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Abstract Patents represent the technological or inventive activity and output across

different fields, regions, and time. The analysis of information from patents could be used

to help focus efforts in research and the economy; however, the roles of the factors that can

be extracted from patent records are still not entirely understood. To better understand the

impact of these factors on patent value, machine learning techniques such as feature

selection and classification are used to analyze patents in a sample industry, nanotech-

nology. Each nanotechnology patent was represented by a comprehensive set of numerical

features that describe inventors, assignees, patent classification, and outgoing references.

After careful design that included selection of the most relevant features, selection and

optimization of the accuracy of classification models that aimed at finding most valuable

(top-performing) patents, we used the generated models to analyze which factors allow to

differentiate between the top-performing and the remaining nanotechnology patents. A few

interesting findings surface as important such as the past performance of inventors and

assignees, and the count of referenced patents.

Keywords Patent � Patent value � Nanotechnology � Machine learning �
Classification � Feature selection

Introduction

Machine learning refers to the ability of a machine to recognize patterns in data and to

improve its performance based on experience that can be learned from these patterns. It

encompasses a number of computational techniques that generate models of data, which

can be used to find interesting relationships and that can be applied to provide useful

insights, such as ability to predict certain facts, that concern the existing and the future

data. As machine learning techniques are independent of the application domain, they
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provide a valuable platform to analyze and learn from data in various disciplines and

industries (Van Someren and Urbancic 2005). One of the main advantages of this approach

is that it can generate compact, human-readable models from large amounts of data. In this

project, we apply machine learning to generate and analyze models extracted from a large

collection of patent records in a sample nanotechnology industry. Our main goal is to use

these models to learn which factors, which are extracted from a patent record, allow to

determine its future value.

Innovation plays a key role in economic development and is therefore a primary con-

cern for practitioners, policy makers, and researchers (van Looy et al. 2006). Among other

things, this has led to the theoretical and empirical analysis of patent value, which has

attracted the attention of economists and government bodies for years (Rozhkov and

Ivantcheva 1998; Reitzig 2003). Some studies have suggested the roles of certain actors

and influences on innovation (e.g., Reitzig 2003); however, many of these roles are still not

completely understood. One method that has been used in the past to study these roles and

the paths of technological development and performance is the analysis of data found in

patents (Verbeek and Debackere 2006), especially the data appearing on the cover sheet of

each patent.

A patent is a document, containing structured, rich content regarding technological

innovations that is accessible to the general public (Huang et al. 2003). Each patent

document is issued by an authorized government agency and grants the owner a monopoly

over the exploitation of a precisely defined technological advancement or incremental

improvement (i.e., new device, apparatus, or process) over a stated period of time, e.g.,

20 years in the United States (Connolly and Hirschey 1988; Debackere et al. 2002;

Griliches 1990; Gupta 1999).

Patents permit the study of technological change since they represent inventive activity

and output from applied research over different fields, countries, and time (Trajtenberg

1990; Hullmann and Meyer 2003). Since they are (1) an unchangeable written reflection of

research and development output, (2) reveal trends in technology, and (3) provide con-

siderable information about the applicants’ approaches to the research, development, and

marketing activities, their analysis helps not only study technological trends but also

analyze science and technology as well as economic policies (Rozhkov and Ivantcheva

1998). This makes patent analysis (e.g., using statistics) an important tool for assessing the

performance of technological systems (Wallin 2005). For example, patent counting,

clustering, and citation analysis have been used to evaluate inventive activity at the cor-

porate, industry, or national levels (Wallin, 2005). We also note that recent studies show

increased activities related to commercialization of academic knowledge through patents,

and thus academic patenting should be considered as another interesting dimension to

perform patent analysis (Baldini and Grimaldi 2007; Leydesdorff and Meyer 2007).

The analysis of the information contained in patents is one of the most established and

historically reliable methods of quantifying technological output (Debackere et al. 2002;

Verbeek and Debackere 2006). It originated with the thought that the detailed information

contained in patents might have a bearing on the importance of the innovations contained

therein and that this information could be used to generate patent indicators that could act

as proxies for the value of these innovations (Trajtenberg 1990). This has led to the related

fields of patinformatics (Trippe 2003) or patent bibliometrics (Narin 1994). The term

patinformatics encompasses the macro-level analysis of patent information for purposes

such as patent intelligence, patent mapping, and patent citation analysis (Trippe 2003).

Similarly, patent bibliometrics studies the mathematical and statistical patterns of citations

in both scientific literature and patents, potentially to determine a patent’s value (Wang
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2007; Verbeek et al. 2002). For example, the count of patents can provide a basic indicator

of the scientific and technological productivity whereas the count of citations to these

patents can indicate the impact of the research as well as the linkage between science and

technology (Narin and Hamilton 1996).

These fields have far reaching applications such as corporate assessments on the tactical

and strategic levels, assessments of research and development programs and policies,

intellectual property management, company valuation, competitive intelligence, modelling

technological knowledge flows, economic modelling, technological trend evaluation, and

modelling technological clusters (Breitzman and Mogee 2002; Gay and Le Bas 2005;

Reitzig 2003; Lo 2008). In the area of intellectual property management, patent analysis

can help focus efforts on patents that add the most value to a company since a company’s

patent portfolio is often skewed with a small proportion of the patents in the portfolio with

high value and impact (Breitzman and Mogee 2002). In the area of competitive intelli-

gence, patent analysis can be used in formulating industrial competitive strategies by

evaluating the importance, technological strength, and creativity of both the company’s

patent portfolio and that of its competition (Albert et al. 1991; Chen et al. 2007a, b).

Furthermore, it can be used to identify and characterize key companies in a technological

area (Gupta 1999) and indicate the innovative and technological performance of high-tech

companies (Hagedoorn and Cloodt 2003; Tong and Frame 1992). In the area of research

and development programs and policies, patent analysis can indicate the relative success of

a program or policy aggregated by technology, department, institution, region, or country

(Connolly and Hirschey 1988; Narin and Hamilton 1996; Narin 1993). While in the area of

valuation, patent analysis has found correlations between corporate performance (e.g.,

stock market valuations) and strong technology. For example, two models have been

proposed for selecting stock portfolios based on patent indicators (Narin et al. 2004).

Finally, in the area of trend evaluations, patent analysis has been used to identify key

developments in the history of specific technological areas (Chen et al. 2007a, b).

Some of the advantages of using patent analysis and patent indicators as measures of

technological activity include: (1) the proximity of patents to the inventive and innovative

activities; (2) the range of fields covered by patents; (3) the geographical scope of patents;

and (4) the accessibility and availability of patent data (Debackere et al. 2002). However,

patent analysis is not without its shortcomings. For example, there are differences among

the various patent systems (e.g., United States Patent and Trademark Office, European

Patent Office, etc.) due to variations in legal, geographic, economic, and cultural factors.

Also, there are variations in propensities to patent between different firms, technological

fields, countries, etc. (Debackere et al. 2002). Despite these shortcomings, nothing com-

pares to patent analysis in terms of the quality of data, accessibility, and detail (Debackere

et al. 2002; Griliches 1990).

With patent analysis comes the question of how to assign a value to patents. While there

is some debate about the definition of patent value, many patent analysis studies suggest

using the backward citations as an index of the importance or value of patents (Gay and Le

Bas 2005; Trajtenberg 1990). These backward citations are based on the front-page

examiner citations (Trajtenberg 1990) from future patents that reference the current patent

and are the basis for most patent citation analyses (Karki 1997). These are used since they

are seen as pertinent to the subject matter of the patent (Wang 2007) and represent the

‘shoulders’ for which an invention is based (Gay and Le Bas 2005). However, there is

some debate as to the meaning of the backwards citations and whether they imply tech-

nological value or economic value.
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One hypothesis is that the backwards citations represent the technological value, quality

or importance. In other words, a patent that is highly cited by subsequent inventions has a

large technological value. Studies in this area have shown correlations between key or

essential patents (i.e., those that generate the most value or impact) and the number of

backward citations (e.g., Albert et al. 1991; Carpenter et al. 1981; Chen et al. 2007a, b;

Debackere et al. 2002; Wang 2007). These studies treat citation counts as a proxy for the

impact or technical relevance of the information or innovation found in the patent. The

second hypothesis is that highly cited patents represent innovations that have high eco-

nomic value since subsequent patents are the result of costly research and development

efforts (Gay and Le Bas 2005). Studies in this area have shown correlations between the

citation-weighted patent portfolios and market value of companies (Chen et al. 2007a, b;

Debackere et al. 2002; Gay and Le Bas 2005; Harhoff et al. 1999; Rozhkov and Ivantcheva

1998; Trajtenberg 1990). Another study found a correlation between increases in company

sales or profits and highly cited patents in the company’s portfolio (Albert et al. 1991).

Whether the backwards citations refer to the technological value, economic value, or both,

there seems to be a correlation between the value or impact of a given patent and the

backward citations it receives from future patents.

It has been noted that different types of inventive groups have different propensities to

patent. These differences in patenting can lead to stratification of the data between tech-

nological areas, for example. As a result, it is often desirable to limit the data to a

technological area in order to limit this stratification (Albert et al. 1991). In this study, the

field of nanotechnology was chosen since it represents an emerging field that holds great

promise in areas such as information technology, materials science, and medicine (Meyer

2001). Furthermore, experts believe that nanotechnology will be a key technology

impacting almost every aspect of the economy (Hullmann and Meyer 2003; Meyer 2007)

and the world market for nanotechnological products is forecasted to be as high as 150

billion dollars in 2010 and 2.6 trillion dollars in 2014 (Hullmann 2007).

While there is no consensus on the definition of nanotechnology (Meyer and Persson

1998), the definitions all relate to a field and collection of technologies (Hullmann 2007)

which deal with the materials, structures, and physical phenomena that are in the physical

size range of 1 nm (i.e., one billionth of a metre) to 100 nm as well as the techniques to

study phenomena at these sizes (Braun et al. 1997; Kostoff et al. 2006). At this scale, the

areas of physics and chemistry merge and novel properties of mater develop (Braun et al.

1997).

Several recent studies investigated information included in nanotechnology patents

(Huang et al. 2004, 2006; Chen et al. 2007a, b) and nanotechnology literature (Kostoff

et al. 2007), which motivates the research undertaken in this contribution. The goal of this

study is to use machine learning techniques to examine information that can be derived

from the front page of a patent in an attempt to better predict what impacts a patent’s value.

In other words, we want to determine (1) what information from within the patent has a

bearing on future patent value (i.e., incoming citation counts) and (2) can a model be built

to predict valuable patents based on the information contained in the patent?

To this end, classification and feature selection and ranking were performed to highlight

the most significant features (attributes) from the derived information. Both, classification

models and feature selection results show that the same three groupings of features, i.e.,

inventor and assignee performance and outgoing references, are relevant to determine

feature patent value. The generated classification models are in the form of production

rules and decision trees, which are easy to comprehend and apply to categorize future
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patents. To the best of our knowledge, this paper is the first to apply machine learning

methods to analyze patent data.

Methods

For this study, a representative, large set of patents was chosen based on the set of patent

search terms described below. Then, using a custom crawler, information from the cover

sheet of these patents was extracted and saved in a local database for processing. The data

was then cleaned and processed using a selection of machine learning methods. First, the

information from the cover page was converted into a set of numerical/nominal features,

and next the feature values were fed into classification and feature selection algorithms to

derive models and patterns that can be used to assess and predict the feature value of a

given patent.

Data set

Since there is no unified, global patent database, data from the USPTO database was used

for a number of reasons: (1) the USPTO database is the most representative because claims

submitted in other countries are often simultaneously submitted in the US (Huang et al.

2003); (2) the US represents the largest commercial market in the world (Huang et al.

2003); (3) the US system is well developed with historical data in electronic format back to

1975 (Albert et al. 1991); and (4) the US system is the most universally representative

system for analyzing international technology (Albert et al. 1991).

To retrieve the data, a list of nanotechnology related patents was created based on a set

of search terms, which in turn were derived based on prior works that focused on analysis

of nanotechnology patents. The early related contributions applied a simple approach by

using only the keyword ‘‘nano*’’ to select relevant patents (Meyer 2001; Marinova and

Mcaleer 2003; Hullmann and Meyer 2003). In one case, this was refined by excluding

patents that included ‘‘nanosecond’’ and chemical compound ‘‘NaNO’’ keywords

(Marinova and Mcaleer 2003). We applied an expanded set of keywords originally

developed by researchers at the National Science Foundation (Huang et al. 2003), which

was used in a number of recent contributions (Huang et al. 2003, 2004; 2006; Sampat

2004; Lee et al. 2006; Chen et al. 2007a, b). Similarly to the related studies (Meyer 2001;

Hullmann and Meyer 2003; Lee et al. 2006), this keyword search was limited only to

patent title and abstract to decrease the possibility of pulling out patents that may not

pertain to nanotechnology, i.e., full text may mention nanotechnology only in passing. The

keywords and the corresponding number of corresponding retrieved patents are summa-

rized in Table 1. Similarly to (Lee et al. 2006), the records retrieved using these keywords

were manually processed to remove irrelevant patents. More specifically, Lee and col-

leagues used the following keywords related to the ‘‘nano*’’ pattern to filter out irrelevant

patents, ‘‘nanogram’’, ‘‘nanometer’’, ‘‘nanosecond’’, ‘‘nanoliter’’, ‘‘nanoampere’’, ‘‘nano-

farad’’, ‘‘nanomole’’, the chemical compound ‘‘NaNO’’ and variations of those keywords.

In our case the manual screening was based on an extended list of irrelevant keywords that

include: ‘‘nanowatt’’, ‘‘nanosecond’’, ‘‘nano_second’’, ‘‘nano_sec’’, ‘‘microsecond’’,

‘‘millisecond’’, ‘‘nanogram’’, ‘‘microgram’’, ‘‘nano_mole’’, ‘‘nanomole’’, ‘‘nanonewton’’,

‘‘nano control store’’, ‘‘nanocode’’, ‘‘nanoROM’’, ‘‘nanoprogram’’, ‘‘nanokernel’’,

‘‘nano_kernel’’, ‘‘nanoperm’’, ‘‘nanodosimeter’’, ‘‘nanojoule’’, ‘‘nanogravity’’, ‘‘nanofa-

rad’’, ‘‘nanoamp’’, ‘‘nano_amp’’, ‘‘nano_instruction’’, ‘‘nanomolar’’, ‘‘nano.sub’’ and
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variations of those keywords. We note that even if the applied search terms would produce

some patents that do not concern nanotechnology, the machine learning methods applied to

generate classification models, i.e., RIPPER and C4.5 classifiers, are tolerant to noise

(Cohen 1995; Hilario and Kalousis 2000) and thus they can generate valid models in the

presence of ‘‘noisy patents’’.

This list of patents was used as the seed for a custom crawler that extracted the cover

sheet data from the USPTO online patent database; crawling was performed between June

8, 2007 and June 18, 2007. The resulting data was then cleaned to standardize naming

conventions of inventors and assignees. First, the terms Incorporated, Limited, Corpora-

tion, LLC, etc. were standardized. For example, names containing ‘‘Incorporated’’, ‘‘,

Incorporated’’, ‘‘Inc’’, ‘‘, Inc’’, or ‘‘, Inc. ’’, were changed to ‘‘Inc.’’ for consistency. Then,

‘‘&’’ was replaced with ‘‘and’’ with the exception of ‘‘AT&T’’. A search was then done to

find duplicate names when ‘‘Ltd. ’’, ‘‘Inc. ’’, ‘‘Co. ’’, etc. were removed. For example, ABC

Inc. and ABC Ltd. Universities were manually cleaned to consolidate variations of

‘‘Governors of …’’, ‘‘Regents of …’’, ‘‘University of …’’, ‘‘President of …’’, etc. A list of

duplicate names with different locations was then generated to search for and clean mis-

spelled or inconsistent spellings of locations. Upon cleaning the inventor and assignee

names, duplicate inventors and assignees were removed to provide a more accurate

reflection of the inventor and assignee counts. Finally, based on the name, each assignee

was assigned a type of Government, Company, Research, University, or Individual.

To assign a value to each patent, the number of incoming citations (i.e., backward

citations) was used to determine a percentile for each patent by year. This percentile by

year was used to normalize citation trends over time. Using this percentile, each patent was

assigned one of two class labels: HIGH was assigned to any patents with a percentile

greater than a threshold and denotes patent with high value; remaining patents were

Table 1 Patent search terms

Asterisk designates a wildcard
and (s) designates a search for the
singular and plural forms

Search term Patent count

Self-assembly* 32

Molecular electronics 528

Molecular motor 107

Molecular sensor 54

Quantum computing 192

Quantum dot(s) 1888

Quantum effect(s) 1219

(Self assembly) or (self assemble) 3547

(Atomic force microscopy) or (atomic
force microscope) or (AFM)

7375

Atomic-force-microscope* 19

(Scanning tunnelling microscopy) or (scanning
tunnelling microscope) or (STM)

5837

Scanning-tunnelling-microscope* 28

Atomistic simulation(s) 8

Biomotor 9

Molecular device(s) 4044

Nano* (later filtered to remove terms such
as nanosecond, etc.)

119884

Total retrieved unique records 132670
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categorized as LOW (with lower values). The threshold was set at 0.95 such that only

patents in the top fifth percentile were assigned to the HIGH class. We also tested the

developed models with threshold of 0.90 to investigate whether our conclusions depend on

the threshold value.

While data was retrieved for patents ranging from 1976 to the present, not all features

were reliable for all years. First, many features relied on information from previous years

patents as discussed below while patents from the earlier years did not have all informa-

tion. Furthermore, we want to ensure a reasonable number of incoming citations for each

patent to reduce the amount of noise present in the first few years after patent publication

(Hall et al. 2005). For example, Fig. 1 shows the average number of incoming citations and

the number of patents per year for the extracted data set. Note that, while the number of

patents continues to grow, the average number of incoming citations drops quickly after the

turn of the century. As a result, the data for the last few years could not be used. Therefore,

the period between 1990 and 2000 inclusive was chosen for the study to assure that the data

is recent, and to allow sufficient data before and after the selected time span.

Feature representation

From the data retrieved by the crawler, 45 features were calculated to represent the

information contained in each patent as shown in Table 5. Our aim was to use every piece

of data from the patent’s front page that could be converted in a quantifiable value (either

numerical or nominal) in an automated fashion. Our comprehensive set of features was

extracted based on different sections of the front page of each patent in the data set and

encodes information about inventors, assignees, patent classification, and outgoing refer-

ences. Most of these features display trends over time (e.g., year by year growth); there-

fore, they were normalized by dividing each value by the average of that value in each

year. This enabled patents at the beginning of the data set period to be compared with those

at the end of the data set period despite trends over time.

Fig. 1 Patent count and average incoming citations
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Classifiers

A series of representative classification methods (classifiers) were used in an attempt to

build a model representing the data set using the implementations found in Weka (Witten

and Frank 2005). In other words, using the data found on the cover sheet of the patent and

encoded into the corresponding 45 features, models were built to predict whether the

patents would fall in the HIGH or LOW class. Such models can be used to predict the value

(HIGH or LOW) for future patents, as well as to learn what patterns are characteristic for

each of these two classification outcomes. The selected classifiers cover main types of

classification methods including probabilistic methods (Naı̈ve Bayes), regression (Logistic

Regression), decision trees (C4.5 and Random Forest), and rule-based (RIPPER). We also

applied meta cost wrapper in conjunction with the C4.5, RIPPER, and Random Forest

classifiers in an attempt to improve the model performance. This extension allows focusing

a given model to one of the predicted values (LOW or HIGH), i.e., a better quality model is

build for one of the outcomes in expense of potentially poorer quality for the other

outcome. Summary information for each of the applied classifiers is provided in Table 2.

The Naı̈ve Bayes and Regression classifiers generate models that are difficult to interpret

(they consists of a set of numbers or equations) but they are computationally efficient

(models can be generated quickly) and often provide good prediction quality. The

remaining classifiers generate easy to interpret models (decision trees or IF…THEN…
rules); these models can be analyzed to learn useful patterns that are associated with

individual classification outcomes (LOW or HIGH patent value).

Evaluation of generated models

To evaluate models generated by each classifier, a 10-fold cross-validation test was used.

In this test, the data was divided into ten randomly chosen subsets (folds). Then, 10 tests

were performed with nine of the folds used as training data and a different fold used for

testing during each test. The results of the 10 tests were then averaged to obtain the final

results. This test procedure allows the reliable estimation of predictive quality of the

developed models for future patent records.

A confusion matrix was generated showing the true positive (i.e., patents assigned to

HIGH that are classified as HIGH), true negative (i.e., patents assigned to LOW that are

classified as LOW), false positive (i.e., patents assigned to LOW but classified as HIGH),

and false negative (i.e., patents assigned to HIGH but classified as LOW) for each clas-

sifier. The following four indices were computed to evaluate quality of each classification

model: sensitivity, specificity, error rate reduction, and the ratio of true positive to false

positive, see Table 3. Since the classifier’s objective is to correctly classify instances (i.e.,

patents), it is desirable to maximize sensitivity, specificity, error rate reduction, and TP/FP

ratio. However, many of these characteristics are optimized at the cost of others. For

example, a highly sensitive classifier usually also has poor specificity.

Classifier optimization

Classifiers were optimized such that the sensitivity was kept[20% and the TP/FP ratio was

maximized. Optimization involves adjustment of internal parameters of a given classifier in

order to improve the quality of the generated models. Since the Naı̈ve Bayes and Logistic

classifiers were in general characterized by the lowest quality (see Results and discussion

section) they were not optimized. At the same time, these two classifiers were kept to
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Table 2 Summary of the applied classification methods

Name Description Model Reference

Naı̈ve Bayes This method classifies a given patent by
determining the probabilities of each class
(HIGH/LOW) given the observed features
according to Bayes’ theorem. Given the
known training data, the classifier calculates
the probability that the observed patent is of
HIGH value and that the observed patent is
of LOW value. Then, for a given feature
vector, it predicts the class with the greater
probability

Set of conditional
probabilities
(difficult to
interpret)

(John and Langley
1995)

Multinomial
Logistic
Regression

The multinomial Logistic Regression method
with a ridge estimator was used. Using this
method, given the observed features, the
regression values for the HIGH and LOW
classification outcomes are computed and
the class with the larger value is chosen

Set of regression
equations
(difficult to
interpret)

(Le Cessie and Van
Houwelingen
1992)

C4.5 This method builds a decision tree in which
each node represents a feature and each
outgoing branch represents a test on that
feature. When building the tree, at each node
the feature with the highest value of
information gain, a measure of the reduction
in uncertainty of the result when the value of
that feature is known, is selected. The
observed features are matched against tree
nodes, starting at the top of the tree, to
provide the classification outcome (HIGH or
LOW class)

Decision tree (easy
to interpret)

(Quinlan 1993)

Random
Forest

This method generates a set of decision trees,
each using a randomly chosen subset of
features. The combined set of trees forms a
forest and each tree in the forest votes on the
classification outcome.

Set of decision trees
(easy to interpret)

(Breiman 2001)

RIPPER RIPPER generates a set of rules by selecting
features-value pairs (selectors) using the
information gain. Next, it performs
simplification by pruning individual
selectors and entire rules in the rule set in
order to better generalize the classification
without increasing the error rate

Set of IF…THEN…
rules (easy to
interpret)

(Cohen 1995)

MetaCost This method takes a base classifier (e.g., C4.5,
RIPPER, etc.) and makes it cost sensitive
such that the cost of false positive
classifications (i.e., false HIGH patents) can
differ from that of false negatives (i.e., false
LOW patents). It does so by weighting the
probability of each class by the cost and
taking the lowest cost class for each instance
(i.e., patent). This method was applied
together with the C4.5, RIPPER, and
Random Forest as the base classifiers

The same as the
model of the base
classifier.

(Domingos 1999)
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provide a reference point for comparison with models generated by the remaining methods.

The C4.5, RIPPER, Random Forest, and combinations of these with the MetaCost wrapper

were optimized.

For the C4.5 classifier, two parameters were optimized: the confidence and the mini-

mum number of instances per leaf. The confidence factor is used for pruning such that

smaller confidence factors result in smaller trees. The other parameter is self-explanatory

in that it imposes a minimum leaf size for the tree. For the RIPPER classifier, two

parameters were optimized: the error pruning folds and the optimization runs. The error

pruning folds control the amount of data that is used for growing the rules compared with

the data used for pruning the rules. One fold is always used for pruning data while the

remaining folds are used for growing the rules. The optimization runs is also self-

explanatory in that it controls how many runs are performed for optimizing the RIPPER

algorithm. For the Random Forest, the number of trees generated for the forest was

optimized. For the MetaCost classifier, the ratio of false negative cost to false positive cost

was optimized for the C4.5, RIPPER, and Random Forest classifiers.

To speed up the optimization, only threefold cross-validation was used. This provides

quicker results since fewer tests were performed. Furthermore, since the randomness of the

folds impacts the performance of the classifiers, a minimum of five repetitions were

performed on the top candidate combinations of parameters. In other words, the tests with

combinations of parameters that performed best on each classifier were repeated to ensure

that the better performance was not the result of an optimal selection of random folds for

that classifier.

Table 3 Summary of the computed quality indices

Definition Description

Sensitivity ¼ TP
TPþFN Sensitivity represents the ratio of correctly identified positive instances. In our

case, this represents the ratio of patents correctly identified as being in the
HIGH class out of all the patents assigned to the HIGH class. This helps to
determine the coverage of how many instances (patents) are correctly
captured by the model

Specificity ¼ TN
FPþTN Specificity of a given classifier identifies the ratio of correctly identified negative

instances. This represents the ratio of patents correctly identified as being in
the LOW class out of all the patents assigned to the LOW class. This helps to
determine how selective or exclusive the model is (i.e., how many patents are
correctly excluded from the HIGH class)

Error rate ¼ FPþFN
TPþTNþFPþFN The error rate reduction represents the improvement between the baseline (i.e.,

assume all patents are in the LOW class) and the predictions of the model.
The error rate is simply the ratio of incorrectly assigned instances out of all
instances. Since our data consists of only two classes (i.e., HIGH and LOW),
this is equivalent to the overall error rate of the classifier. Then, the error rate
reduction is calculated by taking the difference between the error of the
baseline and the error of the model. For example, if 5% of the instances are
classified as HIGH, the error rate for the baseline of assuming all classes are
LOW is 5%. If a given model has an error rate of 4%, this translates into a
reduction in error rate of 20% (i.e. (5–4%)/5% = 20%)

Ratio of TP to FP ¼ TP
FP The ratio of true positive to false positive describes the quality of the resulting

positive (HIGH) class. This describes the number of patents falsely classified
as HIGH, which are in fact LOW, compared with the number of patents
correctly classified as HIGH

TP true positive, TN true negative, FP false positive, FN false negative
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Feature selection

Three methods were used for feature selection: the v2 method, the Gain Ratio method

(Quinlan 1993), and the ReliefF method (Kononenko 1994). The v2 method ranks the

features’ relevance based on their v2 statistic. The Gain Ratio method ranks the features by

measuring the gain ratio of each feature with respect to the class. Finally, the ReliefF

method ranks the features by sampling patents then evaluating the value of each feature for

the nearest patent of the same and different classes. The implementations found in Weka

(Witten and Frank 2005) for all three methods were used within the regime of the 10-fold

cross-validation. The ranking of features provided by each of the three methods was

averaged over the 10-folds to find the most significant features.

Results and discussion

First, the models generated by the considered classifiers are tested to verify whether they

could be successfully used to predict and find factors related to the patent’s value. Next, a

feature selection study was conducted to find the most promising features that can be used

to differentiate between HIGH and LOW value patents. Finally, selected, best performing

models, i.e., decision tree generated by C4.5 and set of IF…THEN rules generated by

RIPPER, are presented and analyzed in the context of the feature selection results.

Classifier testing

The eight classifiers (i.e., Naı̈ve Bayes, Logistic Regression, C4.5, RIPPER, Random

Forest, MetaCost with C4.5, MetaCost with RIPPER, and MetaCost with Random Forest)

were tested on two data sets. The first was the data set with the HIGH class defined as the

top fifth percentile (per year). The second case was the same data but with the HIGH class

defined as the top tenth percentile. This contrasted the performance with two different sizes

of HIGH classes (i.e., 10% of the patents versus 5% of the patents). Tenfold cross vali-

dation tests were performed and reported for both data sets. This testing was to (1) compare

the performance of the classifiers; and (2) to compare evaluation with two different

thresholds for the HIGH class definition. The quality of the generated classification models

and the optimized values of the classifier parameters are summarized in Table 4.

In all three cases, the Naı̈ve Bayes classification performed worse than the default of

classifying all patents as LOW. This is shown by the negative error rate reduction meaning

that the error rate of using the Naı̈ve Bayes classifier is greater (i.e., performs worse) than

assuming all patents are classified as LOW. Also, in all three cases, the six optimized

classifiers (i.e., C4.5, RIPPER, Random Forest, MetaCost C4.5, MetaCost RIPPER, and

MetaCost Random Forest) performed significantly better than the Logistic Regression and

Naı̈ve Bayes in terms of TP/FP ratio, sensitivity, and error rate reduction. For example, the

RIPPER classifier improved by 36% in TP/FP, 124% in sensitivity, and 226% in error rate

reduction relative to the Logistic Regression. At the same time, there was little change in

the specificity from the Logistic Regression to the optimized classifiers.

When dropping the class threshold from the top fifth percentile to the top tenth per-

centile, there was only a small change in the performance of the classifiers suggesting that

the models are insensitive to changes in this threshold.

In all three cases, the MetaCost wrapper improved the TP/FP ratio and lowered the error

rate reduction and sensitivity relative to the base classifier. In other words, if we consider
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the classifier with the highest TP/FP ratio for both data sets, the MetaCost with C4.5

classifier, for every three correctly classified HIGH instances, there will be one incorrectly

classified HIGH instance (i.e., actually LOW). Meanwhile, with the C4.5 classifier, for

every 3.5 correctly classified HIGH instances, there will be one instance incorrectly

classified as HIGH. This is an improvement of *20%. However, with this increased TP/FP

ratio comes a decreased error rate reduction. For example, with the MetaCost with C4.5

classifier compared with the C4.5 classifier, the error rate reduction falls from 15.6%

without the MetaCost wrapper to 15.1% with the wrapper. In other words, the error rate

reduction is 3% lower when using the MetaCost wrapper. The sensitivity between the C4.5

and MetaCost with C4.5 classifiers decreased by 12% implying that the MetaCost wrapper

covers fewer HIGH instances. It should also be noted that the MetaCost wrapper did not

impact the error rate reduction for the RIPPER classifier with the top tenth percentile data

and even improved the error rate reduction in the top fifth percentile case. However, the

sensitivity still fell by 20% when using the MetaCost wrapper over the ordinary RIPPER

classifier.

Overall, the C4.5 and RIPPER classifiers have the best error rate reduction of all

classifiers tested, and are characterized by over 20% sensitivity (they correctly predict over

20% of the HIGH value patents) and very high, over 99% specificity (they correctly

exclude over 99% of the LOW value patents). For the top fifth percentile tests, the C4.5

performed best while with the top tenth percentile tests, the RIPPER performed marginally

better in terms of the error rate reduction. Meanwhile, the C4.5 classifier (with MetaCost)

performed best in terms of TP/FP ratio for both tests (i.e., top fifth and top tenth per-

centiles). The results for the C4.5 and RIPPER classifiers indicate that the corresponding

models can be used to successfully predict whether a given patent has the potential to be

valuable.

Feature selection

The results of the feature selection using three methods (v2, Gain Ratio, and ReliefF) are

shown in Table 5 along with the rank based on the averages of the three methods. The

average rank is not an average of the other three rank values but a rank based on the

average. For example, the feature entitled ‘in_topInventors’ has ranks of 1, 1, and 32 for

the v2, Gain Ratio, and ReliefF, respectively. While the average of these ranks is 10.7,

there are only two features with rank averages \10.7, namely count_assig_refs with 4.0

and avg_inventors_refs 9.0. As a result, this feature is ranked as number 3, not 10.7.

The v2 and Gain Ratio methods resulted in relatively similar rankings of features.

However, the ReliefF method provided different results. This difference could suggest the

presence of noise in the data since the ReliefF considers specific neighbouring data points

while the other two methods look at the classes in their entirety.

The average rank relative to the overall rank is shown in Fig. 2 along with the growth

rate of this average rank. The figure shows alternating regions of relatively quick growth in

the average rank and relatively slow growth in the relative rank. The growth begins with a

quick rise in the average rank until the fourth feature followed by a period of slow growth

until a spike in the growth for features ranked 11, 12, and 13 overall. This is followed by

another slow growth period before the remaining period of relatively quick growth after

rank 23. Note that there is a gap in the plot in Fig. 2 at an overall rank of 15 since there are

two features tied for a rank of 14. There is another gap from 24 to 26 since there are four

features tied with a rank of 23. These alternating regions of high growth followed by slow

growth imply natural groupings of feature relevance suggesting a natural break for feature
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selection at rank 14; the corresponding features are shown in bold in Table 5. Given the

quick growth at an overall rank between 27 and 29, this implies another natural break for

feature selection before the last group of features.

These rankings suggest several factors that impact the value of a patent. In general,

we observe that features describing some aspects all four major categories of infor-

mation that can be extracted from the patent’s front page, i.e., inventors, assignees,

patent classification, and outgoing references, were found important. First, the perfor-

mance of the inventors and assignees seem to be important. For example, assignees and

inventors that already have valuable patents tend to impact the value of their future

patents (e.g., fields count_assig_refs, avg_inventors_refs, in_topInventors, max_inven-

tors_refs, in_topAssignees, min_inventors_refs). Also, inventors with fewer patents and

who have been inventing longer, seem to the value of future patents (e.g., fields

max_inventors_pats, avg_inventors_invent_time). The outgoing references or the science

that the invention is based upon also seem to have an impact such as the performance

of referenced patents and the count of patents both in total and from different inventors

or classes (e.g., fields count_out_refs, avg_out_inc_refs, count_out_diffinv, count_

out_diffUSclass). Finally, the number of international and US classes assigned to the

patent also seem to impact the value of the patent (e.g., fields count_classes_int,

count_classes_US).

Rule model

The rule-based model shown in Table 6 was generated by the RIPPER classifier. The top

five features from the feature selection are shown in bold and appear frequently

throughout the rules suggesting agreement between the two methods. If we consider rules

2, 7, and 9 as examples since they describe a relatively high number of correct pre-

dictions and a low number of incorrect predictions (relative to the number of correct)

when these rules would be used on our data set, they suggest the following. First, patents

from top performing inventors (i.e., in_topInventors C 1) who have also filed a low total

Fig. 2 Feature selection ranks and growth rate
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number of patents (i.e., max_inventors_pats B 0.03) perform relatively well. This also

suggests that there may be a number of inventors who have many low value patents but

only one or two high value patents (i.e., those who appear in the top inventors list but

who have max_inventors_pats [ 0.03). Similarly, rule seven suggests that assignees who

are referenced (i.e., count_assig_refs C 0.001) but who have a low total number of

patents (i.e., count_assig_pats B 0.0007) produce high valued patents. Rule nine suggests

that inventors who are well referenced (i.e., max_inventors_refs C 0.008), who are not

new to inventing (i.e., avg_inventors_invent_time C 0.47), who are associated with

assignees that are referenced (i.e., count_assig_refs C 0.002) but don’t have too many

patents (i.e., count_assig_pats B 0.001) are likely to produce high valued patents.

Finally, rules 1, 4 and 6 suggest that higher count of outgoing references is also asso-

ciated with more valuable patents. This concerns both the total count (i.e., count_

out_refs C 0.021341 in rule 1) and the count of references that were not developed by

the patent’s authors (i.e., count_out_diffinv C 0.014126 in rule 4 and count_out_dif-

finv C 0.020207 in rule 6).

Overall, the RIPPER’s model shows that valuable patents are associated with inventors

who were already successful in filling valuable patents and have a history of inventing,

assignees that were referenced and that filed relatively low number of patents, and have a

higher count of references.

Decision tree model

The decision tree shown in Table 7 was generated by the C4.5 algorithm. The test at the

top of the tree is listed at the top of the left column in the table, i.e., in_topInventors B 0

and in_topInventors [ 0, and the corresponding branches are denoted by tests at positions

which are connected by vertical lines. Tree can be converted into a set of rules by fol-

lowing the tests (nodes) connected by branches from the root node (the top most node) to

leaves (bottom most nodes). The leaves are denoted by their corresponding classification

outcomes values (LOW or HIGH) and proportion of correct/incorrect prediction when the

corresponding rule would be used to classify patents from our data set. The top five

features from the feature selection are shown in bold in Table 7 and appear throughout the

tree, especially in the first few levels (e.g., in_topInventors, count_assig_refs), which

shows agreement between this model and the results of our feature selection. Note that, the

decision tree shows leaves (and the corresponding rules) for both HIGH and LOW classes,

while the RIPPER’s rules only represent the HIGH classes with all instances not fitting

within the rules assigned to LOW class.

While the rules that can be derived from the decision tree vary from the RIPPER rules,

certain trends remain. For example, instances that do not have inventors on the top inventors

list (i.e., in_topInventors above 0) tend to have LOW value. This is amplified when com-

bined with a low number of assignee references (i.e., count_assig_refs). For example, of the

instances with in_topInventors B 0 in the C4.5 model, 96% are of LOW value. If the

assignee references are also low (i.e., count_assig_refs \ 0.002), this increases to 98% with

LOW value. The corresponding rule (based on the top most leaf in the tree shown in

Table 7) reads ‘‘IF in_topInventors B 0 AND count_assig_refs B 0.00174 AND coun-

t_assig_pats B 0.000518 AND count_assig_refs B 0.001009 THEN LOW’’. It shows that

patents with inventors who did not produce valuable patents so far, and which are assigned

to institutions with low count of patents and references are likely to be of low value, i.e., in

100%*8316/(8316 ? 193) = 98% of cases they will be of LOW value. Rules 1 and 3 from

Table 6 indirectly imply this relation as well since they show a trend towards HIGH patent
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value from patents with inventors on the top inventors list and assignees that are well

referenced.

We also analyze two sample strong rules that are associated with patents of HIGH value. The

first rule reads ‘‘IF in_topInventors[ 0 AND min_inventors_invent_time [ 0.514067 AND

count_assig_pats B 0.008088 THEN HIGH’’. This rule is consistent with the model generated

by RIPPER (e.g. rules 1 and 7) and shows that valuable patents are associated with inventors

who already filed valuable patents (i.e., in_topInventors[ 0) and who have above average

experience in filing patents (i.e., they were inventing patents for a long time; min_

inventors_invent_time[ 0.514067), and with assignees which filed relatively low number of

patents (i.e., count_assig_pats B 0.008088). This rule describes 61 patents of HIGH value from

our data set, while excluding all patents of LOW value. The second rule ‘‘IF in_topInven-

tors[ 0 AND min_inventors_invent_time B 0.514067 AND pat_refage_avg [ 0.607189

AND count_assig_refs[ 0.001629 AND max_inventors_pats B 0.136219 THEN HIGH’’

shows that inventors who have history of filing valuable patents (i.e., in_topInventors[ 0),

filed a low total number of patents (i.e., max_inventors_pats B 0.136219) and who invent for a

shorter than average time (i.e., min_inventors_invent_time B 0.514067) can also file valuable

in_topInventors <= 0
|  count_assig_refs <= 0.00174
|  |  count_assig_pats <= 0.000518
|  |  |  count_assig_refs <= 0.001009: LOW (8316.0/193.0)
|  |  |  count_assig_refs > 0.001009
|  |  |  |  count_assig_refs <= 0.00111
|  |  |  |  |  avg_inventors_invent_time <= 0.507175: HIGH (26.0/4.0)
|  |  |  |  |  avg_inventors_invent_time > 0.507175: LOW (22.0)
|  |  |  |  count_assig_refs > 0.00111: HIGH (144.0/5.0)
|  |  count_assig_pats > 0.000518: LOW (8679.0/58.0)
|  count_assig_refs > 0.00174
|  |  count_assig_pats <= 0.001466
|  |  |  count_assig_pats <= 0.000866: HIGH (98.0/14.0)
|  |  |  count_assig_pats > 0.000866: LOW (221.0/93.0)
|  |  count_assig_pats > 0.001466: LOW (29333.0/1341.0)
in_topInventors > 0
|  min_inventors_invent_time <= 0.514067
|  |  pat_refage_avg <= 0.607189: LOW (26.08/1.08)
|  |  pat_refage_avg > 0.607189
|  |  |  count_assig_refs <= 0.001629: LOW (88.0/16.0)
|  |  |  count_assig_refs > 0.001629
|  |  |  |  count_assig_pats <= 0.001901
|  |  |  |  |  max_inventors_pats <= 0.136219: HIGH (75.97/6.0)
|  |  |  |  |  max_inventors_pats > 0.136219: LOW (8.0/3.0)
|  |  |  |  count_assig_pats > 0.001901
|  |  |  |  |  count_assig_refs <= 0.005072: LOW (66.0/4.0)
|  |  |  |  |  count_assig_refs > 0.005072
|  |  |  |  |  |  pat_refage_min <= 0.996726
|  |  |  |  |  |  |  pat_refage_avg <= 0.617823
|  |  |  |  |  |  |  |  max_inventors_refs <= 0.044886
|  |  |  |  |  |  |  |  |  pat_refage_max <= 0.076603
|  |  |  |  |  |  |  |  |  |  pat_refage_avg <= 0.609137
|  |  |  |  |  |  |  |  |  |  |  ratio_inventor_samelocation <= 0.029905: HIGH (20.08/2.0)
|  |  |  |  |  |  |  |  |  |  |  ratio_inventor_samelocation > 0.029905
|  |  |  |  |  |  |  |  |  |  |  |  avg_inventors_refs <= 0.016384: LOW (7.0/1.0)
|  |  |  |  |  |  |  |  |  |  |  |  avg_inventors_refs > 0.016384: HIGH (6.08/2.0)
|  |  |  |  |  |  |  |  |  |  pat_refage_avg > 0.609137
|  |  |  |  |  |  |  |  |  |  |  count_inventors <= 0.126454
|  |  |  |  |  |  |  |  |  |  |  |  count_out_regions <= 0.125
|  |  |  |  |  |  |  |  |  |  |  |  |  diff_filedpub <= 0.215571: LOW (22.0/1.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  diff_filedpub > 0.215571
|  |  |  |  |  |  |  |  |  |  |  |  |  |  count_nonpat_refs <= 0.001936
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  count_out_diffinv <= 0.011641
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  avg_out_inc_refs <= 0.021854: LOW (20.63/4.63)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  avg_out_inc_refs > 0.021854: HIGH (9.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  count_out_diffinv > 0.011641: LOW (18.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  count_nonpat_refs > 0.001936
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  count_assig_refs <= 0.122026
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  count_out_sameinv <= 0
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  max_inventors_refs <= 0.024698: HIGH (28.0/9.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  max_inventors_refs > 0.024698: LOW (16.0/4.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  count_out_sameinv > 0: LOW (23.0/5.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  count_assig_refs > 0.122026: HIGH (22.0/4.0)

…continued from the left-hand-side column

|  |  |  |  |  |  |  |  |  |  |  |  count_out_regions > 0.125
|  |  |  |  |  |  |  |  |  |  |  |  |  count_assig_refs <= 0.261245
|  |  |  |  |  |  |  |  |  |  |  |  |  |  min_inventors_pats <= 0.015318: LOW (6.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  min_inventors_pats > 0.015318: HIGH (6.0/2.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  count_assig_refs > 0.261245: HIGH (9.0)
|  |  |  |  |  |  |  |  |  |  |  count_inventors > 0.126454
|  |  |  |  |  |  |  |  |  |  |  |  count_out_diffUSclass <= 0.030924: LOW (64.63/4.63)
|  |  |  |  |  |  |  |  |  |  |  |  count_out_diffUSclass > 0.030924: HIGH (6.0/2.0)
|  |  |  |  |  |  |  |  |  pat_refage_max > 0.076603
|  |  |  |  |  |  |  |  |  |  count_out_sameUSclass <= 0.052881: HIGH (36.23/6.0)
|  |  |  |  |  |  |  |  |  |  count_out_sameUSclass > 0.052881: LOW (9.0/1.0)
|  |  |  |  |  |  |  |  max_inventors_refs > 0.044886
|  |  |  |  |  |  |  |  |  count_out_same1stUSclass <= 0.12441
|  |  |  |  |  |  |  |  |  |  max_inventors_invent_time <= 0.482632
|  |  |  |  |  |  |  |  |  |  |  assig_type = Company
|  |  |  |  |  |  |  |  |  |  |  |  count_assig_refs <= 0.008184: LOW (8.0)
|  |  |  |  |  |  |  |  |  |  |  |  count_assig_refs > 0.008184
|  |  |  |  |  |  |  |  |  |  |  |  |  count_assig_pats <= 0.27064
|  |  |  |  |  |  |  |  |  |  |  |  |  |  count_assig_refs <= 0.047848
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  avg_inventor_lastpatelapsed <= 0.007198: LOW (7.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  avg_inventor_lastpatelapsed > 0.007198
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  max_inventors_invent_time <= 0.420221: LOW (9.0/1.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  max_inventors_invent_time > 0.420221: HIGH (23.0/5.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  |  count_assig_refs > 0.047848: HIGH (9.0)
|  |  |  |  |  |  |  |  |  |  |  |  |  count_assig_pats > 0.27064: LOW (8.0)
|  |  |  |  |  |  |  |  |  |  |  assig_type = Government: HIGH (0.0)
|  |  |  |  |  |  |  |  |  |  |  assig_type = University: HIGH (16.0/3.0)
|  |  |  |  |  |  |  |  |  |  |  assig_type = Research: LOW (1.0)
|  |  |  |  |  |  |  |  |  |  |  assig_type = Individual: HIGH (1.0)
|  |  |  |  |  |  |  |  |  |  |  assig_type = Invalid: HIGH (0.0)
|  |  |  |  |  |  |  |  |  |  max_inventors_invent_time > 0.482632: HIGH (135.0/33.0)
|  |  |  |  |  |  |  |  |  count_out_same1stUSclass > 0.12441: LOW (21.0/4.0)
|  |  |  |  |  |  |  pat_refage_avg > 0.617823
|  |  |  |  |  |  |  |  max_inventors_invent_time <= 0.425354: LOW (20.1/0.1)
|  |  |  |  |  |  |  |  max_inventors_invent_time > 0.425354
|  |  |  |  |  |  |  |  |  avg_inventor_lastpatelapsed <= 0.015069: LOW (8.0)
|  |  |  |  |  |  |  |  |  avg_inventor_lastpatelapsed > 0.015069
|  |  |  |  |  |  |  |  |  |  max_inventor_lastpatelapsed <= 0.040922: HIGH (12.0)
|  |  |  |  |  |  |  |  |  |  max_inventor_lastpatelapsed > 0.040922: LOW (31.1/5.1)
|  |  |  |  |  |  pat_refage_min > 0.996726: HIGH (25.07/5.0)
|  min_inventors_invent_time > 0.514067
|  |  count_assig_pats <= 0.008088: HIGH (61.0)
|  |  count_assig_pats > 0.008088
|  |  |  count_assig_refs <= 0.005989: LOW (6.0)
|  |  |  count_assig_refs > 0.005989
|  |  |  |  avg_inventor_lastpatelapsed <= 0.009083: HIGH (41.0/6.0)
|  |  |  |  avg_inventor_lastpatelapsed > 0.009083: LOW (7.0/2.0)

Table 7 Decision tree model generated by C4.5 classifier

Notes: Model parameters. Confidence of 0.025 and a minimum of six instances per leaf. Bolded features are
in top five of the feature selection ranking. Numbers in brackets located at the leaf nodes show the number of
correct/incorrect predictions when the corresponding rules would be used on our data set
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patents. According to this rule, patents invented by these individuals would have to reference

patents that have above average age (i.e., were published relatively long time ago; pat_

refage_avg [ 0.607189) and would have assignees who are referenced (i.e., count_

assig_refs [ 0.001629) to be of HIGH value. The second rule is correct in 100%*76/

(76 ? 6) = 93% of cases for the patents in our data set.

In general, for the HIGH class the decision tree shows patterns that are consistent with

the RIPPER’s model, i.e., valuable patents are associated with inventors who already filed

valuable patents, and with assignees who filed relatively low number of patents and who

are referenced. At the same time, the tree shows that some of the patents of LOW value are

filed by inventors who did not invent highly valuable patents yet, and are assigned to

institutions (assignees) with low count of filed patents and references to their patents.

Conclusions

Since patents represent the technological change or inventive activity and output, using

patinformatics and patent bibliometrics can help take information from patents to target

innovative efforts. For example, by considering the top factors impacting patent success,

efforts can be focused on patents with high probabilities of success.

We used an array of machine learning techniques to find the most informative factors

(expressed as numerical features) that allow differentiating between patents of HIGH and

LOW value within the field of nanotechnology. We encoded a large set nanotechnology

patents using a predefined set of features to develop, test and analyze several optimized

classification models. The six optimized classifiers tested (i.e., C4.5, RIPPER, Random

Forest, MetaCost C4.5, MetaCost RIPPER, & MetaCost Random Forest) as well as

Logistic Regression performed better than the default of assigning all patents to the LOW

class. This implies that a pattern to patent success exists. The top performing C4.5 and

RIPPER classification models achieved over 20% sensitivity (i.e., they covered above 20%

of the valuable patents), over 99% specificity (i.e., they succeeded in excluding over 99%

of the LOW valued patents), and were characterized by TP/FP ratio that shows that for

every three correctly classified HIGH patents, only one incorrect classification would be

performed. Furthermore, the relatively unchanged performance when varying the HIGH

class threshold from the top fifth percentile to the top tenth percentile suggests that this

pattern may exist regardless of reasonable changes in this threshold.

The classification models and feature selection results highlight consistent trends in the

data that can be used to target efforts towards patents in nanotechnology that are more

likely to perform well. The following factors were identified as being associated with the

value of the patent:

– Patents originating from inventors that have already performed well (i.e., who

published valuable patents and have been inventing longer) seem to have a higher

probability of performing well.

– Some of the valuable patents are assigned to institutions or individuals who were

referenced before and which filed relatively low number of patents.

– Patents with inventors who did not invent valuable patents yet and which are assigned

to institutions (assignees) with low count of filed patents and references to their patents

seem to have a higher probability of being of low value.
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– The count of outgoing references, which denote the scientific sources for a given

invention, is also shown to impact the value of the patent, i.e., higher count of outgoing

references is associated with more valuable patents

The above factors could serve as a set of useful patterns that can be used to evaluate

whether a given patent could be considered valuable. We note that the above findings were

demonstrated for patents in nanotechnology, although the considered factors are not spe-

cific to this field, but rather they concern generic information found on the cover sheet of a

patent. Our future research will investigate whether contextual information that concerns

nanotechnology (e.g., patent title and abstract) could be used to find additional factors that

allow differentiating between successful and lower-valued patents in nanotechnology.
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