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Summary 

Protein function annotation and rational drug discovery rely on the knowledge of 

binding sites for small organic compounds, and yet the quality of existing binding site 

predictors was never systematically evaluated. We assess predictions of ten 

representative geometry-, energy-, threading-, and consensus-based methods on a new 

benchmark dataset that considers apo and holo protein structures with multiple 

binding sites for biologically relevant ligands. Statistical tests show that 

threading-based Findsite outperforms other predictors when its templates have high 

similarity with the input protein. However, Findsite is equivalent or inferior to some 

geometry-, energy- and consensus-based methods when the similarity is lower. We 

demonstrate that geometry-, energy- and consensus-based predictors benefit from the 

usage of the holo structures and that the top four methods, Findsite, Q-SiteFinder, 

ConCavity, and MetaPocket, perform better for larger binding sites. Predictions from 

these four methods are complementary and our simple meta-predictor improves over 

the best single predictor. 

 

Highlights 

 Best-performing predictors accurately find important putative binding sites 

 Geometrical and energy-based predictors outperform threading methods for novel 

folds 

 Combining different types of predictors leads to significant improvements 

 Quality of predictions is strongly positively correlated with size of binding sites 
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Introduction 

Although the genomes of more than 1000 organisms have been sequenced (Adams 

et al., 2000) and the ongoing structural genomics efforts (Chandonia and Brenner, 

2006) accelerate the determination of protein structures, the biological functions of 

many identified gene products are largely unknown. The rapid accumulation of 

protein sequences and structures motivates the development of computational tools 

for identification of protein‟s functions. Proteins carry out their functions through 

interactions with other molecules, including nucleic acids, other proteins, nucleotides, 

peptides, etc. These interactions are highly ubiquitous which is reflected in the Gene 

Ontology (GO) database that annotates nearly 1400 types of interactions (Ashburner 

et al., 2000). In the past two decades the rules that govern protein-protein (Jones and 

Thornton, 1996; Zhu et al., 2008), protein-DNA (Luscombe et al., 2001), 

protein-RNA (Ellis et al., 2007; Zhang et al., 2010) and protein-small ligand 

interactions (Chen and Kurgan, 2009) have been systematically investigated. Dozens 

of computational methods have been developed for the prediction of DNA and RNA 

binding sites, protein-protein interaction sites and binding sites for small-ligand 

(Jones and Thornton, 2004; López et al., 2009). Interactions with small organic 

compounds (organic molecules with less than 100 non-hydrogen atoms) are of 

particular interest because they find applications in elucidation of mechanism of 

numerous cellular activities, such as cellular signaling, growth of neurons and 

regulation of cell cycles (Whittard et al., 2006; Popova et al., 2010; Mukherjee et al., 

2010). The small organic compounds constitute nearly 90% of the drugs approved by 
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the U.S. Food and Drug Administration (Wishart et al., 2008). Consequently, the 

knowledge of binding sites of these molecules plays a crucial role for molecular 

docking-based rational drug discovery (Brooijmans and Kuntz, 2003). The two most 

recent published CASP experiments, CASP7 and CASP8 (López et al., 2009), 

included evaluation of sequence-based predictors of residues that bind small ligands. 

Here we concentrate on evaluation of methods that use protein structure as their input. 

For convenience, we use „ligands‟ and „binding sites‟ to refer to the small organic 

compounds and the sites on the protein structure where they bind, respectively. 

Although some studies that introduced new binding site predictors have compared 

them to a few existing solutions, to date no systematic comparison between a 

comprehensive/representative set of methods was performed. Another drawback of 

prior comparative studies is that they consider datasets that are characterized by 

largely incomplete annotation of binding sites. Every protein in these datasets is 

usually annotated with a single binding site while in reality many of these proteins 

have multiple binding sites. Additionally, prior benchmark datasets include 

annotations of biologically “irrelevant” ligands, such as the glycol molecule that is 

introduced by the
 

purification and crystallization procedures. We perform a 

comparative evaluation of the predictive quality of ten representative binding site 

predictors on a set of proteins that are annotated with multiple binding sites, which are 

confirmed to be biologically relevant. We selected prediction methods that offer either 

a web-server or a standalone program to generate the predictions. Overall, the 

structure-based predictors utilize three types of approaches including geometrical 
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analysis, calculation of binding energy, and threading using structural templates; one 

solution is based on a consensus of geometry- and energy-based approaches. The 

considered methods include the geometry-based SURFNET (Laskowski, 1995), 

PocketFinder (Hendlich et al., 1997), PASS (Brady and Stouten, 2000), LIGSITE
csc 

(Huang and Schroeder, 2006), PocketPicker (Weisel et al., 2007), ConCavity (Capra 

et al., 2009), and Fpocket (Le et al., 2009), the energy-based Q-SiteFinder (Laurie and 

Jackson, 2005), the threading-based Findsite (Skolnick and Brylinski, 2008), and the 

consensus-based MetaPocket (Huang, 2009). We evaluate their predictive quality 

using two criteria that were introduced in prior works and a new quality index that 

gives additional insights. Besides the overall predictive quality, we also assess the 

impact of ligand size and ligand type and we compare predictions from apo 

(ligand-unbound) and holo (ligand-bound) structures. 

 

Results 

We evaluate the performance of the ten prediction methods on a non-redundant 

benchmark dataset of 251 proteins; details are given in the Experimental Procedures 

section. These methods are also compared against a baseline predictor which 

randomly selects a surface patch on the target protein; the center of the patch is used 

as the prediction. Prior studies usually take top three or top five predictions and verify 

whether any of them are within a certain distance (which is used as a cutoff for 

calculation of prediction accuracy) to the actual binding site. If at least one of the top 

predictions is below the cutoff, then the binding site is assumed to be correctly 
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predicted. Since the previously used benchmark datasets contain proteins that are 

annotated with one binding site, the number of correctly predicted sites equals to the 

number of proteins and predictions were assessed “per protein”. In our case majority 

of the proteins are annotated with multiple binding sites, and thus our assessment is 

“per binding site”. For a protein with n binding sites we take the top n predictions for 

every considered method. A given binding site is correctly predicted if the minimal 

distance between this site and any of the n predictions from a given method is below a 

threshold D. The success rate is defined as the number of correctly predicted binding 

sites divided by the total number of sites. 

 

Comparison of the overall prediction quality 

The success rates of the ten methods and the random baseline predictor quantified 

using DCC, which measures the distance from the center of the predicted site to the 

center of the ligand (details are given in the Experimental Procedures section), are 

shown in Figure 1A. Findsite outperforms all other considered predictors for 

thresholds D up to 10Å. The ConCavity achieves the “second-best” success rates and 

is chosen to represent the geometry-based approaches in the subsequent analysis. 

Several predictors, including Q-SiteFinder, MetaPocket and PocketPicker have 

comparable, “third-best” success rates. The SURFNET, which is the oldest method 

that was designed over a decade ago, has the lowest success rates but it still improves 

over the baseline. Supplementary Figure 1A online summarizes the success rates 

measured using DCA, which is based on the distance from the center of the predicted 
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site to any atom of the ligand. The results are similar to the results obtained using DCC, 

except for D = 1Å where the Q-SiteFinder is the top-performing predictor. For the 

cutoff D = 4Å, which was suggested by Skolnick and colleagues (Skolnick and 

Brylinski, 2008), the threading-based Findsite successfully predicts around 57% and 

68% of the binding sites for the DCC and DCA distance definition, respectively, the 

geometry-based ConCavity identifies 28% and 51% of the binding sites, the 

energy-based Q-SiteFinder finds 26% and 44% of the binding sites, and the remaining 

methods cover 11-25% and 31-45% of the binding sites, respectively. To compare, the 

baseline random predictor correctly finds 5% and 9% of the binding sites when 

considering DCC and DCA distances, respectively. 

 

The overlap index OPL, which is defined as the ratio between the volume of the 

intersection of the predicted binding site and the ligand, and the union of the two 

volumes, expresses normalized spatial overlap between the predicted and the actual 

location of the ligand. This index is arguably more precise than the distance based 

indices since it considers spatial orientation. The OPL could be calculated only for the 

ConCavity, Q-SiteFinder, PocketPicker and PocketFinder which generate a full set of 

grid points of the predicted pocket instead of just the center of the pocket that is 

outputted by the remaining predictors. We observe that about 60% of the binding sites 

predicted by ConCavity overlap with the predicted pocket while the coverage is only 

around 40% for Q-SiteFinder and PocketPicker; see Supplementary Figure 1B. 

However, in most cases, the overlapping volume measured using OPL is rather small; 
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for instance, OPL is above 20% only for about 16% of the binding sites. 

 

We investigate significance of differences in the prediction quality measured with DCC 

for all pairs of the considered prediction methods (details are given in the 

Experimental Procedures section); see Table 1. The Findsite is significantly better 

than all other methods. The ConCavity, Q-SiteFinder, MetaPocket and PocketPicker 

are second-best and not significantly different between each other (except for the 

ConCavity which significantly improves over the Q-SiteFinder), and this group is 

statistically better than LIGSITE
csc

, SURFNET, PASS, PocketFinder and Fpocket. 

 

The impact of structural similarity between query protein and template library  

Findsite is a threading-based method that utilizes a library of template structures. Its 

predictions are generated by clustering binding sites of the template structures and 

they rely on the availability of templates that are similar to the predicted protein. To 

study the impact of the availability of similar templates, we use a threshold to limit 

the structural similarity between the query proteins and the templates used for the 

prediction. Only the template structures with a similarity score below the threshold 

are utilized. The structural similarity is measured with TM-score, which varies 

between 0 and 1 (Zhang and Skolnick, 2005); larger values indicate higher similarity. 

We vary the threshold between 0.5 and 1 with step of 0.1. Findsite also utilizes a 

default cut-off TM-score = 0.4 below which a given template is rejected. In case if 

Findsite does not find a suitable template above the 0.4 cut-off, we lower it by 0.1 
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until a template is found. This is done to assure that Findsite provides predictions for 

all targets in our benchmark dataset, even if in some cases only low quality templates 

are available; the other considered methods also provide predictions for all targets. We 

use the baseline predictions when Findsite cannot find a template for the cut-off 

TM-score = 0.1. 

 

We compare Findsite with the Q-SiteFinder, which is the only energy-based method, 

the ConCavity, a representative (best-performing) geometry-based method, and with 

the MetaPocket that represents the consensus-based approaches. The success rates of 

these four methods are quantified using DCC. For Findsite, we generate six sets of 

predictions that correspond to the consecutive values, between 0.5 and 1, of the 

maximal similarity threshold. The MetaPocket, ConCavity, and Q-SiteFinder do not 

utilize templates thereby they have one set of predictions. Figure 1B reveals that the 

predictive quality of Findsite improves with the increase of the similarity threshold. 

At a D = 4Å, its success rates equal 16%, 25%, 34%, 37%, 43% and 57% for the 

maximal TM-score threshold of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, respectively. This 

indicates that the predictive quality of Findsite is largely dependent on the availability 

of structurally similar templates. We investigate significance of differences in the 

prediction quality measured with DCC between the predictions generated by the four 

methods. Findsite is significantly better than the other three methods when the 

similarity threshold is 0.7 or higher, comparable to the other three methods when the 

threshold is set to 0.6, and significantly inferior for the threshold equal 0.5. These 
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results suggest that if Findsite identifies a template that shares a TM-score  0.7 with 

the query protein, then its predictions are expected to be better than the predictions of 

the ConCavity, MetaPocket and Q-SiteFinder. On the other hand, if the maximal 

TM-score between the Findsite‟s templates and the query protein  0.5, then the 

predictions generated by the ConCavity, MetaPocket or Q-SiteFinder are likely to be 

better. 

 

We repeat the above evaluation when excluding the proteins for which Findsite cannot 

find a template with TM-score > 0.1; these proteins are removed from the benchmark 

set instead of being predicted using the baseline approach. We generated six subset of 

the original benchmark set for different maximal similarity thresholds, which are used 

to evaluate the four predictors. The results, which are summarized in Supplementary 

Figure 1C, are consistent with the above analysis. The predictive quality of Findsite 

depends on the availability of similar templates and the other three methods provide 

predictions with quality that, as expected, does not depend on the similarity threshold. 

 

Comparison of prediction quality between Apo and Holo structures 

The benchmark dataset consists of holo structures, i.e., structures that are bound to 

ligands. Since the protein-ligand interactions may lead to conformational changes at 

the vicinity of the binding site, we also investigate the binding site predictions 

performed on the apo structures, i.e., unbound-state proteins. We selected a subset of 

proteins, for which both apo structures and holo structures are known, from the 
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benchmark dataset. This results in two datasets, DApo that includes 104 of these apo 

structures and DHolo that includes the corresponding set of the 104 holo structures (a 

subset of the benchmark dataset). 

 

We assess predictions generated for the four representative methods, the 

threading-based Findsite, the energy-based Q-SiteFinder, the consensus-based 

MetaPocket, and the best performing geometry-based ConCavity on both datasets; see 

Figure 1C. Using the DCC distance, the success rates of Findsite on the DHolo dataset is 

on average (over different thresholds) about 1.6% higher than on the DApo dataset. For 

the MetaPocket, Q-SiteFinder, and ConCavity the success rates on the DHolo dataset 

are on average 6.7%, 6.2%, and 7.3% higher than on the ligand-unbound dataset. 

Similar trends are observed when using the DCA, see Supplementary Figure 1D. 

Specifically, Findsite, MetaPocket, Q-SiteFinder, and ConCavity achieve 1.1%, 6.7%, 

7.5%, and 6.9% better success rates on the DHolo dataset, respectively. The 

significance of the differences in the predictive quality between the DHolo and DApo 

datasets was calculated using the Wilcoxon signed-rank test. The test reveals that 

MetaPocket, Q-SiteFinder, and ConCavity achieve significantly better predictions 

with p < 0.01, p<0.01, and p < 0.05, respectively, on the DHolo dataset when compared 

with the DApo dataset, while Findsite achieves comparable results on both datasets. 

These results suggest that the geometry-, energy-, and consensus-based methods 

benefit from the usage of the holo structures, likely because the geometrical 

descriptors and the energy function can be calculated more accurately using these 
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structures. 

 

Impact of the size of the binding sites 

We assessed the impact of the size of the binding sites on the predictive quality. The 

size is approximated by the number of interacting atoms in the binding site. A 

non-hydrogen atom of a residue is considered as an interacting atom if it is within 

3.9Å to a non-hydrogen atom of the ligand (Luscombe et al., 2001). The binding sites 

that are sorted by their sizes are divided into five subsets with equal number of sites. 

The success rates of the four representative predictors are calculated using these five 

subsets. Using DCC, we observe a consistent trend that higher success rates are 

achieved for the larger binding sites, see Supplementary Figure 2. For instance, the 

average success rates for Findsite are 23%, 35%, 45%, 57% and 69% for the 

consecutive five subsets, respectively, when considering cutoff distances D between 

1Å and 5Å. Similarly, the average success rates for Q-SiteFinder, MetaPocket, and 

ConCavity equal 3%, 4%, and 5%; 14%, 12%, and 11%; 22%, 18%, and 22%; 26%, 

26%, and 24%; and 33%, 28%, and 34% on the five subsets, respectively. The 

Pearson correlations between the average success rates, over cutoff distances D 

between 1Å and 5Å, and the average size of the binding sites in each of the five 

subsets, see Figure 2, equal 0.98 for Q-SiteFinder and MetaPocket and 0.99 for 

Findsite and ConCavity. This shows that the predictive quality of these four methods 

is linearly correlated with the size of the binding sites. We measure the ratio between 

the solvent accessible area of the binding residues, computed with the DSSP program 
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(Kabsch and Sander, 1983), and the protein surface, i.e., the sum of the solvent 

accessible area of all residues, for each protein. The average ratios in each the five 

subsets are similar and they vary between 0.085 and 0.105. This shows that the 

improved success rates are not due to the larger binding areas, but rather due to 

inherent characteristics of these predictive models.  

 

Predictive quality for different ligand groups 

The benchmark dataset includes 475 biologically relevant (as defined in the 

Experimental Procedures section) ligands that are categorized into 253 types. We 

manually inspected the ligands that occur in the dataset at least 3 times and we 

grouped them into four categories, including acids, carbohydrates, mononucleotides 

and cofactors (excluding mononucleotides). The breakdown of the ligand types in 

each category is given in Supplementary Table 1. These ligands occur 219 times in the 

benchmark dataset and they cover 46% of all binding sites; see Supplementary Figure 

3A. The remaining ligands are more unique and could not be clustered into sets that 

would allow for a statistically sound evaluation of the predictive quality. We compare 

the success rates of the four representative prediction methods on the four ligand 

categories. Using the DCC measure, the Findsite and ConCavity achieve the highest 

success rates for the cofactors, followed by the mononucleotides and acids, and the 

lower accuracies for the carbohydrates; see Supplementary Figure 3B and 3D. These 

differences are quite substantial, e.g. at D = 4 Å the success rates for cofactors and 

carbohydrates differ by 50%. In contrast, the differences between the success rates for 
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different ligand groups for the Q-SiteFinder and MetaPocket are relatively minor; see 

Supplementary Figures 3F and 3H. Similar trends are observed when using DCA; see 

Supplementary Figures 3C, 3E, 3G, and 3I. The above suggests that the predictions 

generated by Q-SiteFinder and MetaPocket are not sensitive to the ligand types, while 

the predictive quality of Findsite and ConCavity varies relatively widely between 

different ligand groups. 

 

Complementarity of predictors 

The four representative methods are based on different approaches, i.e., Findsite uses 

threading, Q-SiteFinder is based on the energy calculations, ConCavity utilizes 

geometrical descriptors, and MetaPocket combines geometrical descriptors and 

energy calculations. We investigate whether these differences result in 

complementarity in their predictions. A given binding site is regarded as covered by a 

combination of several methods if it is correctly predicted by any of these methods. 

Figure 1D demonstrates that combining predictions of the best performing Findsite 

with the other three methods results in a larger coverage. For the thresholds D 

between 1Å and 10Å, the coverage when using the four methods together increases 

between 4% and 10% when compared with the predictions of the Findsite. For the 

cutoff distance D = 4Å, 7% of binding sites that are not captured by the Findsite are 

successfully predicted by the Q-SiteFinder and 10% of the sites that are missed by the 

Findsite are correctly predicted by one of the three other methods. This shows that the 

four methods are complementary, which implies that they could be combined to build 
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a consensus-based method. 

 

We developed a simple consensus predictor by re-ranking the predictions generated 

by Findsite using the predictions from Q-SiteFinder, ConCavity, and MetaPocket. 

This solution, in contrast to a straightforward merging of the predictions from the 

three methods, is motivated by overall high predictive quality of Findsite, when 

compared to the runner-up approaches. Moreover, we observe that for a protein with n 

binding sites, Findsite sometimes generates more than n predictions and some of the 

correct predictions are not ranked among the top n outputs. Predictions generated by 

Findsite are scored by comparing them to the predictions generated by the other three 

methods to improve the ranking. A Findsite‟s prediction receives score of 3 if it is 

within 4Å to the predictions from Q-SiteFinder, MetaPocket, and ConCavity. The 

score equals 2 if the Findsite‟s prediction is within 4Å to the predictions of the two 

other methods. The score of 1 corresponds to the case when the Findsite‟s prediction 

is within 4Å to a prediction from one of the other three methods, and the score equals 

0 if the other three methods did not generate predictions within the 4Å radius. The 

predictions are sorted in the descending order by their scores, and ties are resolved by 

using the original order of the predictions from Findsite. The dashed line in Figure 1D 

reveals that the re-ranking improves the success rates of the original Findsite. When 

considering the cutoff distances D between 1Å and 5Å, the re-ranked predictions 

improve over the original Findsite on average by 2%. Although the magnitude of 

these improvements is relatively small, the Wilcoxon signed-rank test at the 0.05 
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significance level shows that they are statistically significant. This means that the 

distances between the native and the predicted positions of the ligand are consistently 

smaller when using our consensus approach. These preliminary results suggest that 

these four methods generate complementary predictions, and they motivate further 

research on the ensemble-based predictors. 

 

Case studies 

We use the chain A of Bcr-Abl protein (PDB code: 3K5V) (Zhang et al, 2010) and 

M2 proton channel of influenza A virus (PDB code: 2RLF) (Schnell and Chou, 2008) 

to demonstrate the utility of the four representative binding site predictors. These 

proteins were not included in our benchmark dataset and were subject to recent 

studies to reveal the atomic-level insights into their binding interactions (Schnell and 

Chou, 2008; Zhang et al, 2010). We superimpose the above two structures with other 

Bcr-Abl and M2 proton channels structures in the Protein Data Bank (PDB), 

respectively, using Fr-TM-align (Pandit and Skolnick, 2008). This is performed to 

assure a complete (to date) annotation of the native binding sites. As a result, both 

proteins are annotated with two binding sites. We used the web servers of Findsite, 

MetaPocket, ConCavity, and Q-SiteFinder to generate the predictions. The two 

structures with the ligands shown in black and the predictions from Findsite, 

ConCavity, MetaPocket and Q-SiteFinder that are colored green, pink, red and blue, 

respectively, are given in Figure 3. 
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For the Bcr-Abl protein, we evaluated the top 2 predictions from each predictor since 

this protein has two binding sites. Both of these sites are predicted correctly by 

Findsite and Q-SiteFinder, see Figure 3A. The distances between the predicted site 

and the center of the ligand are 1Å and 2Å for the Findsite and 1Å and 3Å for the 

Q-SiteFinder. The Q-SiteFinder predicts the grid points of the binding sites, which 

have more than 40% overlap, measured using OPL, with the ligands. The predictions 

by the MetaPocket are less accurate; its DCC for the two binding sites equals 6Å and 

2Å. ConCavity generates one prediction for this structure with the DCC equal 5Å. The 

pocket identified by ConCavity is not shown in Figure 3A because it would obstruct 

predictions from the other methods; this pocket is visualized in the Supplementary 

Figure 4A. We note that these two sites are biologically relevant; a recent study has 

shown that inhibitors that bind to these two sites lead to the inhibition of Bcr–Abl 

activity (Zhang et al, 2010). 

 

The binding sites on the M2 proton channel of influenza A virus have recently 

attracted significant attention since a class of antiviral drugs, such as adamantane M2 

inhibitors, interacts with this channel. The structure of the M2 proton channel in 

complex with inhibitors was solved in 2008 by two groups which proposed two 

distinct binding sites (Stouffer, et al., 2008; Schnell and Chou, 2008). A recent study 

confirmed that Adamantane and its derivatives are capable of interacting with both 

binding sites (Rosenberg and Casarotto, 2010). The sites on the M2 proton channel 

are difficult to predict due to two facts: 1) the channel is formed by 4 protein chains 
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while some predictors, including Findsite, are designed to predict using a single chain; 

and 2) the binding sites are located in the transmembrane regions (Rosenberg and 

Casarotto, 2010) while most of the complexes used to develop the binding site 

predictors concern globular proteins. Each of the four chains has two sites. The site 

located at the center of the channel is common to all four chains and the other sites are 

symmetrically distributed at the lipid-facing side of the four chains. As a result, this 

protein complex has total of five binding sites and thus we evaluated the top five 

predictions generated by each of the four prediction methods. The predicted binding 

sites and the ligands are shown in Figures 3B (side view) and 3C (top view). The 

binding site at the pore of the channel is predicted only by the MetaPocket. Although 

the distance between the predicted site and center of the ligand is around 6Å, the 

predicted site is at the center of four key binding residues (Ser31 on the four chains), 

which are depicted in yellow in Figures 3B and 3C. The other sites, which are 

targeted by Rimantadine, are located at the base of the transmembrane helix on each 

of the chains. Only one of these sites is correctly predicted by the MetaPocket, and 

none of the top five predictions by Q-SiteFinder is close to the ligand (DCC > 8Å). The 

ConCavity predicts one pocket, which is shown in the Supplementary Figure 4B, and 

this prediction is relatively far from the actual site (DCC > 8Å). We note that Findsite 

did not generate predictions for the M2 proton channel due to the unavailability of 

suitable templates. Overall, we conclude that majority of the considered binding sites 

were found by at least one of the top four methods, which suggests that they provide 

useful inputs for the atomic-level discovery of protein-ligand interactions. 
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Discussion 

The knowledge of the location of the binding sites is crucial for protein function 

annotation, elucidation of the mechanism of cellular activities, molecular docking and 

rational drug discovery. We empirically compare ten structure-based binding site 

predictors which were developed in the past decade and which offer either a 

web-server or a standalone program to generate predictions. The more recent methods 

including Findsite, Q-SiteFinder, ConCavity, and MetaPocket are shown to provide 

improvements over the older solutions. This indicates that progress was made over the 

last several years. However, a considerable fraction of the binding sites is not 

identified by any of the considered methods. For instance, at a cutoff of 4Å and using 

the DCC measure, about 33% of the binding sites are missed by the four 

best-performing methods. We demonstrate that the quality of the predictions is 

strongly positively correlated with the size of the binding sites. We also show that 

although Findsite is significantly more accurate than the other considered predictors 

and is more robust when performing predictions using the apo structures, this method 

is largely dependent on the completeness of its template library. When the maximal 

TM-score between a query protein and the best template identified by Findsite is 

below 0.5, then certain energy-, structure- and consensus-based predictors are shown 

to provide more accurate predictions. We developed a simple consensus-based 

approach that uses four complementary predictors, the threading-based Findsite, the 

energy-based Q-SiteFinder, the geometry-based ConCavity, and consensus-based 
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MetaPocket. This method is shown to provide success rates improved by 2% when 

compared with the best performing Findsite.  

 

Since the threading-based method works by identifying a known similar fold for a 

given query protein, the templates that are used in the prediction are restricted to one 

structural fold. However, a recent study shows that conserved sugar-binding and 

aromatic-group binding fragments are found across multiple protein folds (Petrey et 

al., 2009). The phosphate-binding fragment that occurs in dozens of protein families 

was discovered already two decades ago (Saraste et al., 1990). This means that the 

approach taken by the Findsite may not work in these and related cases and it 

motivates further research in this area. One of the potential solutions would be to 

develop a measure of similarity between surface patches on the query protein and the 

surfaces of the known binding sites, which would be added into the threading library; 

this idea extends a recently proposed surface scanning method (Chen and Kurgan, 

2009). By comparing relevant “sub-structures” (fragments of the fold concerning the 

binding sites), the above approach could overcome the constraint on the similarity of 

the overall fold between the query and the template structures. 

 

Experimental Procedures 

Benchmark dataset 

The benchmark dataset is designed to cover a wide range of non-homologous protein 

structures and to include structures with the largest number of annotated binding sites. 
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We selected a representative chain for each SCOP family and we mapped the binding 

sites of other similar structures into this chain. Prior work shows that two chains from 

different SCOP families have less than 1% chance to share more than 25% sequence 

similarity (Levitt, 2007). Since every chain in our dataset comes from a different 

protein family, the included proteins should be dissimilar in both their tertiary 

structure and sequence. We downloaded all available protein-ligand complexes from 

the PDB as of August 18
th

, 2009 and we annotated these proteins with their 

corresponding SCOP families. One chain for each SCOP family is selected using the 

following procedure. First, sequence similarity and structural similarity expressed 

with TM-score (Zhang and Skolnick, 2005) are calculated for every pair of chains 

within a given SCOP family. Next, the two similarity scores are used to perform 

clustering. Two chains are assigned to the same cluster if their sequence similarity is 

above 80% and their TM-score is above 0.5, as suggested in (Zhang and Skolnick, 

2005). We assume that the chains of the same cluster are homologous and that they 

share the same binding sites. Finally, we count the number of types of ligands that 

interact with the chains of each cluster. The cluster with the largest number of the 

ligand types is selected and this cluster is represented by the protein with the largest 

number of bound ligands. The latter choice is made to maximize the number and 

accuracy of the annotations of the binding sites. The ligands in the other chains in the 

selected cluster are superimposed into the representative structure using Fr-TM-align 

(Pandit and Skolnick, 2008). If the superimposed ligand structure clashes with the 

representative protein structure, then this ligand is removed. This step results in a 
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protein structure that includes a (large) number of bound ligands, where some of these 

ligands could be redundant. A single-linkage clustering was performed to remove the 

redundancy. The distance between two ligands is defined as the minimum distance 

between any atom of one ligand and any atom of the other ligand. The clustering is 

terminated using 5Å threshold to ensure that ligands from one cluster do not overlap 

with ligands from another cluster. The median structures are chosen for each cluster 

of ligands. These median structures form a set of non-redundant ligands that bind to 

the protein structure that represents a given SCOP family. 

 

The resulting dataset contains 314 protein structures. These structures are manually 

inspected to filter out biological irrelevant ligands, such as the glycol molecule that is 

introduced by the purification and crystallization procedures. For the structures with a 

published reference, a ligand is considered as biologically relevant if it is mentioned 

in the title or the abstract of the reference or the interaction between the ligand and the 

target protein is discussed in the results section. The ligands that only appear in the 

materials section or are never mentioned in the reference are removed. In case of the 

structures with no published reference, we use rules that were recently suggested by 

Wodak and colleagues (Dessailly et al., 2008). A given ligand is considered as 

biologically relevant if 1) it includes at least 10 non-hydrogen atoms; 2) it establishes 

at least
 
70 inter-atomic contacts with the protein atoms; and 3) the interaction does not 

concern lipid and membrane proteins. Our benchmark dataset includes 251 proteins 

after removing the “irrelevant” ligands. These are ligand-bound (i.e., holo) structures. 
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Since the protein-ligand interactions could lead to conformation changes, we also 

generated a dataset that consists of the matching apo structures. For each protein in 

the benchmark dataset we searched for its corresponding apo structure in the PDB. An 

apo structure is assumed to correspond to a given holo structure if they belongs to the 

same SCOP family, they share more than 80% sequence similarity and their TM-score 

is above 0.5. We found 104 apo structures and we created two additional datasets, 

DApo dataset that includes the 104 apo structures and DHolo dataset which is a subset of 

the corresponding 104 holo structures from the benchmark dataset. 

 

The proteins in the benchmark dataset have diverse overall structural topology. Based 

on the annotation from the SCOP database, they cover 6 structural classes, 148 protein 

folds, 184 superfamilies, and 251 protein families. The maximal pairwise sequence 

similarity is between 11% and 24%; see Supplementary Figure 3J. The 251 proteins 

are annotated with 475 binding sites which interact with 253 types of ligands. All 

datasets including the benchmark dataset and the DHolo
 
and DApo datasets are available 

for download from http://biomine.ece.ualberta.ca/BindingSitesPredictors/main.htm. 

This web page also provides URLs for the considered ten binding site predictors. 

 

Quality indices 

We use three indices to evaluate predictions of the considered binding site predictors:  

- DCA, which is defined as the minimal distance between the center of the predicted 

binding site (pocket) and any atom of the ligand, was widely used to assess the 
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prediction quality in several prior studies. For instance, authors of LIGSITE
csc

, 

PASS, PocketPicker and Fpocket assume that a predicted site is correct if its 

center is no farther that 4Å to any atom of the ligand. Instead of using one 

arbitrary threshold, we compute the success rates using DCA values for integer 

thresholds between 1Å and 20Å. 

- DCC, which is defined as the minimal distance from the center of the predicted 

binding site to the center of the ligand, was proposed by Skolnick and colleagues 

(Skolnick and Brylinski, 2008). When compared with DCA, this measure 

compensates for the size of the ligand, i.e., DCA gives higher success rates for 

larger ligands. DCC was recently used to compare Findsite and LIGSITE
csc

 

(Skolnick and Brylinski, 2008). The success rates are computed using integer 

thresholds between 1Å and 20Å. 

- OPL, which quantifies overlap between the predicted binding site and the ligand, 

is proposed in this study. This measure is defined as the ratio between the volume 

of the intersection of the predicted site and ligand, and the volume of their union. 

In addition to being sensitive to the size of the ligand, this quality index improves 

over both DCA and DCC by compensating for the relative spatial orientation of the 

ligand and the binding site. It can be computed for the four methods that output 

the full set of grid points of the predicted site (Q-SiteFinder, PocketPicker, 

ConCavity, and PocketFinder) instead of just the center of the pocket that is 

predicted by the other considered predictors. To calculate this value, both the 

binding site (pocket) and ligand are represented using a set grid points in the 
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same grid scale. A grid point is assigned to the ligand/site if the distance between 

this point and ligand/site is smaller than half of the length of diagonal in the grid 

cube. The OPL value is computed as the ratio between the number of grid points 

that are shared by the ligand and the binding site, and the number of grid points 

that belong to either the ligand or the site. 

 

Statistical analysis 

For a protein with n binding sites we take the top n predictions for every considered 

prediction method. We generate a set of minimal distances between each of the m 

binding sites (in the entire dataset) and the corresponding n predictions for each of the 

prediction methods. We assume that the predictions from different methods that are 

farther than 10Å away from the site are equally wrong, i.e., they are too far away to 

be meaningful, and thus we round them down to 10Å. The significance of the 

differences between a given pair of predictors was measured by evaluating the 

corresponding, for the same m, minimal distance values. Since the distances for the 

considered predictors are not normally distributed, per the Shapiro-Wilk test of 

normality at p = 0.05, we used the non-parametric Wilcoxon signed-rank test. We 

assume that the differences are significant if p < 0.05. 
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Figure Legends 

Figure 1. The success rates (y-axis) of the considered binding site predictors measured 

using DCC (the minimal distance from the center of the predicted site to the center of 

the ligand) on the benchmark dataset. 

(A) Results for the ten considered predictors. A given binding site is regarded as 

correctly predicted if the minimal distance between this site and the top n predictions 

is below the cutoff distance D (x-axis), where n is the number of binding sites of the 

protein that includes the evaluated binding site. 

(B) Comparison of the success rates of Findsite using its entire template library for 

different cutoff distances D (x-axis) with the predictions where the maximal structural 

similarly between a query protein and the templates is limited to TM-score  0.9,  

0.8,  0.7,  0.6, and  0.5. This panel also includes the success rates for the 

Meta-pocket, ConCavity, and Q-SiteFinder predictors. 

(C) Comparison of success rates on the DHolo and DApo datasets measured using DCC 

for the Findsite, MetaPocket, ConCavity, and Q-SiteFinder. The two datasets contains 

structures of the same set of proteins where DHolo includes ligand-bound structures 

and DApo includes structures at the ligand-unbound state. The x-axis shows the cutoff 

distance D that is used to calculate the success rates. 

(D) The success rates of the Findsite, Q-SiteFinder, ConCavity, MetaPocket and a 

consensus-based method compared to the coverage of the binding sites predicted by 

combination of the four methods. The x-axis shows the cutoff distance D that is used 

to calculate the success rates and the dashed line shows the success rates of the 
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consensus-based re-ranking of the Findsite predictions.  

 

 

Figure 2. Relation between the average, over cutoff distances D between 1Å and 5Å, 

success rates (y-axis) measured using DCC and the size of the binding sites for Findsite, 

Q-SiteFinder ConCavity, and MetaPocket. The binding sites in the benchmark dataset 

are sorted by their sizes, which are approximated by the number of interacting atoms, 

in the ascending order and they are binned into five equally sized subsets. The x-axis 

shows the average size of the binding sites for the five consecutive subsets. 

 

 

Figure 3. The binding sites predicted by the Findsite, MetaPocket, ConCavity, and 

Q-SiteFinder for chain A of the Bcr-Abl protein (panel A) and the M2 proton channel 

(panels B and C show the side and the top views, respectively). The predictions by 

Findsite, MetaPocket, ConCavity, and Q-SiteFinder are denoted with green, red, and 

pink spheres and blue mesh, respectively. The Q-SiteFinder predicted grid points of 

the pocket are shown using the mesh. The ligands are in the stick format and are 

colored in black. The M2 proton channel consists of 4 chains and has 5 binding sites. 

Each of the 4 chains is annotated with 2 sites, where the site at the center of the 

channel is common to all of them. The other 4 sites are symmetrically distributed at 

the lipid-facing side of the four chains. The key interacting residues for the central 

binding site, Ser31, on these four chains are colored in yellow in panels B and C. 
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Table 1. Statistical significance of the differences in distances measured using DCC 

between the predicted and the actual location of the binding site for all pair of the 

considered ten prediction methods measured using Wilcoxon signed-rank test. The 

results are calculated on the entire benchmark dataset. The “+”/“–“ indicates that a 

method in a given column is significantly better/worse than a methods in a given row 

with p < 0.05 and “=” denotes that a given pair of methods is not significantly 

different.  

 
 

PASS  SURFNET  
Pocket- 
Finder  

Fpocket LIGSITEcsc 
Q- 

SiteFinder  
Pocket- 
Picker 

Meta- 
Pocket 

Con- 
Cavity 

Findsite 

PASS   = + + + + + + + + 

SURFNET  =  + + + + + + + + 

PocketFinder  – –  = + + + + + + 

Fpocket – – =  = + + + + + 

LIGSITEcsc – – – =  + + + + + 

Q+SiteFinder  – – – – –  = = + + 

PocketPicker – – – – – =  = = + 

MetaPocket – – – – – = =  = + 

ConCavity – – – – – – = =  + 

Findsite – – – – – – – – –  
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Supplementary Table 1. List of ligand types in the four considered major ligand categories. 

 
Ligand category 3-letter abbreviation of ligand name  

(the same as in the PDB files) 
Formula 

Acids BEZ C7 H6 O2 
SAH C14 H20 N6 O5 S 
ASP C4 H7 N O4 
EPE C8 H18 N2 O4 S 
GLU C5 H9 N O4 
MYR C14 H28 O2 
PEB C33 H40 N4 O6 
TRP C11 H12 N2 O2 

Carbohydrates BGC C6 H12 O6 
GLC C6 H12 O6 
FUL C6 H12 O5 
GAL C6 H12 O6 
GLA C6 H12 O6 
XYP C6 H10 O5 
MAN C6 H12 O6 
FUC C6 H12 O5 
NAG C8 H15 N O6 

Nucleotides 2GP C10 H14 N5 O8 P 
5GP C10 H14 N5 O8 P 
A2P C10 H15 N5 O10 P2 
A6P C6 H13 O9 P 
ADP C10 H15 N5 O10 P2 
AGP C6 H16 N O8 P 
AMP C10 H14 N5 O7 P 
AMZ C9 H15 N4 O8 P 
ANP C10 H17 N6 O12 P3 
ATP C10 H16 N5 O13 P3 
C5P C9 H14 N3 O8 P 
CMP C10 H12 N5 O6 P 
G1P C6 H13 O9 P 
GDP C10 H15 N5 O11 P2 
GTP C10 H16 N5 O14 P3 
NOS C10 H12 N4 O5 
PAP C10 H16 N5 O13 P3 
TMP C10 H15 N2 O8 P 
TPP C12 H19 N4 O7 P2 S 
U5P C9 H13 N2 O9 P 
UDP C9 H14 N2 O12 P2 
UMP C9 H13 N2 O8 P 
UTP C9 H15 N2 O15 P3 

Cofactors ACO C23 H38 N7 O17 P3 S 
COA C21 H36 N7 O16 P3 S 
FAD C27 H33 N9 O15 P2 
FMN C17 H21 N4 O9 P 
HEM C34 H32 Fe N4 O4 
NAD C21 H27 N7 O14 P2 
NAP C21 H28 N7 O17 P3 
PLP C8 H10 N O6 P 
PQQ C14 H6 N2 O8 
SAM C15 H22 N6 O5 S 
U2G C19 H24 N7 O13 P 
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Supplementary Figure 1. The success rates (y-axis) of the considered binding site predictors on the 

benchmark dataset. 



(A) The success rates of the ten representative methods measured using DCA (the minimal distance 

from the center of the predicted site to any atom of the ligand). A given binding site is regarded as 

correctly predicted if the minimal distance between this site and the top n predictions is below the 

cutoff distance D (x-axis), where n is the number of binding sites of the protein that includes the 

evaluated binding site.  

(B) The success rates of the PocketPicker, Q-SiteFinder, ConCavity and PocketFinder measured using 

OPL (overlap between the predicted pocket and the ligand). The y-axis shows the percentage of binding 

sites that have their OPL values equal or greater than value on the x-axis. 

(C) Comparison of the success rates of Findsite using its entire template library measured using DCC 

for different cutoff distances D (x-axis) on the benchmark dataset with the predictions where the 

maximal structural similarly between a query protein and the templates limited to TM-score  0.9,  

0.8,  0.7,  0.6, and  0.5. The proteins for which Findsite could not find a template with TM-score > 

1 were removed from each of the above five configurations. The figure also includes the success rates 

for Meta-pocket, ConCavity and Q-SiteFinder for the entire benchmark dataset and the five subsets. 

(D) Comparison of the success rates (y-axis) on the DHolo and DApo datasets measured using DCA (the 

minimal distance from the center of the predicted site to any atom of the ligand) for the four 

representative methods, the threading-based Findsite, the energy-based Q-SiteFinder, the best 

performing geometry-based ConCavity, and the consensus-based MetaPocket. The two datasets 

include structures from the same set of proteins where DHolo is composed of structures in the 

ligand-bound state and DApo in the ligand-unbound state. A given binding site is regarded as correctly 

predicted if the minimal distance between this site and the top n predictions is below the cutoff 

distance D (x-axis), where n is the number of binding sites of the protein that includes the evaluated 

binding site. 
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Supplementary Figure 2. Success rates (y-axis) measured using DCC for different cutoff distances D 

(x-axis) for (A) Findsite, (B) Q-SiteFinder, (C) MetaPocket, and (D) ConCavity as a function of the 

size of the binding site, which is approximated by the number of interacting atoms. The binding sites 

in the benchmark dataset are sorted by their sizes in the ascending order and they are binned into five 

equally sized subsets. Each line corresponds to the results on one of these subsets, where subset 1 

includes the smallest sites and subset 5 the largest sites. 
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Supplementary Figure 3. 

(A) The rate of occurrence of the four major ligand groups, which include nucleotides, cofactors, 

carbohydrates and acids, in the benchmark dataset. These four groups cover 46% of all ligands in the 

dataset. 

(B to I) Comparison of the success rates (y-axis) for prediction of binding sites for four categories of 

ligands including acids, carbohydrates, mononucleotides and cofactors measured using DCC (panels on 

the left) and DCA (panels on the right). The x-axis shows the cutoff distance D used to calculate the 



success rates. B) results of Findsite measured using DCC; C) results of Findsite measured using DCA; D) 

results of ConCavity measured using DCC; E) results of ConCavity measured using DCA; F) Results of 

Q-SiteFinder measured using DCC; G) results of Q-SiteFinder measured using DCA; H) results of 

MetaPocket measured using DCC; I) results of MetaPocket measured using DCA. 

(J) Distribution of maximal pairwise sequence similarities (x-axis) between a given chain and any 

other chain in the benchmark dataset. The y-axis shows the count of chains that have a given maximal 

pairwise identity. 
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Supplementary Figure 4. The pockets identified by the ConCavity, denoted by a pink mesh, for (A) 

chain A of the Bcr-Abl protein; (B) M2 proton channel. 

 

 

 

 

 

 

 

 




