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SUMMARY

Inverse ligand binding prediction utilizes a few
protein-ligand (drug) complexes to predict other
secondary therapeutic and off-targets of a given
drug molecule on a proteomic scale. We adapt
two binding site predictors, FINDSITE and SMAP,
to perform the inverse predictions and evaluate
them on over 30 representative ligands. Use of
just one complex allows the identification of other
protein targets; the availability of additional com-
plexes improves the results. Both methods offer
comparable quality when using three complexes
with diverse proteins. SMAP is better when fewer
complexes are available, while FINDSITE provides
stronger predictions for smaller ligands. We pro-
pose a consensus that combines (and outper-
forms) the two complementary approaches imple-
mented by FINDSITE and SMAP. Most importantly,
we demonstrate that these methods successfully
find distant targets that belong to structurally dif-
ferent folds compared to the proteins in the input
complexes.

INTRODUCTION

A diverse repertoire of protein functions is carried through their

interactions with other molecules (Rausell et al., 2010) including

proteins, nucleic acids, peptides, and a variety of small mole-

cules. These interactions have been investigated and summa-

rized in the past two decades (Luscombe et al., 2001; Jones

and Thornton, 2004; Ellis et al., 2007; Zhu et al., 2008; Chen

and Kurgan, 2009; Zhang et al., 2010b). We focus on the interac-

tions with small organic ligands, which are defined as organic

molecules with less than 100 non-hydrogen atoms (Chen et al.,

2011a). These ligands constitute a significant majority of drugs

approved by theUS Food andDrug Administration (FDA;Wishart

et al., 2008) and they play important roles in modulation of

protein-protein interactions (González-Ruiz and Gohlke, 2006;

Casey et al., 2009; Gao and Skolnick, 2012).
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Despite continuing accumulation of protein-ligand com-

plexes in the Protein Data Bank (PDB; Berman et al., 2000),

only a small portion of these interactions is known. This

problem is addressed through computational methods that

are built using the known protein-ligand complexes and

applied to predict interactions for uncharacterized protein

structures. The feasibility of such predictors is motivated by

the fact that ligands and associated protein sequences and

structures have co-evolved (Goh et al., 2000; Dupont et al.,

2006), and thus similarity in sequence and/or structure can

be used to infer interactions with other targets by the same

or similar ligands (Xie et al., 2011a). These methods are of

two types. The first category includes methods that find and

rank ligand-binding pockets on the protein surface without

targeting a specific ligand. These methods, which include

SURFNET (Laskowski, 1995), LIGSITEcsc (Huang and Schro-

eder, 2006), Fpocket (Le Guilloux et al., 2009), MetaPocket

(Huang, 2009), and Concavity (Capra et al., 2009), use a

relatively simple geometry-driven approach, and, in the case

of Q-SiteFinder (Laurie and Jackson, 2005) approximation of

binding energy between the protein and a hypothetical ligand.

The second category involves methods that predict binding

pockets for specific ligands. They include FINDSITE (Brylinski

and Skolnick, 2008), which is a threading-based approach

that uses a library of known protein-ligand complexes, and

SMAP (Xie and Bourne, 2008; Ren et al., 2010), which utilizes

a profile-profile alignment to predict binding pockets from

known protein-ligand complexes. These methods are used to

implement modern virtual screening-based rational drug design

protocols (Brylinski and Skolnick, 2010; Sukumar and Das,

2011).

Recent studies indicate that cross-reactivity of ligands with

proteins occurs beyond global sequence and structure homo-

logs (Xie and Bourne, 2008; Nobeli et al., 2009; Petrey et al.,

2009; Zhang et al., 2010a). This means that the same ligand

might bind to proteins that belong to substantially different

folds and thus the ligand binding predictors should be

equipped to work across the fold space. That observation is

particularly important in the context of the inverse ligand bind-

ing predictions, where only a handful of protein-ligand com-

plexes is used to predict other protein targets on a proteomic

scale. This is in contrast to classical predictors that use many

complexes to predict an individual protein target. The inverse
22, November 7, 2012 ª2012 Elsevier Ltd All rights reserved 1815
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predictions are an important element of rational drug dis-

covery protocols, where they are used to find off-targets of

a given drug or drug candidate molecule based on its known

interaction with the therapeutic target (Xie et al., 2011a). A

number of attempts have been already made to find the off-

targets for specific drugs, including HIV protease inhibitors

(Specker et al., 2005), Comtan (Kinnings et al., 2009), choles-

teryl ester transfer protein inhibitors (Xie et al., 2009a), and nel-

finavir (Xie et al., 2011b), and on a larger scale (Ji et al., 2006;

Keiser et al., 2009). Early methods used an inverse docking-

based approach (Chen and Zhi, 2001; Ji et al., 2006; Yang

et al., 2009), while more recent approaches are integrative,

in a sense that they attempt to combine homology detection,

structural bioinformatics, protein-ligand docking, molecular dy-

namics simulations, free energy calculations, and biologic net-

work analysis (Xie et al., 2011a). Here, we concentrate on the

modern structural bioinformatics methods, which are imple-

mented as the inverse ligand binding predictors and offer a

computationally (substantially) less intensive alternative for the

inverse docking, especially when considering large, proteo-

mic-scale target sets.

Although the inverse ligand binding predictors were suc-

cessfully used to predict the off-targets, they were never

comprehensively evaluated, in particular on a proteomic scale

and to investigate their quality when predicting across non-

homologous folds. We adapt two ligand-specific predictors

of binding pockets: FINDSITE (Brylinski and Skolnick, 2008)

and SMAP (Xie and Bourne, 2008; Ren et al., 2010), to work

as the inverse ligand binding predictors. We select three

representative biologically relevant small organic ligands,

NAG, ADP, and PLM, to perform detailed evaluation on a

proteomic scale on two types of well-designed ligand-spe-

cific benchmark data sets: a redundant data set that in-

cludes all known ligand-binding proteins, and a nonredundant

data set that includes a subset of diverse (in both sequence

and structure) ligand-binding targets. Both data sets also

include proteins that are unlikely to bind a given ligand and

we use SCOP hierarchy (Murzin et al., 1995; Andreeva et al.,

2008) to evaluate predictive quality when finding distant (low

homology) targets, i.e., targets that belong to different folds

compared to the proteins in the input/template complexes.

Motivated by differences in the underlying methodologies im-

plemented in FINDSITE and SMAP, we also propose a con-

sensus-based approach that aims to provide improved predic-

tive quality.

Our results indicate that inverse ligand binding predictions

are relatively accurate, even when just one input protein-ligand

(drug) complex is used. As expected, availability of additional

complexes with diverse proteins leads to improved predictions.

We show that FINDSITE/SMAP performs well for smaller/larger

ligands and that overall SMAP is better than FINDSITE when

only one or two complexes are available. Based on a com-

prehensive test that uses a large and independent (from the

three ligands used to design the consensus) set of 35 ligands,

we show that the consensus of the two methods outper-

forms the individual predictors. Most importantly, we demon-

strate that these three approaches are effective in finding

structurally distant (from the proteins in the input complexes)

protein targets.
1816 Structure 20, 1815–1822, November 7, 2012 ª2012 Elsevier Ltd
EXPERIMENTAL PROCEDURES AND RESULTS

Selection of Representative Ligands and Construction of

Benchmark Data sets

We select three representative biologically relevant small organic ligands to

evaluate FINDSITE-, SMAP-, and consensus-based inverse ligand binding

predictors. The selection criteria are that these ligands interact with sufficient

number (to allow for statistically sound empirical evaluation) of nonredundant

(both in sequence and structure spaces) targets for which complexes are

available in the PDB, and that they represent major clusters of ligands in the

PDB (they are dissimilar). We collect all biologically relevant small organic

ligands (Dessailly et al., 2008) and their complexes in the PDB, reduce the

set of target proteins for each ligand based on sequence and structure simi-

larity, select and cluster the ligands with sufficient number of low similarity

complexes, and choose three ligands, NAG, ADP, and PLM, that have a large

number of complexes in the three resultant largest clusters. A detailed, step-

by-step protocol to select these ligands is described in the Supplemental

Experimental Procedures.

Empirical evaluation is performed on ligand-specific data sets, which are

composed of one of two positive, ligand-binding, protein sets (redundant

and non-redundant) and one negative set. The negative sets, one for each

ligand, include proteins that are unlikely to bind the ligand. The first, redundant

positive set includes all proteins collected from the PDB that are in complex

with one of the three selected ligands. These are the proteins collected in

step 1 of the ligand selection procedure. The second, nonredundant positive

set is built using a subset of the redundant set with reduced sequence and

structure similarity. This set includes proteins collected after step 4 of the

ligand selection procedure, which means that the corresponding proteins

are dissimilar at 25% sequence similarity and 0.4 structure similarity, which

is measured using TM-score (Pandit and Skolnick, 2008). The negative sets

are extracted as a subset of the culled PDB list generated by the PISCES

server (Wang and Dunbrack, 2003) with proteins that are dissimilar to the

proteins in the corresponding redundant positive sets and to other proteins

that are known to interact with a given selected (or a similar) ligand. Specifi-

cally, using the PISCES server as of April 2011 we collected 2,214 proteins

that have pairwise sequence similarity <25% and high-resolution structures

(resolution <1.6 Å); we removed small proteins with <50 residues. Next, using

BindingDB (Liu et al., 2007), we find ligands that are >90% similar to a given

ligand and collect all their protein targets; in some cases, only their sequences

are known. We combine these targets with all proteins from the nonredundant

(structure-based) set for the same ligand, remove redundant proteins (leave

one proteins from each set of proteins with identical sequences) and proteins

with contact number <70. The resulting set represents proteins that are known

to bind to a given selected ligand. Next, we align each sequence from the

PISCES server to all sequences of the ligand-binding targets and we add

a given chain to the negative set if its similarity to every target sequence is

below 30%. As a result, the counts of protein chains in the redundant positive

sets for NAG, ADP, and PLM are 1,753, 1,622, and 85, respectively; in the

nonredundant set they are 59, 53, and 15, respectively; and in negative set

they are 904, 607, and 177, respectively. We perform evaluations on two

benchmark sets for each ligand: one that combines the redundant positive

set and the negative set, and another with the nonredundant positive set

and the negative set. The data sets are available at http://biomine.ece.

ualberta.ca/ILbind/.

Evaluation of Predictive Quality

We rank all proteins according to the output of a given inverse ligand bind-

ing prediction method and plot the receiver operating characteristic (ROC)

curves using this ranking. We count the number of proteins that bind the input

ligand versus the number of proteins that not to bind among the top n proteins,

when n varies from 0 to N, which is the number of proteins in the benchmark

set. We use the area under the ROC curve (AUC) to evaluate the predictive

quality.

We also evaluate significance of differences in AUC values for a given pair of

predictors based on their paired results across a given set of ligands and

templates. First, we determine normality of a given AUC measurement with

the Anderson-Darling test at the 0.05 significance. For normal distributions,

we use a paired t test; otherwise, we use the Wilcoxon rank-sum test.
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Table 1. Average AUC Values for FINDSITE- and SMAP-Based Inverse Ligand Binding Predictors

Ligand No. of Templates

FINDSITE SMAP

Redundant Nonredundant Redundant Nonredundant

NAG 5 individual templates 0.65 ± 0.035 0.63 ± 0.036 0.60 ± 0.019 0.60 ± 0.011

10 two-template sets 0.69 ± 0.014 0.68 ± 0.018 0.59 ± 0.010 0.59 ± 0.006

10 three-template sets 0.70 ± 0.010 0.70 ± 0.013 0.59 ± 0.006 0.59 ± 0.003

ADP 5 individual templates 0.67 ± 0.012 0.77 ± 0.022 0.75 ± 0.021 0.79 ± 0.011

10 two-template sets 0.70 ± 0.008 0.82 ± 0.013 0.79 ± 0.011 0.81 ± 0.006

10 three-template sets 0.71 ± 0.005 0.84 ± 0.009 0.81 ± 0.007 0.83 ± 0.002

PLM 5 individual templates 0.63 ± 0.024 0.53 ± 0.016 0.71 ± 0.029 0.68 ± 0.034

10 two-template sets 0.67 ± 0.014 0.56 ± 0.012 0.76 ± 0.008 0.70 ± 0.011

10 three-template sets 0.71 ± 0.012 0.59 ± 0.010 0.79 ± 0.008 0.71 ± 0.008

Average individual templates 0.65 ± 0.012 0.64 ± 0.070 0.69 ± 0.045 0.69 ± 0.055

two-template sets 0.69 ± 0.009 0.69 ± 0.075 0.71 ± 0.062 0.70 ± 0.063

three-template sets 0.71 ± 0.003 0.71 ± 0.072 0.73 ± 0.070 0.71 ± 0.069

The average (across the corresponding sets of templates) AUC values ± the corresponding standard errors for the FINDSITE- and SMAP-based

inverse ligand binding predictors on the redundant and non-redundant benchmark data sets for the selected three representative small organic

ligands: NAG, ADP, and PLM. The last ‘‘average’’ row shows AUC values that are averaged across all three ligands. The best results on the redundant

data set for each ligand and number of templates are shown in bold.

See also Figure S1.
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Inverse Ligand Binding Predictors

We adapt FINDSITE and SMAP to perform inverse ligand binding prediction.

The classical implementation of these methods uses a large library of diverse

protein-ligand complexes to perform predictions. Here, we reduce their

libraries to the selected (small) set complexes with a given ligand. Moreover,

we analyze the outputs of these methods to select one output index for

each method that provides the best predictive quality.

FINDSITE is based on binding-site similarity among superimposed groups

of template structures identified using threading into the input/query protein

structure (Brylinski and Skolnick, 2008). FINDSITE identifies binding residues

using a consensus of the binding pockets in the selected superimposed

threading templates. In our scenario, FINDSITE predicts binding pocket(s)

on the query protein using one (a few) template complex with a given ligand.

It returns detailed information about the predicted pocket(s) that allow ranking

predictions across different query proteins. We identified seven indices/

features that could be used to perform ranking: (1) TM-score with the target

template protein structure; (2) RMSD of the Ca atoms in the aligned (between

query and template structures) region; (3) alignment length (number of resi-

dues aligned with the template protein structure by fr-TM-Align (Pandit and

Skolnick, 2008); (4) fraction of templates that share the detected pocket;

(5) sequence identity calculated over the residues aligned by the fr-TM-

Align; (6) number of predicted binding residues; and (7) number of detected

pockets.

SMAP is based on a sequence order independent profile-profile alignment

(SOIPPA) that was designed to find evolutionary and functional relationships

across the fold space (Xie and Bourne, 2007, 2008; Xie et al., 2009b; Ren

et al., 2010). SMAP utilizes a shape descriptor to characterize the structure

of the protein template and the SOIPPA algorithm to detect and align similar

pockets between the query and template proteins. Given a template complex

and a query protein, SMAP outputs seven indices/features that can be used to

rank predictions: (1) local structural alignment between ligand-binding sites in

the query and template proteins, which is quantified with the number of pre-

dicted binding residues; (2) raw score; (3) p value; (4) volume coverage of

binding pockets on the template (called target cover); (5) volume coverage

of binding pockets on the query protein (called query cover); (6) Tanimoto coef-

ficient; and (7) RMSD between the query and template proteins.

To comparatively evaluate predictive quality of the different outputs gener-

ated by FINDSITE and SMAP, we perform five predictions for each of the three

selected ligands using a template (different each time) that is randomly

selected from the corresponding nonredundant positive set; one template

always corresponds to the largest cluster. These templates are substantially
Structure 20, 1815–18
different in both sequence and structure; their PDB accession numberss are

1ZAG, 1NQL, 2CIY, 2WFO, and 3C45 for NAG; 1GZF, 3C9U, 1CQI, 2ZPA,

and 3CNZ for ADP; and 2IU8, 3LSJ, 2IES, 3FYS, and 2G87 for PLM. These

templates are also used in the subsequent sections. We predict the binding

proteins on the redundant benchmark sets and average the AUC values across

the five templates for each of the three selected ligands. We calculate seven

averaged AUCs for SMAP and another seven for FINDSITE using each of their

output features separately (see Figure S1 available online). The overall AUC

values, which are averaged over the three ligands and the corresponding 15

templates, show that the top-performing index for SMAP is the raw score

and for FINDSITE is the alignment length. The raw scores are rescaled to

calculate the p values, so in fact these two indices are strongly correlated

and provide virtually identical predictive quality. We observe that raw scores

outperform all other SMAP-based features for all three ligands. They improve

the overall AUC by 0.07 when compared with the second best SMAP-derived

index, which is the predicted number of binding residues. Similarly, the align-

ment length provides the best results for the three ligands when considering

the FINDSITE generated indices and it improves the overall AUC by 0.04

compared to the second best TM-Score. Therefore, we use the raw scores

and the alignment length values to predict binding proteins using SMAP and

FINDSITE, respectively. Besides the high overall AUC, this choice is motivated

by the consistency of these two selected indices, which work equally well over

the three diverse/representative ligands.

Evaluation of Inverse Ligand Binding Predictions with FINDSITE and

SMAP

We evaluate the FINDSITE- and SMAP-based inverse ligand binding predic-

tors on our benchmark data sets for the three selected ligands. For each ligand

we generate five predictions using the five templates (listed in the Inverse

Ligand Binding Predictors section) that are substantially different in both

sequence and structure. We rank all proteins according to the best output of

a given inverse ligand binding prediction method (alignment length generated

by FINDSITE and raw score outputted by SMAP) and calculate the AUC values

to evaluate the predictive quality. We predict the binding proteins on both the

redundant and nonredundant benchmark data sets and report average AUC

values across the five templates for each of the three selected ligands. More-

over, we empirically evaluate whether use of additional templates would lead

to improved predictive performance. To this end, we generate predictions

when using all ten combinations of two and ten combinations of three

templates from the set of five templates and report the corresponding average

AUCs. The results are summarized in Table 1.
22, November 7, 2012 ª2012 Elsevier Ltd All rights reserved 1817



Table 2. Average AUC Values for the Consensus, FINDSITE-, and

SMAP-Based Inverse Ligand Binding Predictors

Ligand FINDSITE SMAP ILbind

NAG 0.646 ± 0.035 0.600 ± 0.019 0.654 ± 0.031

ADP 0.668 ± 0.012 0.750 ± 0.021 0.756 ± 0.016

PLM 0.632 ± 0.029 0.708 ± 0.024 0.714 ± 0.021

35 independent

ligands

0.666 ± 0.017 0.685 ± 0.024 0.713 ± 0.022

The average (across the corresponding sets of five templates) AUC

values ± the corresponding standard errors for the consensus-,

FINDSITE-, and SMAP-based inverse ligand binding predictors on the

redundant benchmark data sets for the selected three representative

small organic ligands: NAG, ADP, and PLM. The last row shows the

average AUC values ± the corresponding standard errors across the 35

ligands in the independent test set; ILbind predictor was build using the

three ligands (NAG, ADP, and PLM) and tested on the 35 different ligands.

The best results for each ligand are shown in bold.

See also Table S1 and Figure S2.
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Both FINDSITE and SMAP can be used to provide well-performing inverse

ligand binding predictions. Using just one template, the average AUCs over

the three representative ligands are 0.65 for FINDSITE and 0.69 for SMAP

on the redundant data set, and 0.64 and 0.69 on the nonredundant data set,

respectively. Although overall SMAP outperforms FINDSITE, the latter method

is more accurate on NAGwhile SMAP is better on ADP and PLM. This might be

explained by the size of ligands; of three ligands, NAG has only 15 heavy

atoms, while ADP and PLM are larger and have 27 and 18 heavy atoms,

respectively. The performance of FINDSITE stays relatively similar across

the three ligands, while SMAP’s performance varies more and correlates

with the ligand size. FINDSITE predicts the binding pockets through threading

while SMAP uses profile-profile alignments. While these alignments seem to

outperform threading when ligands are larger (there are more binding residues

to align, particularly in the case of the largest ADP), they may not work well

when the ligand (and the corresponding pocket) are relatively small, which is

when threading still predicts relatively well.

As expected, the AUC values increase when the number of templates

increases. This trend is true for both redundant and nonredundant data

sets. Use of additional templates, which are diverse in sequence and structure,

provides more information that is used to find targets that can be missed with

fewer templates. We observe that while SMAP is better when fewer template

complexes are available, both methods provide similar results when three

templates are available. We evaluate the significance of differences between

SMAP and FINDSITE when using one, two, and three templates across the

three ligands. The corresponding p values are 0.16 (one template), 0.19 (two

templates), and 0.30 (three templates) on the redundant data sets; and 0.16,

0.68, and 0.93 on the nonredundant data sets, respectively.

Proposed Consensus Approach

We designed a consensus-based approach motivated by the fact that

FINDSITE and SMAP perform predictions using different underlying methodol-

ogies. The consensus combines selected outputs of SMAP and FINDSITE

using an ensemble of machine learning predictors (Figure S2A).

We design and validate our method using cross validation, in which predic-

tions on a given ligand are generated using a model established using outputs

generated by SMAP and FINDSITE for the other two ligands; this is repeated

three times, each time predicting a different ligand. This protocol prevents

potential overfitting into the input data, i.e., training data (concerning a given

ligand) and test data (concerning the other two ligands) are independent.

The design includes two steps. First, we select suitable inputs from among

the outputs generated by SMAP and FINDSITE, and next we build a consensus

of predictors using these selected inputs.

We use support vector machine (SVM) predictors, which are widely used in

recent related applications, such as prediction of catalytic residues (Zhang

et al., 2008) and binding residues for ATP (Chauhan et al., 2009; Chen et al.,

2011b), ADP, AMP, GTP, GDT (Chauhan et al., 2010; Chen et al., 2012), FAD

(Mishra and Raghava, 2010), NAD (Ansari and Raghava, 2010), and heme

(Liu and Hu, 2011). In our final design, which is deployed at http://biomine.

ece.ualberta.ca/ILbind/, we combine 15 SVMs, where each is built using

data concerning one of the five randomly selected (from the nonredundant

data set) templates for each of the three ligands. In our cross validation-based

empirical validation, we use ten SVMs to predict targets for a given ligand; they

are built using data concerning the two remaining ligands, using five templates

for each. The score generated by ourmethod is computed as an average of the

outputs generated by the ten (or 15) SVMs. The SVMs use linear kernel function

with the complexity constant C = 1. The value of C was established by cross

validation on the training data sets, where the test data were set aside.

The inputs to the SVMare selected among all 14 indices generated by SMAP

and FINDSITE. The selection is performed separately for each of the three

ligands. For a given ligand we follow a two-step process: (1) we sort the 14

indices by the average AUC values using the training data set (data concerning

the remaining two ligands); and (2) we perform wrapper-based greedy best

first search in which we start with the top ranked feature (index) and try to

add one feature at the time by scanning the ranked list once; a given index

is added into the feature set if its addition increases AUC value when com-

paredwith the feature set without this index, where AUC evaluates SVM-based

prediction within the training data set (data concerning one training ligand is

used to predict the other and vice versa). As a result, we obtain three feature
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sets for PLM (using training data from NAG and ADP), NAG (using data from

ADP and PLM), and ADP (using data from PLM and NAG), respectively. The

selected features for PLM are alignment length (from FINDSITE) and raw score

(SMAP); for NAG are raw score (SMAP), alignment length (FINDSITE), TM-

score (FINDSITE), and sequence identity (FINDSITE); and for ADP are align-

ment length (FINDSITE) and raw score (SMAP). The alignment length and

raw score are included in all three selected feature sets and thus we use these

two indices/features as the input to our SVM-based ensemble. These two

indices have also the highest AUC when used independently (without SVM)

to predict the binding (Figure S1). We compare the performance of these

two features with the performance using all 14 features, i.e., combined outputs

of FINDSITE and SMAP (Table S1A). The use of all versus the selected two

features results in a lower predictive performance across all three ligands,

with average AUCs of 0.67 and 0.71, respectively. We also considered addi-

tional features that are not related to the outputs of FINDSITE and SMAP.

Because similarity in the sequence and the structure of the backbone are

considered by FINDSITE and SMAP, we tried descriptors of the overall shape

of the protein fold. They include radius of gyration, radius of cross section,

coefficient of compactness, and normalized radius of gyration (Ivankov

et al., 2009). We calculated the AUCs for these four features across the three

selected ligands and the corresponding values are 0.52, 0.52, 0.56, and 0.51,

respectively. As expected, these results are inferior to the outputs of SMAP

and FINDITE. Their predictive value is marginally better than random and

thus we did not consider them further when designing inverse ligand binding.

Evaluation of Consensus-Based Inverse Ligand Binding Predictions

The consensus-based inverse ligand binding predictor (ILbind) combines

selected outputs of SMAP and FINDSITE using an ensemble of SVMs; a

web server and a standalone version that implement ILbind are available

at http://biomine.ece.ualberta.ca/ILbind/. The consensus-derived predictions

are generated using a cross-validation protocol, in which predictions for a

given ligand are computed using the SVM models that are developed using

the other two ligands. We report the AUC values averaged over the five indi-

vidual templates on the redundant benchmark data set for the three selected

ligands; see Table 2. The AUCs for FINDSITE and SMAP are based on their

best outputs, alignment length and raw score, respectively. The AUC for the

consensus is calculated using the average of the scores generated by the

ensemble of SVMs.

The overall AUCs averaged over the three ligands are 0.65, 0.69, and 0.71 for

the FINDSITE-, SMAP-, and consensus-based predictors. The corresponding

averaged (over the three ligands) ROC curves are shown in Figure S2B. The

consensus outperforms its input SMAP- and FINDSITE-based methods on

all three ligands. Although the improvements have relatively small magnitude

compared to the best performing method on each ligand, they are consistent

in contrast to the individual methods that outperform each other on different
All rights reserved
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Figure 1. Values of Inputs of Consensus

and the Probability of Binding

Relation between the values of the inputs of the

consensus (alignment length and raw score shown

on the x-y plane) and the probability of binding

(color coded on the x-y plane) together with the

scores generated by the consensus method

(shown as a surface above the x-y plane) for NAG

(panel A), ADP (panel B), and PLM (panel C).

See also Figure S1.
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ligands. The differences in AUCs (across the corresponding paired results

for the five templates and the three ligands) between the consensus and

FINDSITE and between the consensus and SMAP are statistically significant

at p values equal to 0.001 and 0.06, respectively. This means that the en-

semble of SVMs leverages well-performing predictions, even if they come

from one of the two methods. Overall, our consensus demonstrates that the

input methods are complementary and that this can be exploited to improve

predictive quality.

We also investigate the relation between the inputs of our consensus and the

underlying probability of binding, which is quantified by a fraction of binding

proteins, and show how this relation is modeled by our ensemble of SVMs.

For each of the three ligands, we create a five-by-five size grid that divides

the proteins in the redundant data set into approximately equal-sized subsets

using values of the raw score and alignment length; we sort proteins separately

by each index to determine endpoints of the five intervals so that the number of

proteins in each interval is the same. Data for each ligand are represented by

two plots: one on the x-y plane, where colors of the nodes on the grid represent

proportion of native binding proteins (darker colors correspond to lower frac-

tions of binding proteins); and the other is a surface where colors denote the

average scores generated by the consensus method (darker colors corre-

spond to lower scores); see Figure 1. Overall, the plots suggest that proteins

with longer alignment length or larger raw score are more likely to bind the

ligand, which agrees with the interpretation of these indices. However, this is
Structure 20, 1815–1822, November 7, 2012 ª
not always the case. For instance, Figure 1B

(which considers ADP) shows that proteins with

high alignment length may include those that are

unlikely to bind, depending on their raw scores.

The same is true when considering proteins with

high raw scores and the entire spectrum of the

alignment length values. Combining both indices

leads to better discrimination. Figure 1B demon-

strates that proteins with relatively high raw score

and alignment length (the far corner on the x-y

plane) are more likely to bind. Similar trends can

be observed for the other two ligands. These

observations suggest that SMAP and FINDSITE

provide complementary predictions and explain

why the consensus outperforms the two individual

methods. The surfaces on the z-axis, which show

outputs of the consensus, reveal that predictions

from the SVMs relatively well follow the native

probability of binding. The color patterns of these

surfaces are similar to the patterns on the x-y

planes, which means that the scores generated

by the consensus provide good predictive quality.

Evaluation on Independent Set of Ligands

Step 4 of the ligand selection procedure returns 38

ligands with a sufficient number of low similarity

complexes. We use 35 of them, excluding the

three selected ligands (NAG, ADP, and PLM), to

build an independent, with respect to the data

used to design ILbind, set of ligands that is used

to evaluate SMAP-based, FINDSITE-based, and

consensus-based ILbind predictors. We randomly
selected a single complex for each of these ligands as the template for

FINDSITE and SMAP. Next, we collected positive and negative data sets for

each ligand and use them to evaluate predictions from FINDSITE, SMAP,

and ILbind. The positive data set contains all complexes with this ligand in

the PDB and the negative data set is constructed in the same as for the three

selected ligands, i.e., all proteins collected from PISCES server with less than

0.3 sequence similarity to every protein in positive data set of this ligand. As

a result, we have 35 positive and 35 negative data sets.

Consistent with the evaluations on the three ligands, the AUCs for FINDSITE

and SMAP are calculated using the alignment length and raw score, respec-

tively. The AUCs of the consensus-based ILbind are based on the average

probability outputted by the SVM models. The overall AUCs averaged over

the 35 ligands are 0.666, 0.685, and 0.713 for the FINDSITE, SMAP, and

ILbind, respectively; see Table 2. Detailed results are given in Table S1B and

the corresponding average (across the 35 ligands) ROC curves are shown in

Figure S2C. The evaluation of the statistical significance of the paired dif-

ferences over the 35 ligands reveals that ILbind outperforms SMAP and

FINDSITE with p values at 0.001 and 0.0003, respectively. The SMAP is

better than FINDSITE with a p value of 0.25. These results are consistent

with the results on the three selected ligands. Moreover, they also confirm

our finding that the performance of these methods is relative to the size of

the ligand (Table S1C). We divided the 35 ligands into four equally sized

size-based bins: nine small ligands with the number of heavy atoms % 14,
2012 Elsevier Ltd All rights reserved 1819



Table 3. Average AUC Values for Consensus-Based ILbind, FINDSITE-, and SMAP-Based Inverse Ligand Binding Predictors

Ligand Methods

Test on the Same Test on the Different

Test on all SCOP-Annotated ProteinsClass Fold Classes Folds

NAG ILbind 0.66 ± 0.04 1.00 ± 0.00 0.67 ±0.02 0.65 ± 0.04 0.66 ± 0.03

FINDSITE 0.65 ± 0.07 1.00 ± 0.00 0.65 ± 0.03 0.63 ± 0.05 0.65 ± 0.03

SMAP 0.64 ± 0.03 1.00 ± 0.00 0.61 ± 0.02 0.60 ± 0.02 0.62 ± 0.02

ADP ILbind 0.83 ± 0.02 0.82 ± 0.14 0.72 ± 0.01 0.74 ± 0.01 0.76 ± 0.02

FINDSITE 0.74 ± 0.04 0.85 ± 0.15 0.65 ± 0.02 0.67 ± 0.02 0.68 ± 0.02

SMAP 0.80 ± 0.03 0.83 ± 0.10 0.72 ± 0.01 0.72 ± 0.01 0.75 ± 0.02

PLM ILbind 0.95 ± 0.04 1.00 ± 0.00 0.79 ± 0.05 0.79 ± 0.02 0.82 ± 0.03

FINDSITE 0.87 ± 0.04 1.00 ± 0.00 0.78 ± 0.03 0.76 ± 0.03 0.80 ± 0.04

SMAP 0.77 ± 0.22 1.00 ± 0.00 0.75 ± 0.06 0.76 ± 0.03 0.80 ± 0.05

The average (across the corresponding sets of five templates) AUC values ± the corresponding standard errors for the consensus-based ILbind,

FINDSITE-, and SMAP-based inverse ligand binding predictors on the benchmark data sets annotated using SCOP hierarchy for the selected three

representative small organic ligands: NAG, ADP, and PLM. The tests were performed on a subset of benchmark proteins that belong to the same/

different SCOP fold and class when compared with the fold and class of a given template protein. The right column includes results on all SCOP-anno-

tated proteins.
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nine small-medium ligands with the number of atoms between 15 and 26, eight

medium-large with sizes between 27 and 31, and nine large ligands with more

than 31 heavy atoms. We find that FINDSITE outperforms the other methods,

including a statistically significant improvement over SMAP with a p value of

0.02, on the small ligands. At the same time, SMAP and ILbind outperform

FINDSITE on the large ligands, with p values at or below 0.01. Finally, ILbind

provides the highest average AUC values for the medium-sized ligands and

matches SMAP for the large ligands.

Inverse Ligand Binding Predictions across the Fold Space

As discussed in a number of studies (Xie and Bourne, 2008; Nobeli et al., 2009;

Petrey et al., 2009; Zhang et al., 2010a), the same ligandmay have protein part-

ners that belong to substantially different folds. This motivates an evaluation of

the ability of the considered inverse ligand binding predictors to find struc-

turally distant (belonging to a substantially different fold compared to the

template proteins) binding proteins.

To this end, we constructed four subsets of the redundant data sets based

on the SCOP annotations (Murzin et al., 1995; Andreeva et al., 2008), with the

same or different SCOP classes or SCOP folds when compared with the

template protein; proteins that lack SCOP annotations were removed from

this evaluation. The SCOP-annotated benchmark data sets include 957 posi-

tive and 383 negative proteins for NAG, 773 positive and 250 negative for ADP,

and 37 positive and 75 negative for PLM. For each template complex that

constitutes input to a given inverse ligand binding prediction method, we con-

structed the four subsets of the SCOP-annotated benchmark data sets. The

first subset includes the proteins that are in the same SCOP class as the

template protein. The second subset includes the proteins that are in different

SCOP classes compared with the class of the template protein. Analogously,

the third (fourth) subsets include proteins from the same (different) SCOP fold

compared to the fold of the input template proteins.

Table 3 reports the AUC values averaged over the five individual templates

for the four SCOP-annotated subsets and all SCOP-annotated proteins and

for each of the three selected ligands: NAG, ADP, and PLM. The key observa-

tion is that all three approaches relatively accurately find structurally distant

(sharing low homology with the template protein) binding proteins. When

focusing on finding targets that belong to a different SCOP fold FINDSITE-

based predictor obtains AUCs between 0.63 and 0.76, SMAP-based method

between 0.6 and 0.76, and our consensus between 0.65 and 0.79, depending

on the ligand. To compare, the overall predictive quality (using all SCOP-anno-

tated proteins) across the three methods is somewhat similar and ranges

between 0.62 and 0.82. The predictions for proteins that are in the same fold

or class as the template are, as expected, characterized by relatively high

predictive performance, with AUCs between 0.82 and 1 in case of the SCOP

fold. We also observe consistent improvements, across different levels of

homology and different ligands, offered by the consensus-based ILbind
1820 Structure 20, 1815–1822, November 7, 2012 ª2012 Elsevier Ltd
method. Most importantly, these results suggest that the three considered

methods can be used to relatively accurately predict the off-targets (other

binding proteins) that share low homology with the template protein. This

conclusion justifies the use of these inverse ligand binding predictors on a

proteomic scale, even if only a few template complexes are available to them.
DISCUSSION

Effective inverse ligand binding predictors would be helpful for

identifying the off-targets of a specific ligand/drug on a proteo-

mic scale. We provide comparative empirical evaluations of

the predictive quality of these methods. We adapt two recently

developed binding site predictors, FINDSITE and SMAP, to

perform the inverse ligand binding prediction and evaluate their

predictive quality for three representative small biologically rele-

vant ligands using well-designed benchmark data sets. We

show that both approaches offer certain advantages. FINDSITE

seems to provide better predictive quality for smaller ligands,

while SMAP performs better for bigger ligands and when fewer

complexes with a given ligand are available. Our results demon-

strate that availability of additional structurally/in-sequence

diverse templates leads to improvements and that bothmethods

provide similar predictive quality when at least three templates

are used. We also propose a consensus method that combines

FINDSITE and SMAP using an ensemble of SVMs. This con-

sensus is empirically shown to provide improved predictive

performance when compared with FINDSITE and SMAP. Our

approach leverages good-quality predictions, even if they

come from one of the two methods; this comes from the fact

that it provides improvements across the three selected ligands

and across the set of the 35 independent ligands, while the two

individual predictors outperform each other on different ligands.

Most importantly, we empirically demonstrate that the three

considered methods relatively accurately predict the off-targets

that share low homology with the template protein(s). This inter-

esting conclusion motivates the use of these inverse ligand bind-

ing predictors on a proteomic scale where some of the protein

targets share low similarity with the template complexes. As

example applications, these methods could be used to improve
All rights reserved
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current virtual screening-based rational drug design protocols

and to perform protein function annotations across the fold

space.

The predictive quality offered by the considered approaches is

far from being perfect. However, we believe that it is relatively

good considering that there are a number of factors that limit

the ability of these methods to find certain targets. The target

protein may undergo a large conformation change upon binding

(Gunasekaran and Nussinov, 2007) and such binding events

cannot be captured by these methods. Moreover, some ligands

bind at the interface between multiple protein chains or proteins

(Gao and Skolnick, 2012), which is virtually impossible to predict

when only a single template chain (or a few templates) is avail-

able. These issues should be addressed by a new generation

of the inverse ligand binding predictors.
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