Institute, 1993

[12] M. E. Bratman, Intentions, Plans and Practical Reasoning,
Harvard University Press, London, 1987

[13] A. S. Rao, “A Unified View of Plans as Recipes”,
Contemporary Action Theory, Editors Ghita Holmstrom-
Hintikka and Raimo Tuomela, Kulver Academic Publishers,
The Netherlands, 1997

[14] Microsoft Visual C# .net Home Page,
http://msdn.microsoft.com/vcsharp/, 2002

[15] A.S. Rao, “AgentSpeak(L) : BDI agents speak out in a
logical computable language”, Proc. 7th European Workshop
on Modeling Autonomous Agents in a Multi-Agent World,
MAAMAW'96, LNAI-1038, Springer Pub., 1996

[16] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny, “UM-
PRS: An Implementation of the Procedural Reasoning
System for Multirobot Applications.”, Proceedings of the
AIAA/NASA Conference on Intelligent Robotics in Field,
Factory, Service, and Space, pp.842-849, 1994

[17] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas, “JACK
Intelligent Agents – Components for Intelligent Agents in
Java”, AOS Technical Report 1, 1999

[18] M. Huber, “Jam: a bdi-theoretic mobile agent architecture”,
Proc. Intl. Conf. Autonomous Agents, pages 236–243, 1999

[19] H. Nwana, D. Ndumu, L. Lee, and J. Collis, “ZEUS: A tool-
kit for building distributed multi-agent systems”, Applied
Artificial Intelligence Journal, 13(1):129-186, 1999

[20] Y. Labrou, T. Finin, and Y. Peng, “Agent Communication
Languages: The Current Landscape”, IEEE Intelligent
Systems, 14(2):45-52, 1999

[21] Foundation for Intelligent Physical Agents Home Page,
http://www.fipa.org/, 2003

[22] T. Finin et al, “Specification of the KQML Agent
Communication Language”, Technical Report, DARPA
Knowledge Sharing Initiative, External Interfaces Working
Group, 1993

[23] N. J. Nillson, “Problem-Solving Methods in Artificial
Intelligence”, McGraw-Hill, 1971

