
32 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

Highly Scalable and Robust Rule Learner:
Performance Evaluation and Comparison

Lukasz A. Kurgan, Member, IEEE, Krzysztof J. Cios, Senior Member, IEEE, and Scott Dick, Member, IEEE

Abstract—Business intelligence and bioinformatics applications
increasingly require the mining of datasets consisting of millions
of data points, or crafting real-time enterprise-level decision sup-
port systems for large corporations and drug companies. In all
cases, there needs to be an underlying data mining system, and
this mining system must be highly scalable. To this end, we de-
scribe a new rule learner called DataSqueezer. The learner be-
longs to the family of inductive supervised rule extraction algo-
rithms. DataSqueezer is a simple, greedy, rule builder that gen-
erates a set of production rules from labeled input data. In spite
of its relative simplicity, DataSqueezer is a very effective learner.
The rules generated by the algorithm are compact, comprehen-
sible, and have accuracy comparable to rules generated by other
state-of-the-art rule extraction algorithms. The main advantages of
DataSqueezer are very high efficiency, and missing data resistance.
DataSqueezer exhibits log-linear asymptotic complexity with the
number of training examples, and it is faster than other state-of-
the-art rule learners. The learner is also robust to large quantities
of missing data, as verified by extensive experimental comparison
with the other learners. DataSqueezer is thus well suited to modern
data mining and business intelligence tasks, which commonly in-
volve huge datasets with a large fraction of missing data.

Index Terms—Complexity, data mining, DataSqueezer, machine
learning, missing data, rule induction, rule learner.

I. INTRODUCTION

MACHINE Learning (ML) is one of the most popular tools
used in the knowledge discovery process. If we define

knowledge discovery as a nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns
from large collections of data [34], then ML is one of the key
tools used to perform data mining tasks in this process [6], [34],
[17], [18].

ML is often defined as the ability of a computer program to
improve its own performance at some task based on past ex-
perience, and as such is a very attractive vehicle for automated
classification and generation of patterns [18], [44], [54], [57].
Over last few years ML attracted considerable attention due to
the demand for reliable and useful data mining techniques in the
information technology, medical, decision making, and gaming
industries, to name but a few. ML is most frequently used to

Manuscript received June 4, 2004; revised November 21, 2004 and February
15, 2005. This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada under Grants G121210953 and
G121210906. This paper was recommended by Associate Editor D. J. Cook.

L. A. Kurgan and S. Dick are with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB T6G 2VF, Canada.

K. J. Cios is with the Department of Computer Science and Engineering, Uni-
versity of Colorado at Denver and Health Sciences Center, Denver, CO 80217
USA, the Department of Computer Science, University of Colorado, Boulder,
CO 80309 USA, and also with t 4cData, LLC, Golden, CO 80401 USA.

Digital Object Identifier 10.1109/TSMCB.2005.852983

solve classification problems, perform intelligent data analysis,
and to develop diagnostic, decision support, and expert systems
[53], [59].

Our current work focuses on a class of ML algorithms called
rule induction systems (or rule learners). A rule induction
system takes as input a set of training examples, and produces
a set of production rules or IF-THEN rules. Rule induction is
distinct from decision trees; while it is trivial to produce a set
of production rules given a decision tree (by creating rules that
each represent a path from the root to a leaf on the tree), this is
an issue of extracting rules from an existing, convenient data
structure created by a different ML algorithm. Decision trees
have drawn significant attention over the last several years,
but the rule learners also exhibit a number of very desirable
properties.

– They generate rules that are relatively easy for people to
understand [8], which recently gained importance as a
very desirable property since production rules appear to
be more human-comprehensible than decision trees [14],
[70]. People often learn from hypotheses generated by a
rule learner, provided the hypothesis is in a human-com-
prehensible form. In this case, experts can even partici-
pate in the learning process by critiquing or improving the
learned hypotheses.

– On some problems, rule learners were found to outper-
form decision trees [58], [69], [81], which shows that
decision trees cannot be perceived as superior to rule
learners

– The output of a rule leaner can easily be translated to
a first-order logic representation, or embedded within
knowledge-based or expert systems [25], [50]

– Certain types of prior knowledge were found to be easily
communicated to rule learners [26], [60]

– Lastly, the rules can be modified and analyzed because
of their modularity, i.e., a single rule can be understood
without reference to other rules [40], which is very im-
portant when a decision maker needs to understand and
validate the generated rules, as in medicine [50], [51].

In the light of the recent explosion of low-cost storage space
and the growing interest of research and industrial communities
in automated analysis of large quantities of data, the scalability
of ML algorithms becomes one of the most important consider-
ations. Applications such as intrusion detection or market basket
analysis generate millions of data points daily. Other areas, such
as genomics and proteomics are also approaching these data
sizes. Recently published results of a 2003 survey on the largest
and most heavily used commercial databases report that that the

1083-4419/$20.00 © 2006 IEEE

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 33

biggest decision support system is now at 29.2 terabytes, which
is about 300% larger than the largest system of 2001 [82]. Sig-
nificant growth in the number of data points is also documented:
the average size of Unix databases experienced a six-fold, and
Windows databases a fourteen-fold, increase compared to year
2001; large commercial databases now average 10 billion data
points [82]. An individual rule generation tasks is usually ap-
plied to results of a query posed to such database, which may
return between several thousands and several millions of data
points. Considering these very large databases, the primary con-
cern is to be able to generate rules in a “reasonable” amount
of time. For many applications that means to be able to gen-
erate the results in several minutes, or at most hours, because
of the rapid rate of deterioration in the usefulness of the gener-
ated rules [71]. If the time to generate the rules is too long, then
they may become obsolete before the user will have any chance
of employing them. This issue is even more important in case
of development of real-time decision support system based on
ML learners. In this case, it becomes absolutely critical to use
highly scalable learners that can provide the results within the
predefined amount of time [29]. Many researchers have already
recognized the importance of proposing rule learners that are
characterized by scalability with the number of training exam-
ples [23], [25], [29], [50]. Over the last several years, the ML
research community devoted significant efforts to reducing the
complexity of the rule learners from being [24], where
is the number of input examples, to the state-of-the-art learners
that are nearly linear, and not worse than [23], [25],
[29]. This paper proposes a new rule learner that is log-linear,
i.e., , with the size of input data, and at the same time it
is significantly faster than other existing learners. Although the
performance difference between the proposed and other con-
sidered learners are insignificant for small datasets that include
several thousand examples, we show that they become very sub-
stantial at several million examples.

A number of alternative approaches to improve learner’s scal-
ability can be used. Two methods, which include applying data
subsampling [63], and using parallel or distributed approaches
to handle all the data are dominant. In the latter case a variety
of methods exists, such as parallelization of the learner, fea-
ture selection, distributed learning on data subsets, use of re-
lational representation, and meta learning [10], [12], [35], [38],
[45], [61], [63]. Summary of relevant methods can be found in
a survey by Provost and Kolluri [63].

Another very common problem is incompleteness within the
datasets that are used to generate rules. Many real world datasets
are characterized by an unavoidable problem of missing values.
A variety of different reasons, such as manual data entry proce-
dures, incorrect measurements, equipment errors, etc., result in
incompleteness in the data. We also note that in some domains,
such as medicine, it is not uncommon to encounter datasets that
are missing more than 50% of their entries. For example, a set
of medical data describing patients with cystic fibrosis missing
over 60% of its entries was successfully used to find useful re-
lationships about the disease [51]. Thus, a very desirable prop-
erty of any ML algorithm is robustness to missing data. Specif-
ically, a rule learner should be able to generate accurate rules
in the presence of large quantities of missing data, while main-

taining its scalability properties. The rule learner proposed in
this paper has been extensively tested and compared to other
state-of-the-art learners, to show its robustness to missing data
from both accuracy and scalability perspectives.

The remainder of this paper is organized as follows. First,
existing state-of-the-art rule learners and decision tree learners
are described in Section II; these are the primary competitors
for our algorithm. We then describe DataSqueezer, our pro-
posed rule induction system, in Section III, and show that the
asymptotic complexity of this algorithm is log-linear in the
worst case. In Section IV, we present the results of an exper-
imental comparison of the accuracy of our proposed learner.
The results demonstrate that DataSqueezer is competitive with
best-in-class competitors in terms of accuracy. In Section V, we
present experimental timing results showing that the empirical
complexity of DataSqueezer matches the theoretical results,
and that DataSqueezer is much faster than other best-in-class
rule learners. We also demonstrate DataSqueezer’s robustness
to missing data in Section V. Finally, we offer a summary and
discussion of future work in Section VI.

II. STATE-OF-THE-ART RULE INDUCTION AND DECISION TREES

We can divide competitors for DataSqueezer into rule
learners, decision trees, and their hybrids. All of these algo-
rithms follow the supervised ML paradigm, meaning that each
training sample must be labeled with its correct classification.
Some decision trees learners are CART [7], ID3 [67], C4.5
[65], T1 [41], and C5.0 [73]. Example rule learners are the
AQ family of algorithms [42], [56], INDUCE [30], FOIL [68],
REP [24], C4.5 rules [65], IREP [37], RISE [31], RIPPER
[25], [27], DiVS [75], BEXA [77], DLG [80], SLIPPER [23],
LAD [5], LERILS [14], and IREP++ [29]. Hybrid learners
are represented by the CN2 [21], [22], and CLIP family of
algorithms [16], [19]. A survey of relevant inductive ML
learners can be found in [36]. Other inductive ML algorithms,
which do not generate rules but some other data models, are
for example probabilistic algorithms like Naïve Bayes [32],
[54], and statistical algorithms like Support Vector Machines
[28], [78]. While rule extraction can be applied to a number
of different ML algorithms, these alternatives are beyond the
scope of the current work.

The above rule and decision tree learners were intensively
studied and cross-compared by the ML community over the
last decade. Several major trends in development of new
learners can be identified. The newer rule learners are usually
characterized by a higher accuracy of the generated rules, often
together with a lower complexity of the rules, when compared
with the older learners. Another major trend was concerned
with lowering computational complexity of the proposed
learners. Some of the older learners, such as REP, have
complexity, where is the number of examples in the training
dataset. Plainly, such algorithms cannot scale to datasets of
millions of examples. Over the last several years the subsequent
learners were characterized by significant improvements in
lowering the complexity. For example, the C4.5 system has

complexity, LERILS learner has complexity, and
RIPPER, SLIPPER, and IREP++ have complexity.

34 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

Table I presents a comparison of all low complexity rule and
decision tree learners. However, in the current age of datasets
including millions of examples, the complexity and speed of
the most scalable rule learners becomes insufficient. To this
end, the current paper proposes a new rule learner that has
log-linear, i.e., , complexity, and is significantly faster
than other log-linear learners, which makes it appropriate for
use in these very large datasets. The proposed rule learner is
carefully evaluated with respect to accuracy and complexity
of the generated rules, and is shown to be competitive in these
respects to other state-of-the-art, low-complexity learners.

We will first review some of the major competitors for
DataSqueezer, and identify a comparison group for our exper-
iments. Since the proposed learner is designed to be scalable,
the primary selection criterion for the comparison group is
low complexity. Secondary criteria are the ability to handle
multi-class problems, and robustness to missing values. The
latter two characteristics are critical for most real-world appli-
cations of inductive learning systems.

Among all decision tree learners, the most scalable, and at
the same time most accurate in terms of the generated rules and
trees is the C5.0 learner [23]. C5.0 is a proprietary, commercial,
unpublished descendant of C4.5 learner. It is based on the clas-
sical theory of decision tree induction [65], [66], and incorpo-
rates various advanced speed, memory, and pruning optimiza-
tion techniques [73]. Thus this learner was selected as the best
representative among decision tree learners for our experimental
comparison.

A number of different algorithms were considered among
the rule learners. First, the learners characterized by substantial
complexity were disregarded. Although complexity results for
the INDUCE, AQ, and FOIL learners (which use a first order
logic based induction engine and Horn clause rule representa-
tion), have never been published, they are known to have very
substantial scalability problems. These algorithms exhibit unac-
ceptable performance even on very small datasets in the range
of several thousand examples. The REP and C4.5 rules learners
have complexity, which is also very substantial, and thus
are also disregarded.

The IREP learner was developed to reduce the high com-
plexity of the REP learner [37]. The IREP learner was shown to
be competitive with REP in terms of accuracy of generated rules,
while at the same time was characterized by significantly lower
complexity [37]. IREP was further improved, resulting in the
RIPPER learner. The RIPPER learner was again shown to have
very competitive accuracy, and better complexity when com-
pared with IREP [25]. RIPPER uses a divide-and-conquer ap-
proach combined with a greedy set-covering based search pro-
cedure during the rule induction process [25]. After a rule is
generated, it is immediately pruned in a greedy manner. Based
on the above discussion, the RIPPER learner was selected as
a representative of rule learners for the experimental compar-
ison. Additionally, RIPPER learner can be used without rule op-
timization step that results in a faster induction process, which
potentially leads to rules of lower accuracy. The nonoptimized
version of the RIPPER was included in the experimental com-
parison set to contrast its scalability with the proposed learner.

The RISE learner has a much worse complexity, i.e., ,
than RIPPER learner, was never experimentally shown to be
competitive in terms of accuracy and rule complexity compared
with more recent learners, and is thus eliminated [31]. The com-
plexity of the LAD learner was never published, and the paper
that introduced the learner presented a statistically inconclusive
comparison with other modern learners [5]. This learner has
a very complex design, and the complexity appears to be sig-
nificantly worse than . LAD is thus eliminated. The
same applies to BEXA learner, which complexity was not pub-
lished, but appears significantly worse than complexity of CN2
and C4.5 learners [77]. The complexity of the DLG learner was
also not published, but based on the algorithm’s pseudocode,
it appears to be worse than , which is achieved by
modern learners including RIPPER [80]. Therefore the learner
is eliminated. Both LERILS and DiVS learners have a much
worse complexity, i.e., , than the RIPPER learner, and
were shown to match the accuracy of RIPPER. Both of these
learners are thus eliminated from the comparison group.

SLIPPER is one of the most advanced rule learners. It is
shown to improve upon the accuracy of RIPPER learner by
applying a boosting strategy in the induction process [74].
In this approach, each subsequent rule covers examples from
the training set that are recognized incorrectly by the rules
created so far. The boosting strategy replaces the classical set
covering approach used by RIPPER, which results in a learner
that is substantially different and complementary to RIPPER
[23]. At the same time SLIPPER learner is characterized by
low, complexity, which is asymptotically identical
to RIPPER’s complexity. Based on the above discussion the
SLIPPER was included in the comparison group. The IREP++
learner is the most recent extension of the RIPPER learner. It
uses an identical induction procedure, but applies optimization
with the respect to running time. Although the IREP++ was
shown to be faster than RIPPER, it is characterized by the same
asymptotic, i.e., log-linear, complexity. At the same time, its
currently published version allows to handle only two-class
datasets, while a further extension is necessary to handle
multi-class problems [29]. Thus, it was not considered for the
experimental comparison.

Finally, among the hybrid learners two learners are consid-
ered. Both CN2 and CLIP4 (the most recent learner from the
CLIP learner family) have the same quadratic complexity. Since
the CN2 generates rules using an entropy-based methodology
(which is very similar to induction process applied by the deci-
sion tree learners), the CLIP4 learner was selected as a repre-
sentative for the experimental comparison. The CLIP4 learner
uses an integer programming based induction process to gen-
erate rules, and was shown to be competitive in terms of ac-
curacy with other modern rule learners [19]. Additionally, it is
the only learner that generates production rules that exclusively
use inequalities, i.e., , in the condition part of the generated
rules, instead of the equalities generated by other learners. We
note that RIPPER learner can be set up to generate inequalities
in the rules, but its design focuses on deriving equality based
rules. Also, BEXA learner uses negations to specialize gener-
ated rules, but the final generated rules are equality based. As
such, CLIP4 is complementary to other learners, which provides

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 35

TABLE I
COMPARISON OF LOW COMPLEXITY RULE AND DECISION TREE LEARNERS

Fig. 1. Pseudocode of the DataSqueezer learner.

additional motivation to include it in the experimental section.
The comparison group selected for our experiments is high-
lighted in boldface in Table I.

III. THE DATASQUEEZER LEARNER

This section introduces the DataSqueezer learner [52]. First,
a formal description and pseudocode of the learner are provided.
Next, the complexity of the learner is estimated. Finally, the
main characteristics and features of the learner are discussed.

A. DataSqueezer Algorithm

Let us denote the training dataset by , which consists of
examples and attributes. The sets of positive examples, ,
and negative examples, , must satisfy three properties:

, , , and .
Fig. 1 presents pseudocode for the DataSqueezer learner. The

pseudocode uses vector and matrices (tables) that are denoted
by capital letters, while their elements are denoted by the same
name using small letters. The table of positive examples is
denoted as POS and the number of positive examples by ,
while the table and the number of negative examples are NEG
and , respectively. The POS and NEG tables are created
by inserting all positive and negative examples, respectively,

where examples are represented by rows and attributes by
columns. Positive examples from the POS table and negative
examples from NEG table are denoted in the DataReduction
procedure by the values where , is the column
number, and is the example number (row number in the
table, which is initialized with either POS or NEG table). The
DataSqueezer learner also uses tables that store intermediate
results (for POS table, and for NEG table), which
have columns. Each cell of the table is denoted as

, where is a row number and is a column number,
and similarly for table is denoted by . The

table stores a reduced subset of the data from POS, and
table stores a reduced subset of the data from NEG. The

meaning of this reduction is explained later. The and
tables have an additional column that stores

the number of examples from the NEG and POS tables, which
a particular row in and describes, respectively.
Thus, for example stores the number of examples
from POS that are described by the 2nd row in table.
More detailed description that includes rationale and important
features of both of the learner steps follows.

Step 1 Explanation:
Rationale: The learner performs data reduction to gener-

alize information stored in the original data.

36 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

Fig. 2. Example rule generation process of the DataSqueezer learner.

Important Features: Data reduction is performed via use
of the prototypical concept learning, which is based on the Find

algorithm of Mitchell [57]. It is performed for both positive
and negative data and results in generation of the and

tables. The reduction procedure is also related to the least
generalization, as used by the DLG learner [80]. The main dif-
ference is that the least generalization is applied multiple times
for the entire positive set through a beam search procedure,
while DataSqueezer performs it once in a linear fashion by gen-
eralizing consecutive examples. Also, the DLG learner does not
generalize the negative set.

Step 2 Explanation:
Rationale: The learner generates rules by performing

greedy hill-climbing search on the reduced data.
Important Features: A rule is generated by applying the

search procedure starting with an empty rule, and adding selec-
tors until the termination criterion fires. The rule, while being
generated, consists of selectors generated using dataset,
and is checked against the dataset. If the rule covers any
data in the dataset, a new selector is added to the rules
making it more specific, and thus able to better distinguish be-
tween positive and negative data. The maximum depth of the
search is equal to the number of attributes. Next, the examples
covered by the generated rule are removed, and the process is
repeated.

An example dataset is used to illustrate working of the
learner. It describes patients who are either directed home
or undergo treatment based on results of medical tests. Each
patient is described by temperature, blood flow, and chest paint
type attributes, while the class is the decision made for each
patient—see Fig. 2.

For our example, the ,

, , and

In step 1, the and tables are computed:

– First the DataReduction(POS; k) call in line

1.1 is executed. In line DR.1 the variables,

G = [] and d1 = tmp = [low normal 2], are

initialized. After computing DR:2:1�DR:2:4

for j = 1 tmp = [low normal�] and after computing

DR.2.5 and DR.2.6 g1 = [low normal � 2]. After

executing for loop for j = 2 tmp = [� normal �]

and thus based on DR.2.7 g2 = [normal normal 3 1]

and tmp = [normal normal 3]. For j = 3 tmp =

[normal � �] and thus based on DR.2.7 g3 =

[normal low 2 1] and tmp = [normal low 2]. Finally

for j = 4 tmp = [normal low �] and based on DR.2.6

g3 = [normal low � 2]. As the result

G = GPOS =

low normal � 2

normal normal 3 1

normal low � 2

:

– Similarly, when DataReduction(NEG; k)

is called in line 1.2 the resulting

GNEG =
low � 4 2

high normal 4 1
. The last column of

GPOS and GNEG gives the number of rows, from

POS and NEG respectively, which a particular

row in GPOS and GNEG describe. The “�” stands

for “do not care” value. For instance, the

first row in GPOS covers the first two rows in

POS.

In the second step, rules are generated using and
tables:

– A rule is generated by incrementally adding

selectors using the GPOS table. A selector

with the highest summed value from the last

columns is chosen and added incrementally

until a rule will not describe any rows in the

GNEG table. Next, the rows described by the

generated rule are removed and the process re-

peats

– The detailed computations follow. First, we

initialize RULES = [] and LIST = [1; 2; 3]. Next

in line 2.3 saj values are computed as slow 1 =

6 (since low has summed value of 2 in the

last column in GPOS and the total number of

values for j = 1, which is temperature, is 3),

snormal 1 = 9, snormal 2 = 9, slow 2 = 6, s3 3 = 4. In

line 2.4 the snormal 1 is selected, LIST = [2; 3],

and rules1 = [temperature = normal]. Next in line

2.5.1 rules1 is verified not to describe any

rows in GNEG. In line 2.5.2 GPOS = [low normal � 2]

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 37

and since it is not empty (line 2.5.3) the

algorithm iterates back to line 2.2. Again,

LIST = [1; 2; 3] and slow 1 = 6 and snormal 2 = 6.

– The rules2 = [temperature = low] and LIST = [2; 3]

are computed in line 2.4. Since rules2 describes

first row in GNEG line 2.3 is executed again

to further specialize the rule. The snormal 2 = 6

is computed in 2.3, and rules2 = [temperature =

low and blood ow = normal] and LIST = [3] is com-

puted in 2.4. Finally since the rules2 does not

describe any rows in GPOS and after removing

rows in line 2.5.2 GPOS becomes empty the al-

gorithm terminates.

– As the result two rules were generated—see

Fig. 2.

The procedure is similar, in some aspects, to DiVS [75]. The
DiVS learner also learns using both positive and negative data,
but it uses all examples to generate rules, including the ones
covered by already generated rules. For multi-class datasets,
the DataSqueezer learner generates rules for every class, each
time generating rules that describe the currently chosen (posi-
tive) class.

B. Theoretical Complexity

In what follows, the asymptotic complexity of the
DataSqueezer learner is determined. Our terminology and
assumptions are as follows:

– is the number of examples, is the number of attributes,
is the number of generated rules, and is the number of

classes in the problem;
– length of the RULES vector is and it is not longer

than ;
– size of all POS and NEG matrices is ;
– ;
– and are small constants. These constants were used in

the analysis to provide general complexity estimation, but
the final complexity is a function of .

To estimate complexity of the entire learner, we break the
process into determination of the complexity for particular steps
of the learner.

1. Complexity of the initialization (line “Given” from the
code in Fig. 1).

to derive POS matrix
to derive NEG matrix

Thus, the total complexity of the initialization is:
.

2. Complexity of STEP 1 (lines 1.1–1.2 from the code in
Fig. 1).

First, complexity of the DataReduction procedure is es-
timated.

Line DR.1:
Line DR.2.1: and applies to lines
DR.2.2-DR.2.7

Line DR.2.2: and applies to lines
DR.2.3, and DR.2.4
Line DR.2.3:
Line DR.2.4:
Lines DR.2.5-DR.2.7:
Line DR.2.8:

Thus, total estimated complexity of DataReduction
procedure is

Since STEP 1 simple calls twice the RataReduction pro-
cedure and stores the results in and tables,
which is , its total complexity equals to .

3. Complexity of STEP 2 (lines 2.1–2.5.4 from the code in
Fig. 1).

Line 2.1:
Line 2.2:
Line 2.3: one sweep through
is sufficient
Line 2.4: selection of is
precomputed in 2.3
Line 2.5.1: one sweep through

is required
Line 2.5.2:
Line 2.5.3: and applies to lines
2.2–2.5.4, since this line will exe-
cute “go to 2.2” times
Line 2.5.4: and applies to
lines 2.3–2.5.4, since the longest
rules has selectors

Thus, the total complexity of STEP 2 is

The complexity of the entire learner is estimated as a sum of
complexities for each of the learner’s steps as:

.
The above estimation concerns generation of rules for one

class. The complexity of generation of rules for the problems
with classes is . Since the number of generated
rules and number of classes are usually small constants, the
expected running time of the learner is . This argu-
ment shows that the complexity of the DataSqueezer learner is
log-linear with the number of examples in the training dataset.
We note that for some applications number of attributes may
be large in comparison with the number of examples, i.e., can
be or even . In this case, the expected running time
of the learner is , i.e., the running time is

38 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

TABLE II
DESCRIPTION OF THE DATASETS USED FOR THE BENCHMARKING TESTS

when is . On the other hand, in case when is a small con-
stant, and since the rule length is limited by , the expected run-
ning time reduces to showing linear relation with number
of examples. We also note that the above estimate holds only for
discrete data, while for continuous or mixed-mode data cost of
front-end discretization must be added.

We discuss DataSqueezer’s general characteristics below, and
then proceed with a thorough experimental evaluation in Sec-
tions IV and V.

C. General Characteristics

The DataSqueezer learner was first described in [52]. It was
further incorporated into a larger data mining system called
MetaSqueezer [50], which was successfully applied to analysis
of real-life clinical data concerning patients with cystic fibrosis
[51]. The current paper is the first to present a detailed de-
scription of this learner, together with theoretical and extensive
experimental analysis, and comprehensive comparison with
other state-of-the-art learners. A very important advantage of
the proposed learner is its simplicity. Our C++ implementation
of DataSqueezer is less than 400 lines.

DataSqueezer can handle data with missing values. The
missing values are processed in steps 1.2.2 and 1.5.2. The
learner uses all available information while ignoring missing
values, i.e., they are handled as “do not care” values. Experi-
mental analysis, presented later, shows that the learner is robust
to a large number of missing values. It can generate correct and
compact rules in linear time even from data that have over half
of the attribute values missing.

DataSqueezer can handle only discrete-valued, i.e., discrete
numerical and nominal, attributes. In case of continuous at-
tributes front-end discretization can be applied. The learner
handles nominal data by automatic front-end encoding into
numerical values. The generated rules are independent of the
encoding scheme since the learner does not calculate distances,
nor does it apply any metric during rule induction process.

Some of the inductive learners, such as AQ, CLIP, CN2,
also can handle only discrete data, while some others can
handle continuous attributes but still perform better with
discrete-valued attributes [9], [43]. Several discretization al-
gorithms, including unsupervised algorithms, such as equal
width and equal frequency [15], and supervised algorithms,
such as Information Entropy Maximization [33], CADD [13],

and CAIM [46], [47], [49], can be used. The proposed learner
uses CAIM discretization algorithm for smaller datasets, as
this algorithm is the most recent and high quality discretization
algorithm. For larger datasets, i.e., cid, forc, ipums, and kdd
(see Table II), it uses equal frequency discretization, as this
algorithm scales better with data size. The RIPPER, SLIPPER,
and C5.0 learners, which are used in the experimental section,
can handle continuous data on their own. The CLIP4 learner
also uses CAIM and equal frequency discretization algorithms.

The learner, as it was used in the experimental section, uses
two thresholds to reinforce the stopping condition in the second
step of the rule induction process. DataSqueezer uses default
values for the thresholds, which are set to zero, unless a user
specifies alternative values.

– Pruning Threshold is used to prune very specific rules.
The rule generation process is terminated if the first se-
lector added to has value equal or smaller than
the threshold’s value. The learner induces rules by se-
lecting maximal values (selectors that cover the most
positive training examples) and removes examples that
are covered by the already generated rules. This has an
advantage of leaving small subsets of positive examples,
which contain examples different than majority of exam-
ples already covered (outliers), and which can be filtered
out with the use of this threshold.

– Generalization Threshold is used to allow rules that cover
a small amount of negative data. This threshold is used to
relax the requirement from line 2.5.1 in Fig. 1, and allow
accepting rules that describe a number of examples from
negative training set equal or smaller than the threshold’s
value. Such mechanism is especially valuable in case of
data containing overlapping classes, and in case of having
inconsistent examples in the training dataset.

Both thresholds are specified as percentage of size of the pos-
itive training data set and thus are easily scalable. The thresholds
should normally be set to small values.

DataSqueezer generates a separate set of rules for each class
in the training dataset. It uses the rules to classify examples from
the testing dataset. Due to the rule generation mechanism of the
learner and use of the two thresholds, conflicts in the rule-set are
possible. In general, two classification outcomes are possible: an
example is assigned to a particular class, or is left unclassified.
To classify an example and resolve the conflicts, the following
procedure is applied.

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 39

– All the rules that cover (describe) the ex-

ample are found. If no rules cover the example

then it is left unclassified; this may happen

if the example has missing values for all at-

tributes that are used by the rules.

– For every class, the goodness of rules de-

scribing a particular class and covering the

example is summed. The example is assigned to

the class that has the highest summed value.

If there is a tie then the example is un-

classified. The goodness value for each rule

is equal to the percentage of the positive

training examples that it covers.

This classification procedure is identical to the procedure
used by CLIP4 learner [19]. We note that all unclassified
examples are categorized by the proposed learner as incorrect
classifications since they are not described by the model. As
such, these incorrect classifications contribute toward lowering
classification accuracy, which is reflected in test results pre-
sented in the next section.

In contrast, other learners, such as RIPPER, SLIPPER, and
C5.0 apply a so-called default hypothesis. In this case, if an
example is not covered by any rule, it is assigned to the class
with the highest frequency (default class) in the training dataset.
This means that each example is always classified to one of the
classes. Such a mechanism may lead to significant, artificial im-
provement in the accuracy of the generated rules. In the extreme
case, for highly skewed datasets, where one of the classes is in
a significant majority, it may lead to generation of the default
hypothesis as the only “artificial” rule. Skewness is a common
problem in realistic data mining tasks; for instance, fraud de-
tection systems frequently deal with data that is skewed 100:1
against examples of fraud, which are the most important exam-
ples to detect. Skewness on the order of 100 000:1 has been re-
ported for other application domains [64]. In its current form,
DataSqueezer does not explicitly deal with the problem of skew-
ness, other than by not incorporating a default rule. The two
dominant approaches to dealing with skewness in ML are to
resample the dataset (oversampling the minority class, under-
sampling the minority class), which is usually done by prepro-
cessing the dataset as in [11]; or by incorporating misclassifica-
tion costs into the actual ML algorithm. A study of these options
and their impact on DataSqueezer would be a worthwhile exten-
sion of our work, but is beyond the scope of the current paper.

IV. EXPERIMENTS

DataSqueezer was extensively tested to shows two main fac-
tors.

– DataSqueezer is competitive with other state-of-the-art
rule learners in the accuracy and complexity of the rules
it generates.

– DataSqueezer exhibits better scalability than these other
state-of-the-art learners. The empirical complexity of
DataSqueezer closely matches the calculated log-linear
asymptotic complexity, while the running time for

DataSqueezer is far shorter than for other learners in the
comparison group.

This section focuses on the question of accuracy and rule
complexity for a variety of realistic datasets. We will report
our scalability studies in Section V. We also demonstrate
DataSqueezer’s robustness to missing data as a part of our
scalability studies in Section V.

The proposed learner was tested on a comprehensive set of
22 datasets. Training datasets ranged between 151 and 500 K
examples, the testing datasets between 15 and 500 K exam-
ples, the number of attributes between 5 and 61, and the number
of classes between 2 and 40. The datasets were obtained from
the UCI ML repository [4], the StatLog project datasets reposi-
tory [79], and from the UCI KDD Archive [39]. A detailed de-
scription of the datasets is presented in Table II. We note that
for the ipums dataset the response years, i.e., 1970, 1980, and
1990 were used as classes, similarly as in [2]. We also note that
the CLIP4 learner, due to its very long running time caused by
quadratic complexity, was not tested on large datasets.

In addition to accuracy, we also report the number of rules
generated, and their complexity as measured by number of se-
lectors. The latter factors are very important from the user point
of view, especially in cases when the user needs to understand
and evaluate the generated rules. The DataSqueezer learner is
directly compared with the learners selected in Section II, i.e.,
C5.0, RIPPER, RIPPER without optimization, SLIPPER and
CLIP4, and also to results reported in [55], which compared
33 other learners, including statistical algorithms, neural net-
works, decision trees, and rule learners, on the same datasets.
The datasets and test procedures were selected to mimic test
procedures used in [55] to enable direct comparison between
the learners. As in [55], some of the tests were performed using
tenfold cross-validation.

Table III reports accuracy for C5.0, RIPPER, SLIPPER,
CLIP4, DataSqueezer, and the other 33 learners, for the 22
datasets. The results for the 33 learners report minimum and
maximum accuracy, as published in [55]. In addition, we report
sensitivity and specificity results for DataSqueezer on each
dataset; these are a standard used in medicine where sensitivity
and specificity analysis is used to evaluate confidence in the
results [20], and are also related to ROC analysis of learner
performance [62]. For multi-class problems, the sensitivity
and specificity are computed for each class separately (each
class being treated as positive class in turn), and the average
values are reported. Results for all tenfold cross-validation
experiments and mean values include standard deviations.

On average, C5.0 obtains the highest average accuracy, with
the RIPPER being second best, followed by DataSqueezer,
CLIP4, and SLIPPER. Closer analysis reveals that there is no
universally best learner in this comparison group. A summary
of the results is given in Fig. 3 and Table IV. In the scatterplot
of Fig. 3, each point compares DataSqueezer to some second
learner on a single dataset. The -axis position of the point
is the accuracy of DataSqueezer, and the -axis position is
the accuracy of . Therefore, points below the line
correspond to datasets for which DataSqueezer performs better
than some second learner. Visual inspection shows that the

40 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

TABLE III
ACCURACY RESULTS FOR ALL LEARNERS; ** EXECUTION STOPPED AFTER STATUS_STACK_OVERFLOW ERROR

Fig. 3. Summary of accuracy results for the benchmarking test. Points below the y = x line correspond to datasets for which DataSqueezer performs better than
some other learner.

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 41

TABLE IV
SUMMARY OF ACCURACY RESULTS FOR THE BENCHMARKING TEST. IF L AND L ARE THE LEARNERS CORRESPONDING TO A ROW AND COLUMN,

RESPECTIVELY, THE UPPER TRIANGLE ENTRIES ARE THE AVERAGE OF accuracy(L)=accuracy(L) ON ALL 22 DATASETS. THE LOWER TRIANGLE ENTRIES

ARE THE WON-LOSS-TIED RECORD OF LEARNER L VERSUS L , A “WIN” INDICATING L ACHIEVED A HIGHER ACCURACY

TABLE V
RESULTS OF t-TEST BETWEEN THE DATASQUEEZER LEARNER AND A SECOND LEARNER; “++“ INDICATES THAT DATASQUEEZER WAS SIGNIFICANTLY BETTER,
“+�“ INDICATES THAT THERE WAS NO STATISTICALLY SIGNIFICANT DIFFERENCE, AND “��“ INDICATES THAT DATASQUEEZER WAS SIGNIFICANTLY WORSE

proposed learner performs on average with accuracy similar to
other learners.

In Table IV, let be the learner corresponding to a
row in the table, and let the correspond to a column.
The upper triangle entries are the average of the quantity

across all 22 datasets. For
instance, the entries in the last column indicate that CLIP4’s ac-
curacy is about 6% lower than C5.0’s, 4% lower than RIPPER’s,
2% lower than nonoptimized RIPPER’s and DataSqueezer’s,
and about 4% higher than SLIPPER’s. The lower triangle
entries are the won-loss-tied record of learner versus .
“Win” indicates that achieved higher accuracy. For in-
stance, the last entry in the second column indicates that CLIP4
achieves a higher accuracy than DataSqueezer nine times, a
lower accuracy nine times, and the same accuracy two times.
Close inspection of the entries in the second row and second
column, which concern comparison between the proposed
learned and the other learners, show that the DataSqueezer
generates rules with accuracy similar to accuracy of rules gen-
erated by the other learners. The differences in accuracy range
between 4% loss to C5.0 learner and 5% win with SLIPPER
learner, and are relatively close to each other.

The -statistics test was used to compare learners for all ten-
fold cross validation experiments. The test determines if the dif-
ference in accuracy between two learners on a single dataset is
statistically significant. The 5% confidence level test was per-
formed. For a given experiment, the two learners are statistically
different if the value is greater then the confidence limit.

Table V shows the test results, where each column describes
-test outcome considering difference in accuracy obtained by

DataSqueezer and some second learner given in the top row.
The summary row shows that the proposed learner is signifi-
cantly worse on three datasets and there is no statistically sig-
nificant difference on seven datasets, when compared with the
most accurate C5.0 learner. This shows that DataSqueezer on
average is statistically worse than C5.0, although for majority of
the datasets they achieve comparable results. Comparison with
other learners shows no significant statistical difference in ac-
curacy.

In Table VI, we present our experimental measurements of
rule complexity. The proposed learner is compared with the
results reported in [55], and the results achieved by the C5.0,
RIPPER, RIPPER without optimization, SLIPPER, and CLIP4
learners. The smallest average number of rules is generated by
the SLIPPER learner, with the RIPPER being close and the
second best. Next is nonoptimized RIPPER, followed by CLIP4,
DataSqueezer, and finally C5.0. The number of rules generated
by the DataSqueezer is similar to the average number of rules
reported by [55]. We note that RIPPER and SLIPPER generate
rule sets that are on average half the size of any of the other
learners.

Although both number of selectors and number of selectors
per rule are reported, the latter measure gives better indica-
tion of the complexity of generated rules. The number of selec-
tors per rules is very small and comparable for C5.0, RIPPER,
SLIPPER, and DataSqueezer learners. This shows that all these
learners generate very compact, and thus easily comprehensible,
rules. The CLIP4 learner generates on average longer rules,
which is caused by their inequality based format. Most of the
datasets considered have a very compact equality based under-

42 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

TABLE VI
NUMBER OF RULES AND RULE COMPLEXITY RESULTS FOR THE BENCHMARKING TEST; ** EXECUTION STOPPED AFTER STATUS_STACK_OVERFLOW ERROR

TABLE VII
SUMMARY OF NUMBER OF RULES RESULTS FOR THE BENCHMARKING TEST

TABLE VIII
SUMMARY OF NUMBER OF SELECTORS PER RULE RESULTS FOR THE BENCHMARKING TEST

lying rule base, and thus the rules generated by CLIP4, which
represent a negation of the underlying rule base, are long.

Similarly as for the accuracy results, a summary of the results
is given in Tables VII and VIII. Table VII shows won-loss-tied
record with respect to the number of generated rules for the
considered learners, where “win“ indicates that generated
smaller number of rules. Table VIII shows won-loss-tied record
with respect to the number of generated selectors per generated
rule for the considered learners, where “win“ indicates that
generated smaller number of selectors per rule. The tables, in the
upper triangle, also present the average across all 22 datasets,
of the quantity in case of Table VII,

and in case
of Table VIII.

Close inspection of the entries in the second row in Table VII,
which concern comparison between the proposed learned and
the other learners, show that the DataSqueezer generates about
60% more rules than SLIPPER, about 25% more than CLIP4,
10% more than RIPPER, about 20% less than nonoptimized
RIPPER, and over 50% less than C5.0. The same inspection
applied to Table VIII shows that DataSqueezer generates 50%
more selectors per rule than C5.0, RIPPER and SLIPPER, about
30% more than nonoptimized RIPPER, and significantly less
than CLIP4. Results show that C5.0 generates relatively large

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 43

TABLE IX
COMPARISON BETWEEN THE RESULTS ACHIEVED BY DATASQUEEZER LEARNER FOR THE EXPERIMENTS INVOLVING CROSS

VALIDATION AND FIXED SIZE TESTING DATASETS

TABLE X
DESCRIPTION OF THE SYNTHETIC DATASET USED FOR THE SCALABILITY TEST

number of short rules. We note that SLIPPER learner on average
generates smaller number of shorter rules than DataSqueezer.
On the other hand, although the difference between the proposed
learner and RIPPER learner in terms of number of generated se-
lectors per rule is significant, the number of generated rules is
comparable between the learners. Finally, we note that although
SLIPPER on average generates the smallest number of compact
rules, there is no universally best learner in this category, which
can be observed based on the values in entries in the lower tri-
angle in Tables VII and VIII.

An important factor, when discussing difference in accuracy
between the selected learners, is that RIPPER, SLIPPER, and
C5.0 generate and use default hypotheses, while both CLIP4 and
DataSqueezer do not. The default hypothesis is used in cases
where no rule covers an example, and it simply classifies such
example to the majority class from the training dataset. In case
of the latter two learners such an example is left unclassified,
which translates into incorrect classification and lowers the ac-
curacy. These two different scoring approaches are used for all
22 datasets considered in the benchmarking test since they are
built into the learners. Using default hypothesis may artificially
increase accuracy of the generated rules, especially for highly
skewed datasets. In some cases, using default hypothesis may
even lead to generation of the default hypothesis as the only “ar-
tificial” rule. While such a solution generates accurate classifi-
cation, it has no practical use for the user since no data model
(rules) for any of the classes is generated. For example, for smo
dataset, the CLIP4 and DataSqueezer are the only two learners
that generate rules, while the RIPPER, SLIPPER and C5.0 gen-
erate only the default hypothesis. Although all these learners
achieve the same accuracy for these datasets (see Table III),
Table V shows that no rules were generated by the latter three
learners. We note that using a default hypothesis may also lower
the average number and complexity of the generated rules.

We note that for ten out of 22 considered datasets, the tenfold
cross validation procedure for testing was applied. In this case
the training dataset is different and reordered for each of the
ten folds. The proposed learner performs a linear scan through
the training dataset in the first induction step, which is sensitive
to a specific order of the input data, while in the second step
a greedy search is applied that results in overcoming this sensi-
tivity problem. Comparison between the results achieved for the
experiments involving cross validation and fixed size training
datasets, which experimentally shows insensitivity to the order
of training examples, is presented in Table IX.

The difference in the number of generated rules results from
the fact that these numbers are not normalized, and the largest
datasets that have the biggest underlying rule based belong to the
set of fixed size datasets. Both accuracy and number of selectors
per rule are normalized, and show that similar performance is
achieved in terms of accuracy, and number of selectors per rule
is better for cross validation experiments. These results show
that the order of data in the training set does not have impact on
the accuracy, and complexity of the generated rules.

To summarize, the DataSqueezer learner is characterized by
accuracy that is comparable with accuracy of other state-of-
the-art learners. The proposed learner is statistically worse only
in comparison with C5.0, although for majority of datasets they
are characterized by results of similar quality. It generates rule
sets comparable in size to those generated by most other ad-
vanced learners, albeit two times larger than rule sets generated
by the SLIPPER learner.

V. PERFORMANCE BENCHMARKING

This set of benchmarking tests evaluates and compares the
proposed learner to other state-of-the-art learners in terms of
scalability and robustness to missing data. All simulations were
performed on a TOSHIBA TECTRA laptop equipped with
1.6-GHz Intel Centrino processor, and 512-MB RAM.

We note that the below tests were performed for discrete
datasets, while in case of continuous or mixed mode datasets
discretization cost should be included. Depending on the se-
lected discretization algorithm, the cost may worsen the asymp-
totic complexity of the rule generation process, i.e., simplest un-
supervised discretization algorithms are linear, while the fastest
supervised discretization algorithms are [46]. We also
note that the scalability is evaluated with respect to the number
of input data examples. The results do not represent a situation
where number of attributes is large in comparison with number
of examples , i.e., is or . In the first case the
proposed learner is characterized by the is asymp-
totic scalability.

A. Scalability Tests

The scalability tests use two large datasets, the cid dataset de-
scribed in Table II, and a synthetic dataset that is described in
Table X. The cid dataset is a large (around 200 K examples),
complex, high dimensional, noisy, natural dataset that includes
missing values, while the synthetic dataset is larger (over 1 mil-
lion examples), has a large number of irrelevant attributes, a

44 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

TABLE XI
DETAILED RESULTS ACHIEVED BY DATASQUEEZER, C5.0, CLIP4, RIPPER, AND SLIPPER LEARNERS ON THE CID DATASET. ZERO VALUES IN THE # RULES AND

SELECTORS ENTRIES MEAN THAT ONLY THE DEFAULT HYPOTHESIS WAS INDUCED

relatively simple underlying rule base, and no missing values.
These two datasets cover the main characteristics of modern
classification problems.

The goal of these tests is to experimentally show that the
DataSqueezer learner has log-linear complexity, and that it
is faster than other scalable, modern learners; these are the
members of the comparison group identified in Section II. For
both datasets, we incrementally double the size of the training
datasets, using the first examples from the original training
dataset. We note that in case of a linear complexity, the running
time should be doubled, while in case of the proposed learner
complexity should follow the log-linear increase. The empirical
complexity estimate can be derived by plotting the achieved
running times and comparing them with corresponding ref-
erence complexity curves. Table XI shows detailed results
achieved by the selected five learners on the cid dataset.

Fig. 4 visualizes the results as a graph of running time versus
the size of training data. It uses logarithmic scale on both axes
to help visualize data points with low values. Both linear and
log-linear curves were plotted on the figure for the reader’s con-
venience. Asymptotic complexity of a learner is evaluated based
on the slope of the resulting curves, in comparison with the ref-
erence, i.e., linear and log-linear curves, while vertical shifting
of the observed curves denotes difference by a constant factor.
Both, RIPPER and RIPPER without optimization exhibit the
same asymptotic complexity, i.e., their curves are parallel and
therefore are analyzed together. Fig. 4 also compares the time
ratios for consecutive datasets of increasing size for the consid-
ered learners.

The plots show that the fastest learner for this dataset is
DataSqueezer, followed by C5.0, SLIPPER and RIPPER. The
results for CLIP4 are not shown since they were not as good
and would distort analysis of the results. They were included in
Table XI to show the difference between and
learners. Closer analysis of the slope of the plots reveals that
for this high dimensional and complex dataset DataSqueezer
learner exhibits one of the best scalability properties. The time
ratios show that DataSqueezer and C5.0 have, on average,
log-linear experimental complexity, and DataSqueezer is by
far the most stable with the increasing size of training data. Its
maximum time ratio is 2.5, which is significantly lower than
the maximal time ratios for other learners. At the same time,
the proposed learner is at least an order of magnitude faster
than both SLIPPER and RIPPER, and four times faster than
C5.0 learner.

Fig. 5 show the relation between the running time and the
size of training data in the linear-log scale, together with
linear approximations for the C5.0, SLIPPER, RIPPER and
DataSqueezer learners. Extrapolating the linear approxima-
tions, which favors more complex learners, suggests that for the
datasets consisting of 20 million examples, which are currently
becoming quite common, it would require about 27 min for
DataSqueezer, 1 h and 45 min for C5.0, 4 h and 18 min for
RIPPER without optimization, 5 h and 15 min for SLIPPER,
and finally 16 h 20 min for RIPPER to perform induction using
the same hardware.

In addition to running time, the results also report the accu-
racy, number of generated rules, and number of generated se-

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 45

Fig. 4. Top plot shows running time in the log-log scale achieved by DataSqueezer (DS), C5.0, CLIP4, RIPPER, and SLIPPER learners on the cid dataset. The
bottom bar chart shows time ratios for consecutive input data sized for the considered learners together with reference values for the linear, log-linear and quadratic
ratios.

Fig. 5. Running time in the linear-log scale achieved by DataSqueezer (DS), C5.0, CLIP4, RIPPER, and SLIPPER learners on the cid dataset.

lectors. Fig. 6 summarizes the results for the cid dataset. The
plots show that all learners are characterized by stable accuracy
with the increasing amount of training data. We note that the
default hypothesis for this dataset is around 94% accurate, and
thus RIPPER, SLIPPER, and C5.0 have higher accuracy. The
same stability is characteristic to DataSqueezer and SLIPPER
when analyzing the number of generated rules and selectors. On
the other hand, the C5.0 and CLIP4 learners are characterized
by a rapid increase of the number of generated rules and selec-
tors with the increasing amount of training data. This shows that

the generated rules for the larger training sets are unnecessarily
complex and may be overfitted.

Table XII shows detailed results achieved by the selected five
learners on the synth dataset. Similarly as for the cid dataset, the
results are visualized in Figs. 7 and 8. The CLIP4 learner was
not used, since it is quadratic and would take too much time to
run.

Fig. 7 shows that the fastest learner for this dataset is al-
ways DataSqueezer, followed by C5.0, RIPPER and SLIPPER.
Closer analysis of the slopes of complexity curves and time ra-

46 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

Fig. 6. Accuracy, number of rules and selectors generated by DataSqueezer (DS), C5.0, CLIP4, RIPPER, and SLIPPER learners on the cid dataset.

TABLE XII
DETAILED RESULTS ACHIEVED BY DATASQUEEZER, C5.0, RIPPER, AND SLIPPER LEARNERS ON THE SYNTH DATASET. ZERO VALUES IN

THE # RULES AND # SELECTORS ENTRIES MEAN THAT ONLY THE DEFAULT HYPOTHESIS WAS INDUCED; * EXECUTION STOPPED AFTER

2 H; ** EXECUTION STOPPED AFTER STATUS_STACK_ OVERFLOW ERROR

tios chart shows that both DataSqueezer and C5.0 are linear for
this dataset, while both RIPPER and SLIPPER are significantly
slower and log-linear. We also note that the proposed learner
was always the fastest, and the two most stable learners with in-

creasing size of the training data were C5.0 and DataSqueezer.
Their maximum time ratio is 2.1, which is significantly lower
than the maximal time ratios for other rule learners, and they
are at least an order of magnitude faster than both SLIPPER

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 47

Fig. 7. Top plot shows running time in the log-log scale achieved by DataSqueezer (DS), C5.0, RIPPER, and SLIPPER learners on the synth dataset. The bottom
bar chart shows time ratios for consecutive input data sized for the considered learners together with reference values for the linear, log-linear and quadratic ratios.

Fig. 8. Running time in the linear-log scale achieved by DataSqueezer (DS), C5.0, RIPPER, and SLIPPER learners on the synth dataset.

and RIPPER. We note that this agrees with the theoretical com-
plexity estimate, which reduces to linear in case when number
of attributes and rule length are small constants.

Based on the linear approximations for the C5.0, SLIPPER,
RIPPER and DataSqueezer learners shown in the Fig. 8, an ex-
trapolation of the running time for a larger (say 100 million ex-
amples) dataset can be computed. In this case, it would require
about 40 min for DataSqueezer, 42 min for C5.0, 2 h and 22 min
for RIPPER without optimization, 6 h 47 min for RIPPER, and
finally 21 h 8 min for SLIPPER to perform induction using the
same hardware.

Fig. 9 reports accuracy, number of generated rules, and
number of generated selectors for the synth dataset. The plots
show that all learners are very stable for all three characteristics
with the increasing amount of training data.

To summarize, C5.0 and DataSqueezer are experimentally
verified to be linear for datasets of relatively compact under-
lying rule base where number of attributes and rule length can
be treated as small constants, and for complex datasets are
log-linear. On the other hand, RIPPER and SLIPPER experi-
mentally are log-linear in case of “easy” datasets, while they
are worse than log-linear for complex datasets. C5.0 overfitted

48 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

Fig. 9. Accuracy, number of rules and selectors generated by DataSqueezer (DS), C5.0, RIPPER, and SLIPPER learners on the synth dataset.

rules for the large complex dataset, which may limit its us-
ability. The DataSqueezer learner was consistently the fastest
one, with at least an order of magnitude improvement compared
with RIPPER and SLIPPER learners. We also note that the
performed analysis does not show that any of the considered
learners is asymptotically faster than the others, although it
shows which learners are faster. The superiority, in terms
of computational speed, of the DataSqueezer learner can be
explained by the sequential character of its first step combined
with a fast, greedy, hill-climbing search in the second step of
the algorithm. This very efficient rule generation procedure
puts DataSqueezer in a better position when compared to more
complex modern learners.

B. Robustness to Missing Data

These experiments use the two datasets from the scalability
test, and two datasets, sat and vaw, which were used in Sec-
tion IV. The datasets were selected to cover a wide range of
problems. The goal is to evaluate robustness of the learners, in
terms of accuracy, number and complexity of generated rules, as
well as running time with increasing amounts of missing values
in the training dataset. Missing data was introduced into the four
training datasets by random deletion in the increasing amounts
of 5%, 10%, 20%, 30%, 40%, 50%, and 60%. The nonoptimized
RIPPER is not included since the above experimental results
show that it is, on average, worse that RIPPER.

Fig. 10 shows the relation between the accuracy of the
generated rules and amount of missing data for DataSqueezer,
C5.0, RIPPER, and SLIPPER learners for all four datasets.

The results show that there is no universally stable learner.
C5.0 has problems on the synth and wav datasets; RIPPER has
problems on sat, and wav; SLIPPER has problems on wav,
and cid; DataSqueezer has problems on synth. We note that
DataSqueezer is stable and does not worsen accuracy of the
rules with increasing amount of missing values. This improve-
ment can be observed for cid, and sat datasets. On average,
we note that DataSqueezer is the most robust among the four
learners, with SLIPPER being the second best.

Fig. 11 shows the relation between the number of generated
rules and amount of missing data for the four learners. The re-
sults show that SLIPPER is almost always the most stable and
generates the smallest number of rules. RIPPER is very un-
stable for synth, and overfits the rules for sat. C5.0 is the only
learner that was able to reduce number of generated rules with
increasing amount of missing values. This improvement can be
observed for cid, wav, and sat datasets. On the other hand, on
average C5.0 generates a significantly higher number of rules
than other learners. DataSqueezer overfits the rules on wav, and
is stable for other datasets. On average, we note that SLIPPER
is the most robust, with DataSqueezer being the second best.

Fig. 12 shows the relation between the number of generated
selectors and amount of missing data for the four learners. The
results again show superiority of SLIPPER learner. RIPPER
is again very unstable for synth, but reduces number of selec-
tors with increasing amount of missing values for the remaining
datasets. C5.0 is the second learner that reduces the number of
generated selectors with increasing amount of missing values
for cid, wav, and sat datasets, but again on average it generates
a significantly higher number of selectors than other learners.

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 49

Fig. 10. Accuracy of rules generated by DataSqueezer (DS), C5.0, RIPPER, and SLIPPER learners for the robustness test.

Fig. 11. Number of rules generated by DataSqueezer (DS), C5.0, RIPPER, and SLIPPER learners for the robustness test.

50 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

Fig. 12. Number of selectors generated by DataSqueezer (DS), C5.0, RIPPER, and SLIPPER learners for the robustness test.

Fig. 13. Running time of DataSqueezer (DS), C5.0, RIPPER, and SLIPPER learners for the robustness test.

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 51

DataSqueezer is stable, with the exception of the wav. On av-
erage, we note that SLIPPER is the most robust, with RIPPER
and DataSqueezer being the second best.

Fig. 13 shows the relation between the running time and
amount of missing data for the four learners. The results show
the superiority of DataSqueezer, which not only is always the
fastest, but also its running time is constant with an increasing
amount of missing values. The SLIPPER is also very stable
with increasing amount of missing values. While for some
datasets, such as synth, wav, and sat, its running time even
decreased with the increasing amount of missing data, overall
SLIPPER was significantly slower than other learners. RIPPER
has numerous running time instability problems, which can be
observed for synth and cid. C5.0 achieved very good running
time results on wav and sat, but at the same time shows major
instability for cid, and a strong increasing trend for synth. On
average, we note that DataSqueezer is substantially more robust
in this category than the other learners.

To summarize, the DataSqueezer shows superior robustness
to missing values in terms of running time and a stable level
of accuracy. It also shows fairly good robustness in terms of
number and complexity of generated rules. The other robust
learner is SLIPPER. It shows superior properties in terms of the
number and complexity of generated rules with the increasing
amount of missing values, and very good properties in terms of
very high and fairly stable accuracy of generated rules.

VI. CONCLUDING REMARKS

The paper describes a novel inductive rule learner called
DataSqueezer. It induces a set of production rules from a
supervised training dataset. It is characterized by being rela-
tively simple to implement, and having fast induction process.
The learner was extensively tested and compared with several
state-of-the-art representative decision tree and rule learners.
The tests show that the learner generates rules with accuracy
and complexity comparable to the rules generated by other
learners. The main two advantages of DataSqueezer are its
log-linear complexity combined with speed that is better when
compared with other scalable, modern learners, and robustness
to missing values. Excellent scalability of the proposed learner
was shown both theoretically and experimentally. On all tests,
the learner was on average the fastest. At the same time, the ac-
curacy and complexity of the rules DataSqueezer generates are
not affected by presence of large amounts of missing values in
the training dataset. DataSqueezer is thus well suited to modern
data mining and business intelligence tasks, which commonly
involve huge datasets with a large fraction of missing data.

A. Future Work

One of open issues is robustness of the proposed learner to
noise and inconsistency in input data. Future work will aim
to address this issue by performing benchmarking on datasets
that include noise. Future work will also include applying the
DataSqueezer learner within the Meta Mining architecture.
Meta Mining is a generic framework for higher order learning
where rules are induced from rule sets generated by ML or
data mining algorithms. Its main characteristic is generation of
data models, called meta-models, from the already generated

data models (referred to as meta-data) [72], [76]. Researchers
argue that such meta-models are more suitable for describing
knowledge that can be considered interesting, and that reduced
complexity of generated rule sets can be achieved [1], [50],
[72], [76]. Finally, parallelization for cluster systems will also
be a topic of future research.

ACKNOWLEDGMENT

The authors would like to acknowledge and thank reviewers
for providing constructive comments.

REFERENCES

[1] T. Abraham and J. F. Roddick, “Incremental meta-mining from large
temporal data sets, advances in database technologies,” in Proc. 1st Int.
Workshop on Data Warehousing and Data Mining (DWDM’98), 1999,
pp. 41–54.

[2] S. D. Bay and M. J. Pazzani, “Detecting group differences: Mining con-
trast sets,” Data Mining Knowl. Disc., vol. 5, no. 3, pp. 213–246, 2001.

[3] J. A. Blackard, “Comparison of Neural Networks and Discriminant
Analysis in Predicting Forest Cover Types,” Ph.D. dissertation, Dept.
Forest Sciences, Colorado State Univ., Fort Collins, 1998.

[4] C. L. Blake and C. J. Merz. (1998) UCI Repository of ML Databases.
Univ. of California, Department of Information and Computer Science,
Irvine, CA. [Online]. Available: http://www.ics.uci.edu/~mlearn/ML-
Repository.html

[5] E. Boros, P. L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, and I.
Muchnik, “An implementation of logical analysis of data,” IEEE Trans.
Knowl. Data Eng., vol. 12, no. 2, pp. 292–306, Feb. 2000.

[6] R. Brachman and T. Anand, “The process of knowledge discovery in
databases: A human-centered approach,” in Advances in Knowledge Dis-
covery and Data Mining, U. M. Fayyad, G. Piatesky-Shapiro, P. Smyth,
and R. Uthurusamy, Eds. Cambridge, MA: AAAI/MIT Press, 1996.

[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. London, U.K.: Chapman & Hall, 1984.

[8] J. Catlett, “Megainduction: A Test flight,” in Proc. 8th Int. Workshop on
Machine Learning, Ithaca, NY, 1991, pp. 596–599.

[9] , “On changing continuous attributes into ordered discrete at-
tributes,” in Proc. Eur. Working Session on Learning, 1991, pp.
164–178.

[10] P. Chan and S. Stolfo, “On the accuracy of meta-learning for scalable
data mining,” J. Intell. Inform. Syst., vol. 8, pp. 5–28, 1997.

[11] N. V. Chawla, K. W. Bowyer, L. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol.
16, pp. 321–357, 2002.

[12] N. Chawla, L. Hall, K. Bowyer, and W. Kegelmeyer, “Learning ensem-
bles from bites: A scalable and accurate approach,” J. Mach. Learn. Res.,
vol. 5, pp. 421–451, 2004.

[13] J. Y. Ching, A. K. C. Wong, and K. C. C. Chan, “Class-dependent
discretization for inductive learning from continuous and mixed mode
data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 7, pp.
641–651, Jul. 1995.

[14] M. Chisholm and P. Tadepalli., “Learning decision rules by randomized
iterative local search,” in Proc. Int. Conf. Machine Learning, 2002, pp.
75–82.

[15] D. Chiu, A. Wong, and B. Cheung, “Information discovery through hi-
erarchical maximum entropy discretization and synthesis,” in Knowl-
edge Discovery in Databases, G. Piatesky-Shapiro and W. J. Frowley,
Eds. Cambridge, MA: MIT Press, 1991.

[16] K. J. Cios and L. A. Kurgan, “Hybrid inductive machine learning: An
overview of CLIP algorithms,” in New Learning Paradigms in Soft Com-
puting, L. C. Jain and J. Kacprzyk, Eds. Berlin, Germany: Physica-
Verlag (Springer), 2002, pp. 276–322.

[17] , “Trends in data mining and knowledge discovery,” in Advanced
Techniques in Knowledge Discovery and Data Mining, N. R. Pal, L.
C. Jain, and N. Teoderesku, Eds. Berlin, Germany: Physica-Verlag
(Springer), 2005, pp. 1–26.

[18] K. J. Cios, W. Pedrycz, and R. Swiniarski, Data Mining Methods for
Knowledge Discovery. Norwell, MA: Kluwer, 1998.

[19] K. J. Cios and L. A. Kurgan, “CLIP4: Hybrid inductive machine learning
algorithm that generates inequality rules,” in Inform. Sci., S. K. Pal and
A. Ghosh, Eds., 2004, vol. 163, Special Issue on Soft Computing Data
Mining, pp. 37–83.

52 IEEE SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

[20] K. J. Cios and G. Moore, “Uniqueness of medical data mining,” Artif.
Intell. Med., vol. 26, no. 1-2, pp. 1–24, 2002.

[21] P. Clark and R. Boswell, “Rule induction with CN2: Some recent im-
provements,” in Proc. 5th Eur. Machine Learning Conf. (EWSL-91),
Berlin, Germany, 1991, pp. 151–163.

[22] P. Clark and T. Niblett, “The CN2 algorithm,” Mach. Learn., vol. 3, pp.
261–283, 1989.

[23] W. Cohen and Y. Singer, “A simple, fast and effective rule learner,” in
Proc. 16th Nat. Conf. Artificial Intelligence, 1999, pp. 335–342.

[24] W. Cohen, “Efficient pruning methods for separate-and-conquer rule
learning systems,” in Proc. 13th Int. Joint Conf. Artificial Intelligence,
Chambery, France, 1993, pp. 988–994.

[25] , “Fast effective rule induction,” in Proc. 12th Int. Conf. Machine
Learning, Lake Tahoe, CA, 1995, pp. 115–123.

[26] , “Grammatically biased learning: Learning logic programs using
an explicit antecedent description language,” Artif. Intell., vol. 68, pp.
303–366, 1994.

[27] , “Learning trees and rules with set-valued features,” in Proc. 13th
Nat. Conf. Artificial Intelligence, Portland, OR, 1996, pp. 709–716.

[28] C. Cortes and V. N. Vapnik, “Support vector networks,” Mach. Learn.,
vol. 20, pp. 273–279, 1995.

[29] O. Dain, R. Cunningham, and S. Boyer, “IREP++ a faster rule learning
algorithm,” in Proc. 4th SIAM Int. Conf. Data Mining, Lake Buena Vista,
FL, 2004, pp. 138–146.

[30] T. G. Dietterich and R. S. Michalski, “Inductive learning of structural
descriptions: Evaluation criteria and comparative review of selected
methods,” Artif. Intell., vol. 16, no. 3, pp. 257–294, 1981.

[31] P. Domingos, “The RISE system: Conquering without separating,” in
Proc. 6th IEEE Int. Conf. Tools with Artificial Intelligence, New Orleans,
LA, 1994, pp. 704–707.

[32] R. O. Duda and P. E. Hart, Pattern Classification and Scene Anal-
ysis. New York: Wiley, 1973.

[33] U. M. Fayyad and K. B. Irani, “Multi-interval discretization of contin-
uous-valued attributes for classification learning,” in Proc. 13th Int. Joint
Conf. Artificial Intelligence, San Francisco, CA, 1993, pp. 1022–1027.

[34] U. M. Fayyad, G. Piatesky-Shapiro, P. Smyth, and R. Uthurusamy, Ad-
vances in Knowledge Discovery and Data Mining: AAAI/MIT Press,
1996.

[35] A. Freitas, “A survey of parallel data mining,” in Proc. 2nd Int. Conf.
Practical Applications of Knowledge Discovery and Data Mining,
London, U.K., 1998, pp. 287–300.

[36] J. Furnkranz, “Separate-and-conquer rule learning,” Artif. Intell. Rev.,
vol. 13, no. 1, pp. 3–54, 1999.

[37] J. Furnkranz and G. Widmer, “Incremental reduced error pruning,” in
Machine Learning: Proc. 11th Annu. Conf., New Brunswick, NJ, 1994,
pp. 70–77.

[38] L. Hall, N. Chawla, K. Bowyer, and W. Kegelmeyer, “Learning rules
from distributed data,” in Proc. Workshop on Large-Scale Parallel KDD
Systems, KDD’99, 1999, pp. 77–83.

[39] S. Hettich and S. D. Bay. (1999) The UCI KDD Archive. University of
California, Dept. Inform. Comput. Sci., Irvine, CA. [Online]. Available:
http://kdd.ics.uci.edu

[40] M. Holsheimer and A. P. Siebes, “Data Mining: The Search for Knowl-
edge in Databases,”, Tech. Rep. CS-R9406, 1994.

[41] R. C. Holte, “Very simple classification rules perform well on most com-
monly used datasets,” Mach. Learn., vol. 11, pp. 63–90, 1993.

[42] K. A. Kaufman and R. S. Michalski, “Learning from inconsistent and
noisy data: The AQ18 approach,” in Proc. 11th Int. Symp. Methodologies
for Intelligent Systems, Warsaw, Poland, 1999, pp. 411–419.

[43] R. Kerber, “ChiMerge: Discretization of numeric attributes,” in Proc. 9th
Int. Conf. Artificial Intelligence (AAAI-91), 1992, pp. 123–128.

[44] Y. Kodratoff, Introduction to Machine Learning. New York: Morgan-
Kaufmann, 1988.

[45] R. Kufrin, “Generating C4.5 production rules in parallel,” in Proc. 14th
Nat. Conf. Artificial Intelligence (AAAI-97), 1997, pp. 565–670.

[46] L. A. Kurgan and K. J. Cios, “CAIM discretization algorithm,” IEEE
Trans. Knowl. Data Eng., vol. 16, no. 2, pp. 145–153, Feb. 2004.

[47] , “Discretization algorithm that uses class-attribute interdepen-
dence maximization,” in Proc. 2001 Int. Conf. Artificial Intelligence
(IC-AI 2001), Las Vegas, NV, 2001, pp. 980–987.

[48] , “Ensemble of classifiers to improve accuracy of the CLIP4 ma-
chine learning algorithm,” in Proc. SPIE’s Int. Conf. Sensor Fusion: Ar-
chitectures, Algorithms, and Applications VI, AeroSence 2002, Orlando,
FL, 2002, pp. 22–31.

[49] , “Fast class-attribute interdependence maximization (CAIM) dis-
cretization algorithm,” in Proc. 2003 Int. Conf. Machine Learning and
Applications (ICMLA’03), Los Angeles, CA, 2003, pp. 30–36.

[50] , “Meta mining architecture for supervised learning,” in Proc. 7th
Int. Workshop on High Performance and Distributed Mining, in conjunc-
tion with the 4th Int. SIAM Conf. Data Mining, Lake Buena Vista, FL,
2004, pp. 18–26.

[51] L. A. Kurgan, K. J. Cios, M. Sontag, and F. J. Accurso, “Mining the
cystic fibrosis data,” in Next Generation of Data-Mining Applications,
J. Zurada and M. Kantardzic, Eds. New York: IEEE Press, 2005, pp.
415–444.

[52] L. A. Kurgan, “Meta Mining System for Supervised Learning,” Ph.D,
Dept. Comput. Sci., Univ. Colorado at Boulder, 2003.

[53] P. Langley and H. Simon, “Applications of machine learning and rule
induction,” Commun. ACM, vol. 38, no. 11, pp. 55–64, 1995.

[54] P. Langley, Elements of Machine Learning. New York: Morgan-Kauf-
mann, 1996.

[55] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, “A comparison of prediction ac-
curacy, complexity, and training time of thirty-three old and new classi-
fication algorithms,” Mach. Learn., vol. 40, pp. 203–228, 2000.

[56] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, “The multipurpose
incremental learning system AQ15 and its testing application to three
medical domains,” in Proc. 5th Nat. Conf. Artificial Intelligence, 1986,
pp. 1041–1045.

[57] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[58] G. Pagallo and D. Haussler, “Boolean feature discovery in empirical

learning,” Mach. Learn., vol. 5, no. 1, pp. 71–99, 1990.
[59] Machine Learning and its Applications, vol. 2049, Lecture Notes in

Computer Science, G. Paliouras, V. Karkaletsis, and C. Spyropoulos,
Eds., Springer, Berlin, Germany, 2001.

[60] M. Pazzani and D. Kibler, “The utility of knowledge in inductive
learning,” Mach. Learn., vol. 9, no. 1, pp. 57–94, 1992.

[61] F. Provost and D. Hennessy, “Scaling up: Distributed machine learning
with cooperation,” in Proc. 13th Nat. Conf. Artificial Intelligence, 1996,
pp. 74–79.

[62] F. Provost and T. Fawcett, “Analysis and visualization of classifier per-
formance: Comparison under imprecise class and cost distribution,” in
Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, 1997, pp.
43–48.

[63] F. Provost and V. Kolluri, “A survey of methods for scaling up inductive
algorithms,” Data Mining Knowl. Disc., vol. 3, no. 2, pp. 131–169, 1999.

[64] F. Provost and T. Fawcett, “Robust classification for imprecise environ-
ments,” Mach. Learn., vol. 42, no. 3, pp. 203–231, 2001.

[65] J. R. Quinlan, C4.5 Programs for Machine Learning. New York:
Morgan-Kaufmann, 1993.

[66] , “Improved use of continuous attributes in C4.5,” J. Artif. Intell.
Res., vol. 7, pp. 77–90, 1996.

[67] , “Induction of decision trees,” Mach. Learn., vol. 1, pp. 81–106,
1986.

[68] , “Learning logical definitions from relations,” Mach. Learn., vol.
5, pp. 239–266, 1990.

[69] , “Simplifying decision trees,” Int. J. Man-Mach. Stud., vol. 27, no.
3, pp. 221–248, 1987.

[70] , “Some elements of machine learning,” in Proc. 16th Int. Conf.
Machine Learning, 1999, pp. 523–525.

[71] S. Ranka, “Real-time data mining on grids,” in (Invited Presentation) 7th
Int. Workshop on High Performance and Distributed Mining, in Con-
junction with the 4th Int. SIAM Conf. Data Mining, Lake Buena Vista,
FL, 2004.

[72] J. F. Roddick and M. Spiliopoulou, “A survey of temporal knowledge
discovery paradigms and methods,” IEEE Trans. Knowl. Data Eng., vol.
14, no. 4, pp. 750–767, Apr. 2002.

[73] RuleQuest Research, C5.0 (2003). [Online]. Available: http://www.rule-
quest.com/see5-info.html

[74] R. E. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” in Proc. 11th Annu. Conf. Computational
Learning Theory, 1998, pp. 80–91.

[75] M. Sebag, “Delaying the choice of bias: A disjunctive version space ap-
proach,” in Proc. 13th Int. Conf. Machine Learning, 1996, pp. 444–452.

[76] M. Spiliopoulou and J. F. Roddick, “Higher order mining: Modeling and
mining the results of knowledge discovery,” in Data Mining I: Proc. 2nd
Int. Conf. Data Mining Methods and Databases, 2000, pp. 309–320.

[77] H. Theron and I. Cloete, “BEXA: A covering algorithm for learning
propositional concept descriptions,” Mach. Learn., vol. 24, pp. 5–40,
1996.

[78] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer, 1995.

[79] P. Vlachos. (2000) StatLib Project Repository. [Online]. Available:
http://lib.stat.cmu.edu

KURGAN et al.: HIGHLY SCALABLE AND ROBUST RULE LEARNER 53

[80] G. I. Webb. and J. Agar, “Inducing diagnostic rules for glomerular dis-
ease with the DLG machine learning algorithm,” Artif. Intell. Med., vol.
4, pp. 3–14, 1992.

[81] S. Weiss and N. Indurkhya, “Reduced complexity rule induction,” in
Proc. 12th Int. Joint Conf. Artificial Intelligence, Sydney, Australia,
1991, pp. 678–684.

[82] R. Winter and K. Auerbach, “Contents under pressure,” Intell. Enter-
prise, May 2004.

Lukasz A. Kurgan (M’02) received the M.Sc.
(Hons.) degree (recognized by an Outstanding
Student Award) in automation and robotics from
the AGH University of Science and Technology,
Krakow, Poland, in 1999, and the Ph.D. degree in
computer science from the University of Colorado at
Boulder in 2003.

He is currently an Assistant Professor in the De-
partment of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada. His
research interests include data mining and knowl-

edge discovery, machine learning, computational biology and bioinformatics.
He authored and co-authored several inductive machine learning and data
mining algorithms. He has published about 30 journal and conference articles,
including several IEEE Transactions journals.

Dr. Kurgan is a member of a steering committee of the International Con-
ference on Machine Learning and Applications, being also actively involved in
organization of numerous special sessions related to computational biology and
bioinformatics. He is a member of ACM.

Krzysztof J. Cios (SM’90) received the M.S. and
Ph.D. degrees from the AGH University of Science
and Technology, Krakow, Poland, the MBA from the
University of Toledo, Toledo, OH, and the D.Sc. de-
gree from the Polish Academy of Sciences.

He is currently a Professor at the University of Col-
orado at Denver and Health Sciences Center, and As-
sociate Director of both, and a Professor at the Uni-
versity of Colorado Bioenergetics Institute and the
University of Colorado Center for Computational Bi-
ology. He also directs the Data Mining and Bioin-

formatics Laboratory. He is a well-known Researcher in the areas of machine
learning, biomedical informatics and data mining. His research has been funded
by NASA, the NSF, American Heart Association, Ohio Aerospace Institute,
NATO, Colorado Institute of Technology, U.S. Air Force, NIH, and Microsoft.
He published two books, over 50 journal articles, 12 book chapters, and over 60
peer-reviewed conference papers.

Dr. Cios serves on the Editorial Boards of Neurocomputing, IEEE En-
gineering in Medicine and Biology Magazine, International Journal of
Computational Intelligence, and Integrative Neuroscience. He has been the
recipient of the Norbert Wiener Outstanding Paper Award, the Neurocomputing
Best Paper Award, the University of Toledo Outstanding Faculty Research
Award, and the Fulbright Senior Scholar Award. He is a Senior Member of
ACM, AAAI, Sigma Xi, and PIASA. He serves as Chair of the Computational
Intelligence Society Chapter, in the IEEE Denver section. In 2004, he was
elected a Foreign Member of the Polish Academy of Arts and Sciences.

Scott Dick (M’03) received the B.Sc. degree in
1997, the M.Sc. degree in 1999, and the Ph.D.
degree in 2002, all from the University of South
Florida, Tampa.

He has been an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering at the
University of Alberta, Edmonton, AB, Canada, since
July 2002, and has published over a dozen scientific
articles in journals and conferences.

Dr. Dick is a member of the ACM, ASEE, and
Sigma Xi. His Ph.D. dissertation received the USF

Outstanding Dissertation Prize in 2003.

	toc
	Highly Scalable and Robust Rule Learner: Performance Evaluation
	Lukasz A. Kurgan, Member, IEEE, Krzysztof J. Cios, Senior Member
	I. I NTRODUCTION
	II. S TATE - OF - THE -A RT R ULE I NDUCTION AND D ECISION T REE

	TABLE I C OMPARISON OF L OW C OMPLEXITY R ULE AND D ECISION T RE
	Fig.€1. Pseudocode of the DataSqueezer learner.
	III. T HE D ATA S QUEEZER L EARNER
	A. DataSqueezer Algorithm
	Step 1 Explanation:
	Rationale: The learner performs data reduction to generalize inf

	Fig.€2. Example rule generation process of the DataSqueezer lear
	Important Features: Data reduction is performed via use of the p
	Step 2 Explanation:
	Rationale: The learner generates rules by performing greedy hill
	Important Features: A rule is generated by applying the search p
	First the ${\rm DataReduction}({\rm POS},~ {\rm k})$ call in lin
	Similarly, when ${\rm DataReduction}({\rm NEG},~ {\rm k})$ is ca
	A rule is generated by incrementally adding selectors using the
	The detailed computations follow. First, we initialize ${\rm RUL
	The ${\rm rules}_{2} = [{\rm temperature}={\rm low}]$ and ${\rm
	As the result two rules were generated see Fig.€2 .

	B. Theoretical Complexity
	Line DR.1: ${\rm O}(1)$
	Line DR.2.1: ${\rm O}({\rm s})$ and applies to lines DR.2.2-DR.2
	Line DR.2.2: ${\rm O}({\rm k})$ and applies to lines DR.2.3, and
	Line DR.2.3: ${\rm O}(1)$
	Line DR.2.4: ${\rm O}(1)$
	Lines DR.2.5-DR.2.7: ${\rm O}(1)$
	Line DR.2.8: ${\rm O}(1)$
	Line 2.1: ${\rm O}(1)$
	Line 2.2: ${\rm O}(1)$
	Line 2.3: ${\rm O}({\rm ks})$ one sweep through ${\rm G} _{\rm P
	Line 2.4: ${\rm O}({\rm k})$ selection of $\max~ {\rm s} _{\rm a
	Line 2.5.1: ${\rm O}({\rm ks})$ one sweep through ${\rm G} _{\rm
	Line 2.5.2: ${\rm O}({\rm s})$
	Line 2.5.3: ${\rm O}({\rm r})$ and applies to lines 2.2 2.5.4, s
	Line 2.5.4: ${\rm O}({\rm logs})$ and applies to lines 2.3 2.5.4

	TABLE II D ESCRIPTION OF THE D ATASETS U SED FOR THE B ENCHMARKI
	C. General Characteristics
	All the rules that cover (describe) the example are found. If no
	For every class, the goodness of rules describing a particular c
	IV. E XPERIMENTS

	TABLE III A CCURACY R ESULTS FOR ALL L EARNERS; ** E XECUTION S
	Fig.€3. Summary of accuracy results for the benchmarking test. P
	TABLE IV S UMMARY OF A CCURACY R ESULTS FOR THE B ENCHMARKING T
	TABLE V R ESULTS OF ${\rm t}$ -T EST B ETWEEN THE D ATA S QUEEZE
	TABLE VI N UMBER OF R ULES AND R ULE C OMPLEXITY R ESULTS FOR TH
	TABLE VII S UMMARY OF N UMBER OF R ULES R ESULTS FOR THE B ENCHM
	TABLE VIII S UMMARY OF N UMBER OF S ELECTORS P ER R ULE R ESULTS
	TABLE IX C OMPARISON B ETWEEN THE R ESULTS A CHIEVED BY D ATA S
	TABLE X D ESCRIPTION OF THE S YNTHETIC D ATASET U SED FOR THE S
	V. P ERFORMANCE B ENCHMARKING
	A. Scalability Tests

	TABLE XI D ETAILED R ESULTS A CHIEVED BY D ATA S QUEEZER, C5.0,
	Fig.€4. Top plot shows running time in the log-log scale achieve
	Fig.€5. Running time in the linear-log scale achieved by DataSqu
	Fig.€6. Accuracy, number of rules and selectors generated by Dat
	TABLE XII D ETAILED R ESULTS A CHIEVED BY D ATA S QUEEZER, C5.0,
	Fig.€7. Top plot shows running time in the log-log scale achieve
	Fig.€8. Running time in the linear-log scale achieved by DataSqu
	Fig.€9. Accuracy, number of rules and selectors generated by Dat
	B. Robustness to Missing Data
	Fig.€10. Accuracy of rules generated by DataSqueezer (DS), C5.0,
	Fig.€11. Number of rules generated by DataSqueezer (DS), C5.0, R
	Fig.€12. Number of selectors generated by DataSqueezer (DS), C5.
	Fig.€13. Running time of DataSqueezer (DS), C5.0, RIPPER, and SL

	VI. C ONCLUDING R EMARKS
	A. Future Work

	T. Abraham and J. F. Roddick, Incremental meta-mining from large
	S. D. Bay and M. J. Pazzani, Detecting group differences: Mining
	J. A. Blackard, Comparison of Neural Networks and Discriminant A
	C. L. Blake and C. J. Merz . (1998) UCI Repository of ML Databas
	E. Boros, P. L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, and I.
	R. Brachman and T. Anand, The process of knowledge discovery in
	L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification
	J. Catlett, Megainduction: A Test flight, in Proc. 8th Int. Work
	P. Chan and S. Stolfo, On the accuracy of meta-learning for scal
	N. V. Chawla, K. W. Bowyer, L. Hall, and W. P. Kegelmeyer, SMOTE
	N. Chawla, L. Hall, K. Bowyer, and W. Kegelmeyer, Learning ensem
	J. Y. Ching, A. K. C. Wong, and K. C. C. Chan, Class-dependent d
	M. Chisholm and P. Tadepalli., Learning decision rules by random
	D. Chiu, A. Wong, and B. Cheung, Information discovery through h
	K. J. Cios and L. A. Kurgan, Hybrid inductive machine learning:
	K. J. Cios, W. Pedrycz, and R. Swiniarski, Data Mining Methods f
	K. J. Cios and L. A. Kurgan, CLIP4: Hybrid inductive machine lea
	K. J. Cios and G. Moore, Uniqueness of medical data mining, Arti
	P. Clark and R. Boswell, Rule induction with CN2: Some recent im
	P. Clark and T. Niblett, The CN2 algorithm, Mach. Learn., vol.
	W. Cohen and Y. Singer, A simple, fast and effective rule learne
	W. Cohen, Efficient pruning methods for separate-and-conquer rul
	C. Cortes and V. N. Vapnik, Support vector networks, Mach. Learn
	O. Dain, R. Cunningham, and S. Boyer, IREP++ a faster rule learn
	T. G. Dietterich and R. S. Michalski, Inductive learning of stru
	P. Domingos, The RISE system: Conquering without separating, in
	R. O. Duda and P. E. Hart, Pattern Classification and Scene Anal
	U. M. Fayyad and K. B. Irani, Multi-interval discretization of c
	U. M. Fayyad, G. Piatesky-Shapiro, P. Smyth, and R. Uthurusamy,
	A. Freitas, A survey of parallel data mining, in Proc. 2nd Int.
	J. Furnkranz, Separate-and-conquer rule learning, Artif. Intell.
	J. Furnkranz and G. Widmer, Incremental reduced error pruning, i
	L. Hall, N. Chawla, K. Bowyer, and W. Kegelmeyer, Learning rules
	S. Hettich and S. D. Bay . (1999) The UCI KDD Archive . Universi
	M. Holsheimer and A. P. Siebes, Data Mining: The Search for Know
	R. C. Holte, Very simple classification rules perform well on mo
	K. A. Kaufman and R. S. Michalski, Learning from inconsistent an
	R. Kerber, ChiMerge: Discretization of numeric attributes, in Pr
	Y. Kodratoff, Introduction to Machine Learning . New York: Morga
	R. Kufrin, Generating C4.5 production rules in parallel, in Proc
	L. A. Kurgan and K. J. Cios, CAIM discretization algorithm, IEEE
	L. A. Kurgan, K. J. Cios, M. Sontag, and F. J. Accurso, Mining t
	L. A. Kurgan, Meta Mining System for Supervised Learning, Ph.D,
	P. Langley and H. Simon, Applications of machine learning and ru
	P. Langley, Elements of Machine Learning . New York: Morgan-Kauf
	T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, A comparison of prediction
	R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, The multipu
	T. M. Mitchell, Machine Learning . New York: McGraw-Hill, 1997.
	G. Pagallo and D. Haussler, Boolean feature discovery in empiric

	Machine Learning and its Applications, vol. 2049, Lecture Notes
	M. Pazzani and D. Kibler, The utility of knowledge in inductive
	F. Provost and D. Hennessy, Scaling up: Distributed machine lear
	F. Provost and T. Fawcett, Analysis and visualization of classif
	F. Provost and V. Kolluri, A survey of methods for scaling up in
	F. Provost and T. Fawcett, Robust classification for imprecise e
	J. R. Quinlan, C4.5 Programs for Machine Learning . New York: Mo
	S. Ranka, Real-time data mining on grids, in (Invited Presentati
	J. F. Roddick and M. Spiliopoulou, A survey of temporal knowledg

	RuleQuest Research, C5.0 (2003). [Online] . Available: http://ww
	R. E. Schapire and Y. Singer, Improved boosting algorithms using
	M. Sebag, Delaying the choice of bias: A disjunctive version spa
	M. Spiliopoulou and J. F. Roddick, Higher order mining: Modeling
	H. Theron and I. Cloete, BEXA: A covering algorithm for learning
	V. N. Vapnik, The Nature of Statistical Learning Theory . New Yo
	P. Vlachos . (2000) StatLib Project Repository . [Online] . Avai
	G. I. Webb. and J. Agar, Inducing diagnostic rules for glomerula
	S. Weiss and N. Indurkhya, Reduced complexity rule induction, in
	R. Winter and K. Auerbach, Contents under pressure, Intell. Ente

