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ABSTRACT  
 
A very important issue faced by researchers and practitioners who use industrial and research databases is 
incompleteness of data, usually in terms of missing or erroneous values. While some of data analysis algorithms can 
work with incomplete data, a large portion of them require complete data. Therefore, different strategies, such as 
deletion of incomplete examples, and imputation (filling) of missing values through variety of statistical and machine 
learning (ML) procedures, are developed to preprocess the incomplete data. This study concentrates on performing 
experimental analysis of several algorithms for imputation of missing values, which range from simple statistical 
algorithms like mean and hot deck imputation to imputation algorithms that work based on application of inductive ML 
algorithms. Three major families of ML algorithms, such as probabilistic algorithms (e.g. Naïve Bayes), decision tree 
algorithms (e.g. C4.5), and decision rule algorithms (e.g. CLIP4), are used to implement the ML based imputation 
algorithms. The analysis is carried out using a comprehensive range of databases, for which missing values were 
introduced randomly. The goal of this paper is to provide general guidelines on selection of suitable data imputation 
algorithms based on characteristics of the data. The guidelines are developed by performing a comprehensive 
experimental comparison of performance of different data imputation algorithms. 
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INTRODUCTION 
 
Most of the real world databases are characterized by an unavoidable problem of incompleteness, in terms of missing or 
erroneous values. A variety of different reasons result in introduction of incompleteness in the data. Examples include 
manual data entry procedures, incorrect measurements, equipment errors, and many others. Existence of errors, and in 
particular missing values, makes it often difficult to generate useful knowledge from data, since many of data analysis 
algorithms can work only with complete data. Therefore different strategies to work with data that contains missing 
values, and to impute, or another words fill in, missing values in the data are developed [9].  

1. Methods for dealing with missing values 
In general two groups of algorithms used to preprocess databases that contain missing values can be distinguished. First 
group concerns unsupervised algorithms that do not use target class values. Second group are supervised algorithms that 
use target class values, and which are most commonly implemented by using supervised ML algorithms [11]. 
 
The unsupervised algorithms for handling missing data range from very simple methods like Mean imputation to 
statistical methods based on parameter estimation. Several simple algorithms are characterized and described by Little 
and Rubin [10]. They include methods where: 
• incomplete examples are ignored and discarded, 
• parameter estimation in the presence of missing data and imputation procedures are performed. 
The approach of deleting examples that have missing values, or ignoring attributes with missing values, is the most 
trivial way of handling missing values. However, this is a practical and computationally low cost solution that can be 



applied to databases that have small amount of missing or erroneous values. In case of applying it to databases with 
considerable amount of missing values, significant amount of useful information will be deleted. This may result in 
severe decrease of quality of data, and even inability to use the data for analysis purposes. The second approach works 
based on parameter estimation. The data is described based on models and their parameters, which are estimated by 
maximum likelihood or maximum a posteriori procedures (MAP) that use variants of the Expectation-Maximization 
(EM) algorithm [6]. The unsupervised statistical methods also include Hot Deck and Mean imputation, which are 
explained later. Another unsupervised method, in which a missing value is considered as a new meaningful value for 
each attribute often leads to problems during data analysis [17]. For example, the result of comparison between two 
examples that have missing values in the same attribute is not clear.   
 
The supervised algorithms usually use ML algorithms for preprocessing of databases that contain missing values. The 
ML algorithms are used to generate data model and perform classification task with the data that contains missing 
information. The results of the classification are used to impute missing values. Several kinds of ML algorithms can be 
used, such as decision trees, probabilistic, and decision rule [3], but the underlying methodology remains the same.   

2. The objective 
Different studies have been conducted in the subject of imputation of missing values [9], however none of them were 
comprehensive enough to give an overall view of the best method for a given database type. In this study we use five 
different imputation algorithms to impute artificially created missing information. The experiments are used to perform 
comparison between different imputation algorithms, and most importantly develop strategies for selection of the best 
performing imputation algorithm based on a set of characteristics that are derived for a given database.  
 
The selected imputation algorithms include two unsupervised algorithms: Mean and Hot Deck, and three supervised 
imputation algorithms. The supervised imputation algorithms include those that work based on the C4.5 ML algorithms, 
which is a decision tree algorithm, the CLIP4 ML algorithm, which is a decision rule algorithm, and the Naïve-Bayes 
ML algorithm, which is a probabilistic algorithm. Database characteristics are obtained using certain number of 
measures, which are similar to those in [2], and [12]. They include the following: 

• Number of examples, 
• Number of attributes, 
• Proportion of Boolean attributes, 
• Number of classes. 

The obtained results are used to develop guidelines for selection of best imputation algorithm for a database described by 
a given set of characteristics. Such guidelines can be used by a Meta learning procedure that is used to oversee a more 
general data preprocessing process.  
 
The remaining of the paper is organized as follows. Sections 3 and 4 provide details on imputation methods that are used 
in this paper. Section 5 briefly discusses different mechanisms that lead to introduction of missing values in databases. 
Sections 6 and 7 describe experiments that apply the imputation methods to seven selected databases. First, missing 
values are introduced in the databases. Next, imputation of missing data is performed and the imputed values are 
compared with original values, and accuracy of the imputation is computed. The results for supervised imputation 
methods are also expressed in terms of sensitivity, specificity, and predictive accuracy of the underlying ML algorithms 
[3]. The results are presented in terms of graphs showing performance of imputation algorithms against specific 
characteristics of input databases to enable easy and efficient analysis of the results. Finally, the results are analyzed and 
the discussion and conclusions are presented in sections 8 and 9. 
 

METHODS FOR IMPUTATION OF MISSING VALUES IN DATABASES 
 
Data imputation methods used in this paper include two unsupervised imputation algorithm: Mean imputation and Hot 
Deck imputation, and three supervised ML-based imputation algorithms. First, the unsupervised imputation algorithms 
are described. Next, both supervised imputation methods and the underlying ML algorithms are briefly introduced. 
Finally, mechanisms that lead to introduction of missing values in the data are described. 
 
 



3. Unsupervised imputation algorithms 

3.1. Mean imputation  
In this method, mean of values of an attribute that contains missing data is used to fill in the missing values. In case of a 
categorical attribute, the mode, which is the most frequent value, is used instead of mean. The algorithm imputes missing 
values for each attribute separately. 

3.2. Hot-Deck imputation  
In this method, for each example that contains missing values, the most similar example is found, and the missing values 
are imputed from that example. If the most similar example also contains missing information for the same attributes as 
the missing information in the original example, then it is discarded and another closest example is found. The procedure 
is repeated until all missing values are successfully imputed or entire database is searched. 
 
There are several ways to find the most similar example to the example with missing values [13]. The distance function 
that is used to measure similarity between different examples assumes distance of 0 between two attributes if both have 
the same numerical or nominal values, otherwise the distance is 1. The distance of 1 is also assumed for an attribute, for 
which any of the two examples has a missing value. For example, we consider a database described by 4 attributes that 
has two examples with the same value for the first attribute, different values for the rest of the attributes, and a missing 
value for the fourth attribute in one of the examples. In this case, the distance between these two examples is 2. This 
distance function is suitable only in case of data that contains discrete attributes. The distance for continuous attributes 
must use other formula, such as Euclidian or Manhattan distance. 

4. Supervised imputation algorithms 
Another way of imputing missing values is by using ML algorithms. The imputation is performed by performing 
multiple classification tasks using a ML algorithm. Each classification task is performed in two steps. First, during the 
learning step the ML algorithm generates the model using learning data. The data model is used to classify examples into 
a set of predefined classes, which in case of missing value imputation are just all distinct values of an attribute that has 
missing values. Second, during the testing step, the generated model is used to impute missing data for the testing data, 
which was not used during learning. The detailed procedure to impute missing values using ML algorithms follows.  
 
First the attributes that contain missing values are determined. Each such attribute is treated as target (class) attribute in 
turn, which means that classification task is performed as many times as the number of attributes that contain missing 
values. Next, the data is divided into training and testing parts. All examples that have a non-missing value in the 
attribute that is selected as the target attribute are placed in the training set. The remaining examples, i.e. those that have 
missing information in the target attribute, are placed in the testing set. Next, the ML algorithm is used to generate data 
model using the training data. The model is applied to the testing data, and classification task is performed to predict 
values of the target attribute. The predicted values are imputed for the missing values. For each classification, i.e. 
imputation performed for each attribute that contains missing values, the results in terms of sensitivity, specificity and 
accuracy of the classification, are recorded. Next, another attribute that contains missing values is selected and the 
process repeats until all attributes are considered. Finally, the average value of sensitivity, specificity and accuracy 
across all attributes is computed. 
 
Figure 1 is used to illustrate the above procedure. A database, which contains missing values in attributes 1 and 2, is 
shown in Figure 1a. First, the attribute 1 is assumed to be the target attribute. The database is divided into training and 
testing dataset, as shown in Figures 1b and 1c. The training dataset is used to develop a data model, which is applied on 
the testing data to predict the values of the target attribute. The Figure 1d shows that the attribute 1 will use predicted 
values to impute corresponding missing values. Next, the same procedure will be repeated for the attribute 2.  
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Figure 1. Supervised imputation process using a ML algorithm 

 
The paper uses three different ML algorithms to perform the classification task. The description of the algorithms 
follows. 

4.1. CLIP4 
CLIP4 is a rule-based algorithm that works in three phases [4] [5]. During the first phase a decision tree is grown and 
pruned to divide the data into subsets. During the second phase the set covering method is used to generate production 
rules. Finally, during the third phase goodness of each of the generated rules is evaluated, and only the best rules are kept 
while the remaining (weaker) rules are discarded. A specific feature of CLIP4 is use of the integer programming model 
to perform crucial operations, such as splitting the data into subsets during the first phase, selecting the data subsets that 
generate the least overlapping and the most general rules, and generating the rules from the data subsets in the second 
phase. The CLIP4 generates data model that consists of production rules, which use inequalities in all selectors, i.e. IF 
NUMBER_OF_WHEELS ≠ 4 AND ENGINE ≠ yes THEN CLASS=bicycle. It works only with discrete data. 

4.2. Naïve-Bayes 
Naïve-Bayes is a classification technique based on computing probabilities [7]. It analyzes relationship between each 
independent variable and the dependent variable to derive a conditional probability for each relationship. When a new 
example is analyzed, a prediction is made by combining the effects of the independent variables on the dependent 
variable, i.e. the outcome that is predicted. Naïve-Bayes requires only one pass through the training set to generate a 
classification model, which makes it very efficient. The Naïve Bayes generates data model that consists of set of 
conditional probabilities, and works only with discrete data. 

4.3. C4.5 
C4.5 is a decision tree algorithm [14] [15]. It uses an entropy based measure [16], which is called gain ratio, as a 
splitting criterion to generate decision trees. Each tree level is generated by dividing the data at a given node into a 
number of subsets, which are represented by branches. For each division, gain ratio is used to select the best attribute, 
which values are used to divide the data into subsets. Each subset contains data that takes on one of the values of the 
selected attribute. C4.5 generates data model that consists of a decision tree, which can be translated into a set of 
production rules that use equalities in all selectors. It can work with both discrete and continuous data. 
 

5. Mechanisms leading to introduction of missing values 
In general, three different mechanisms, which lead to introduction of missing values can be distinguished [9]: 



• Missing completely at random (MCAR), when the distribution of an example having a missing value for an 
attribute does not depend on either the observed data or the missing data. For example, a student’s final grade 
is missing, and this does not depend on his midterm grade or his final grade. 

• Missing at random (MAR), when the distribution of an example having a missing value for an attribute 
depends on the data, but does not depend on the missing data. For example, student’s final mark is missing, 
and this does depend on midterm grade, but not on the final grade. 

• Not missing at random (NMAR), when the distribution of an example having a missing value for an attribute 
depends on the missing values. For example, student’s final grade is missing, and this does depend on the final 
grade in terms that grades in a special range are always missing. 

This paper consider only MCAR model and uses it to introduce missing values when performing experiments. 
 

EXPERIMENTS AND RESULTS 
 
The experiments were performed using seven different datasets, and the five missing data imputation algorithms. The 
selected seven datasets originally do not contain missing values. The missing data were introduced artificially, using the 
MCAR model, into each of the datasets. As a result missing values were introduced into all attributes, including class 
attribute. The missing data was artificially generated to enable verification of the quality of imputation, which was 
preformed by comparing the imputed values with the original values. 
 
In what follows, first the seven selected datasets are introduced and described. Each dataset is described by a set of 
characteristics. The selected datasets cover entire spectrum of values for each of the characteristics. Next, the imputation 
experiments are described and explained. Finally, the results of experiments are investigated to analyze possible links 
between the characteristics of input datasets and quality of imputation for specific algorithms. 

6. Experimental setup 
The experiments use seven datasets selected from the UCI ML repository [1]. The selected datasets include only discrete 
attributes, since both Naïve Bayes and CLIP4 ML algorithms, which are used to perform supervised imputation, cannot 
work with continuous attributes. The description of the selected datasets, ordered by the number of examples, is shown 
in Table 1. It includes all characteristics described in the first section. 

             Table 1. Description of the datasets used in the experimentation 

name #  examples # attributes # classes % of Boolean 
attributes 

% examples in the majority 
class 

Lenses 24 4 3 60 62 
Hayes-roth 132 5 3 0 39 
Tic-tac-toe 958 9 2 11.11 65 

Car 1728 6 4 0 70 
Kr-vs-kp 3196 36 2 97.3 52 

LED 6000 7 10 87.5 10.75 
Nursery 12960 8 5 11.11 33 

 
As it is shown in Table 1, the selected seven datasets cover the entire spectrum of values for each of the characteristics: 
• the size of datasets, expressed in terms of the number of examples ranges between 24 and almost 13K 
• the number of attributes ranges between 4 and 36 
• the number of classes ranges between 2 and 10 
• the ratio of Boolean attributes ranges between 0 and 97% 
In general, the datasets were selected to assure comprehensiveness of the results. The experiments introduce missing 
values in four different quantities, i.e. 5%, 10%, 20% and 50% of data was randomly turned into missing values. This 
assures that entire spectrum, in terms of amount of missing values, is covered. 
 
The quality of imputation was evaluated by comparison of imputed values with the original values. The experiments 
report accuracy of the imputation. For the supervised imputation methods, the sensitivity and specificity of the 
imputation are also computed. These values are computed for each of the attributes in the data, and the average value is 
reported. 



7. Experimental results 

7.1. Design of database characteristics 
Based on the experimental results, several changes were made in respect to the choice and design of the database 
characteristics initially considered and described in section 1. We note that these characteristics were designed for 
general data analysis purposes, not just for the missing data imputation task. While analysis of results in respect to some 
characteristics, such as number of attributes and number of examples, generated some interesting knowledge, the 
analysis for the remaining characteristics, i.e. number of classes and proportion of Boolean attributes, did not generate 
useful knowledge showing that their definitions need to be redesigned.  
 
In general, ML algorithms depend not only on the number of classes, but more properly on the number of examples for 
each class. Therefore, in this study, “number of examples/ number of classes” characteristic is used instead of the 
“number of classes” characteristic. Similar reasoning applies to the “proportion of Boolean attributes” characteristic. 
Using a simple proportion does not accommodate for the characteristics of the remaining, non Boolean, portion of the 
data, which is important from the ML point of view. We note that ML algorithms can be sensitive to granularity of 
attributes expressed in terms of number of their distinct values combined with the number of classes defined in the data. 
For example, attributes with number of distinct values lower than number of classes cannot be successfully used to 
distinguish between all classes. This lead to defining a new characteristic “number of Boolean values / (number of 
values*number of classes)”, which was used instead of the “proportion of Boolean attributes” characteristic. Also, a new 
“amount of missing values” characteristic was added. Therefore, the following new characteristics are used to describe 
the input databases in order to come up with guidelines to select the most suitable missing data imputation methods: 

• Amount of missing values, 
• Number of examples, 
• Number of attributes, 
• Number of Boolean values/(number of values*number of classes), 
• Number of examples/number of classes. 

Next section provides and analyzes comparison of imputation methods based on the new characteristics. 

7.2. Comparison of the data imputation methods 
The results section summarizes experiments that apply five missing values imputation methods on seven datasets, for 
which four different amounts of missing information were introduced. The results report accuracy of the imputation, and 
are analyzed from the perspective of each of the input data characteristics. 
 
First, Figure 2 summarizes imputation accuracy of each method against the four amounts of missing values. The 
accuracies for each amount of the introduced missing values are averaged over the seven datasets. Figure 2 shows that 
the supervised imputation method based on the C4.5 ML algorithm has on average the best imputation accuracy 
throughout the entire considered spectrum of amounts of missing values. The supervised imputation method based on the 
Naïve Bayes ML algorithm has the mean imputation accuracy, which is very close to the accuracy of the imputation 
based on the C4.5 algorithm. The Mean imputation method has, on average, the mean imputation accuracy that places it 
on the third position, while the remaining methods are significantly worse. In general, we observe that the supervised 
imputation algorithms have better performance comparing to the unsupervised algorithms. Among the supervised 
algorithms, method based on the C4.5 ML algorithm, which is a decision tree algorithm, has the best mean imputation 
accuracy across the different amounts of missing values. Figure 2 shows that, in general, the imputation accuracy of all 
imputation methods declines with the increasing amount of missing information, which is a result of poorer quality of 
the underlying data. 
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Figure 2. Accuracy against amount of missing values Figure 3. Slope of the accuracy trend for different amounts of 

missing values 

 
Figure 3 shows the slope of the linear trend between the mean imputation accuracy and the different amounts of missing 
information. The slope shows the pace of performance degradation of each of the missing data imputation methods with 
the increasing amount of missing data. The higher the value of the slope the faster the quality of the method degrades. It 
can be observed that the Mean imputation method is the most stable imputation method. Although it has lower mean 
imputation accuracy for the considered amounts of missing information than the supervised methods based on the C4.5 
and Naïve Bayes methods, its stability suggests that for higher amounts of missing values it may overrun the supervised 
imputation methods. We note that in general datasets contain small amount of missing information, but for some 
domains it is possible to have more then 50% of missing values. For example, a medical data describing patients with 
cystic fibrosis that contains over 65% of missing information was successfully used to find useful relationships about the 
disease [8]. 
 
To summarize, Figure 3 shows that the unsupervised imputation methods are more stable comparing to the supervised 
methods. The main reason is that the supervised methods must have a training dataset of proper quality to develop an 
accurate model that is used to impute the missing information. On the other hand, the unsupervised imputation methods 
are less sensitive to the amount of missing values. 
 
Figures 4, 5, 6, and 7 compare different missing data imputation methods based on the normalized rank values. The 
normalized rank enables side by side comparison of the imputation methods, which is independent of the quality of the 
considered datasets. In order to compute the normalized rank value, the imputation accuracy of all methods is scaled to a 
common [0, 1] interval, with the lowest accuracy set to 0, and highest accuracy set to 1. The remaining imputation 
accuracy values are computed proportionally within the interval. For example, if the lowest accuracy for a given method 
would be 60% and the highest 90%, then 90% becomes 1, 60% becomes 0, and the scaled value for 80% accuracy would 
be 0.667. 
 
Figure 4 shows the normalized rank values for the average imputation accuracy, across different amounts of missing 
values, for all imputation methods against the increasing number of examples in the datasets. The rank for both CLIP4 
and Naïve Bayes based supervised imputation methods improves with the increasing size of the dataset. We note that in 
general the amount of input data is an important factor for ML algorithms. Having more data may help the ML 
algorithms to generate a better model, which consequently improves the quality of imputation. We also note that the 
supervised imputation method based on the C4.5 ML algorithm almost always performs the best. The quality of the 
imputation performed with the unsupervised imputation methods does not dependent on the size of the data. There is no 
clear trend in their performance for the increasing amount of input data. 
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Figure 4. Normalized rank of the average imputation accuracy
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Figure 5. Normalized rank of the average imputation accuracy
versus the Boolean characteristic 

 
Figure 5 shows the normalized rank values for the average imputation accuracy, across different amounts of missing 
values, for all imputation methods against the Boolean characteristic, which is defined as “number of Boolean values / 
(total number of values*number of classes)”. We observe that for the increasing values of this characteristic, 
performance of the supervised imputation method based on the Naïve Bayes algorithm gets worse comparing to the 
method based on the C4.5 ML algorithm. The same trend can be observed for the Mean imputation method. Other 
methods are not susceptible to this characteristic, and the imputation method based on the C4.5 ML algorithm has the 
best performance. 
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Figure 6. Normalized rank of the average imputation accuracy
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Figure 7. Normalized rank of the average imputation accuracy
versus the number of attributes 



Figure 6 shows the normalized rank values for the average imputation accuracy, across different amounts of missing 
values, for all imputation methods against the average number of examples per class, which is defined as “number of 
examples / number of classes”. The Figure shows that the quality of imputation for the supervised imputation methods 
based on the CLIP4 and Naïve Bayes algorithms improves with the increasing value of the average number of examples 
per class. This can be attributed to the improved quality of the data model generated by the ML algorithms with the 
increasing number of examples that are used to generate it. As a result, the quality of the imputation that is performed 
using the generated data model improves. On the other hand, it can be observed, as expected, that the unsupervised 
imputation algorithms are not susceptible to this characteristic. We also note that the imputation method based on the 
C4.5 algorithm has the best average normalized rank. 
 
Figure 7 shows the normalized rank values for the average imputation accuracy, across different amounts of missing 
values, for all imputation methods against the number of attributes. The rank of supervised imputation methods based on 
both CLIP4 and Naïve Bayes algorithms improves with the increasing number of attributes. This trend can be attributed 
to the increasing quality of the data models used to perform imputation, similarly as for the results described in the 
Figure 6. Again, we note that imputation method based on the C4.5 algorithm has the best average normalized rank. 
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Figure 8. Average sensitivity versus the amount of missing
values 
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Figure 9. Average specificity versus the amount of missing
values 

 
The average sensitivity, over the seven input datasets, of the supervised imputation methods against the different 
amounts of the missing data is shown in Figure 8. Similarly, Figure 9 shows the average specificity of different 
imputation methods. In general, increasing the amount of missing values results in decline of both sensitivity and 
specificity for all supervised imputation methods. In case of the sensitivity, the slope of the trend line for the imputation 
method based on the Naïve-Bayes and CLIP4 ML algorithms is greater than the method based on the C4.5 algorithm. 
We also note that the imputation method based on the C4.5 algorithm achieves the best sensitivity values. On the other 
hand, the specificity of this method is worse than specificity of the method based on the Naïve Bayes algorithm. This 
shows that the imputation method based on the C4.5 is not universally better than imputation based on the Naïve Bayes 
algorithm, but rather they complement each other. 

8. Discussion 
The results shown in Figures 2 through 7 indicate that the supervised imputation method based on the C4.5 ML has the 
best overall performance. The results also indicate that the imputation method based on the Naïve Bayes ML algorithm 
is the second best. In general, it can be seen that the supervised imputation methods have better performance than the 
unsupervised imputation methods.  
 



The analysis of stability of performance of the imputation methods with the increasing amount of missing values shows 
some interesting relationships. The Mean imputation is the most stable, which means that its performance degradation is 
the slowest compared to all other methods considered in this study. We expect that for the datasets with high amounts of 
missing values, unsupervised imputation algorithms may perform better than the supervised one. The rationale behind it 
is that supervised methods build data model which is used to perform imputation and which quality is dependent on the 
quality of underlying data, while unsupervised methods are more robust in terms of the quality of the underlying data.  
 
Another important trend shows that increasing the number of attributes and number of examples results in increasing the 
quality of imputation for the supervised imputation methods. Comparison between the sensitivity and specificity of 
different supervised imputation methods shows that although the C4.5 based method has better sensitivity, the Naïve 
Bayes based method is superior in terms of specificity. This shows that these methods complement each other.  
 
The results also show that the performance of the unsupervised imputation methods does not depend on the number of 
attributes, which conforms to the procedures they use.  
 
We also note that although the execution time of the imputation algorithms was not measured, in general the 
unsupervised Mean imputation method was the fastest and scaled well with the increasing size of the input data. The 
second fastest was the supervised imputation that uses the C4.5 algorithm. 
 

SUMMARY AND CONCLUSIONS 

9. Summary and conclusions 
Most of the real world databases have the shortcoming of containing missing values. This paper uses two well-known 
statistical approaches, i.e. Mean and Hot Deck methods, to impute missing data. In addition, supervised methods for data 
imputation, which are based on ML algorithms, were also used. These ML algorithms include C4.5, a decision tree based 
algorithm, CLIP4, a decision rule based algorithm, and Naïve Bayed, which is a probabilistic algorithm.  
 
Experiments presented in this paper compare the performance of the imputation methods on seven databases. The 
database characteristics cover a wide range of values. The results of the experiments show the superiority of supervised 
imputation methods. Among the supervised methods, the decision tree based method has the best performance, while the 
Naïve Bayes based method is the second best. 
 
We also note that the unsupervised methods are more stable with respect to increasing amount of missing information. 
Their performance decreases slower than the performance of the supervised methods. It can be expected that their 
performance may be better for databases with large amounts of missing values. The results also indicate that 
unsupervised imputation methods do not depend on the size of the input data, both in terms of the number of the 
attributes and the number of examples. On the other hand, the supervised imputation methods improve their performance 
with the increasing size of the input data. 

10. Future work 
This paper only considers missing data generated according to the MCAR mechanism. The next step is to consider other 
mechanisms, which include the MAR and NMAR methods. We also plan to include other imputation methods, such as 
parameter estimation methods, in order to improve comprehensiveness of the study. Also, increasing the range and 
improving granularity of the amount of missing data that is introduced into the original database is planed as the subject 
of the future work. New experiments will include 5%, 10%, 20%, 30%, 40%, 50%, 60%, and 70% of missing data. The 
expectation is that unsupervised algorithms will perform better in case of data that has high amounts of missing values. 
Finally, we plan to investigate using other, more complex distance definitions for computing the Hot Deck imputation in 
order to improve quality of imputation generated by this method. 
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