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Prediction of DNA-binding residues in local 
segments of protein sequences with Fuzzy 

Cognitive Maps 
Abdollah Amirkhani, Mojtaba Kolahdoozi, Chen Wang, and Lukasz Kurgan 

Abstract— While protein-DNA interactions are crucial for a wide range of cellular functions, only a small fraction of these 
interactions was annotated to date. One solution to close this annotation gap is to employ computational methods that 
accurately predict protein-DNA interactions from widely available protein sequences. We present and empirically test first-of-its-
kind predictor of DNA-binding residues in local segments of protein sequences that relies on the Fuzzy Cognitive Map (FCM) 
model. The FCM model uses information about putative solvent accessibility, evolutionary conservation and relative 
propensities of amino acid to interact with DNA to generate putative DNA-binding residues. Empirical tests on a benchmark 
dataset reveal that the FCM model secures AUC = 0.72 and outperforms recently released hybridNAP predictor and several 
popular machine learning methods including Support Vector Machines, Naïve Bayes and k-Nearest Neighbor. The 
improvements in the predictive performance result from an intrinsic feature of FCMs that incorporate relations between the input 
features, besides the relations between the inputs and output that are modelled by other algorithms. We also empirically 
demonstrate that use of a short sliding window results in further improvements in the predictive quality. The funDNApred 
webserver that implements the FCM predictor is available at http://biomine.cs.vcu.edu/servers/funDNApred/. 

Index Terms— Proteins, DNA, protein-DNA interactions, DNA-binding residues, Fuzzy Cognitive Maps.  

——————————      —————————— 

1 INTRODUCTION

Proteins carry out many cellular functions by interact-
ing with a wide range of ligands, including DNA [1-5]. Mo-
lecular-level analysis of the protein-DNA interactions fa-
cilitates their classification, decoding of the underlying 
physics, and discovery of patterns that define specificity of 
the protein-DNA recognition [3, 6, 7]. The number of 
DNA-binding proteins was recently estimated to be on av-
erage at 3% of proteins in eukaryotic organisms and 5% in 
the animals species [8]. Given that we already sequenced 
27 million eukaryotic proteins (source: UniProt resource [9, 
10] as of March 2, 2018) and assuming conservative esti-
mates we should expect to know 3% of 27 million = 810 
thousand DNA-binding eukaryotic proteins. Unfortu-
nately, UniProt annotates only about 45 thousand proteins 
that interact with DNA, even when we include both exper-
imental and computational, homology-derived results. 
This reveals that a significant majority of these interactions 
remains to be discovered. One solution is to use the avail-

able data on the protein-DNA interactions to devise com-
putational models that accurately predict DNA interac-
tions from protein structures and sequences [11].  

Prediction of the protein-DNA interactions can be done 
at three levels: whole protein, residue and at the atomic 
scale [12]. At the coarsest whole protein level we predict 
whether or not a given protein binds DNA. At the residue 
level we predict which residues in the protein sequence in-
teract with DNA. At the highest resolution level, we con-
sider interactions between individual atoms of proteins 
and DNA. The resolution of the prediction is typically de-
termined based on the available data, i.e., whether or not 
both protein structure and sequence or only the sequence 
are available. Predictions that rely on the protein structure 
are limited to a relatively small number of proteins for 
which the three-dimensional structures are available. Pro-
tein Data Bank (PDB) [13, 14], the worldwide database of 
protein structures, includes 128 thousand structures for 42 
thousand distinct proteins (as of March 2, 2018). This is a 
small fraction of the 109 million currently sequenced pro-
teins that can be obtained from UniProt (as of March 2, 
2018). Although a high-quality predicted structure could 
be used instead of the native structure, this would reduce 
quality of the predictions and, more importantly, would 
not solve the problem of the low coverage. Recent works 
found that the overall structural coverage that includes na-
tive and predicted structures ranges between a few and 
30%, depending on the considered organisms [15]. The to-
tal coverage for the human proteins is at about 28% [16]. 
On the other hand, sequence only-based approaches can be 
applied to all available protein sequences. These methods 
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can be used to make predictions at the residue and whole 
protein levels. We focus on the sequence-based predictors 
that provide results at the finer, residue level. 

The sequence-based predictors are empirically de-
signed and tested using datasets of protein sequences with 
the annotated DNA-binding residues. The annotations of 
the DNA-binding residues are primarily extracted from 
the structures of the protein-DNA complexes. As of March 
2, 2018, PDB includes structures for 4,475 protein-DNA 
complexes, allowing us to derive sufficiently large and di-
verse datasets to build and test predictive tools. A few re-
views have summarized and compared the sequence-
based predictors of DNA-binding residues [11, 17-19]. 
These predictors include (in chronological order) DBS-
Pred [20], DBS-PSSM [21], BindN [22], DNABindR [23, 24], 
DP-Bind [25, 26], DISIS [27], ProteDNA [28], BindN+ [29], 
NAPS [30], MetaDBSite [31], DisoRDPbind [32, 33], 
DRNApred [34] and hybridNAP [12].  

Virtually all of these methods predict DNA binding res-
idues from the whole protein sequence. A recently released 
exception is hybridNAP that can be used to predict the in-
teracting residues in local segments of at least three con-
secutive residues in the input protein chain. Such approach 
allows prediction of the DNA binding for fragments of 
protein sequence and parts of the whole sequence. This lat-
ter option is particularly useful when inputs that are re-
quired for these predictors cannot be produced for the en-
tire sequence. An example scenario where these inputs 
may not be available for the whole sequence is when mul-
tiple sequence alignment does not provide sufficiently 
deep profile to generate position specific scoring matrix 
(PSSM) for some of the residues. Recent review reveals that 
PSSM is commonly used to make predictions. More specif-
ically, 9 out of out of 14 predictors (including the four new-
est methods) surveyed in a recent review utilize PSSM [12].  

The authors of the abovementioned predictors have 
used a wide range of machine learning algorithms to em-
pirically generate their predictive models. Predictive mod-
els for ProteDNA [28], BindN+[29], DP-Bind [25, 26] were 
derived with the Support Vector Machine (SVM) algo-
rithm. The k-Nearest Neighbor (kNN) algorithm was used 
to derive models for DISIS [27], DBS-Pred [20], and DBS-
PSSM  [21]. Another popular algorithm is regression which 
was utilized for DRNApred [34] DisoRDPbind [32, 33], and 
hybridNAP [12]. One common characteristic of these pre-
dictive models is that they map predictive inputs (typically 
in the form of numerical features extracted from the se-
quence) into the annotation of DNA-binding residues. 
However, they do not exploit the fact that some of these 
inputs can be mutually related.  

To this end, we develop a novel tool that provides accu-
rate prediction of DNA-binding residues for full protein 
sequences and local sequence fragments by utilizing mu-
tual relations between inputs. We apply fuzzy cognitive 
map (FCM) model [35] to address this goal. This model 
was used only once on the past to perform computations 
of protein sequences at the residue level. This was the con-
text of content of secondary protein structure [36]. FCMs 
express relations between inputs and output as well as re-
lations between inputs. They are a powerful predictive tool 

[37, 38] which is extensively used to build predictive mod-
els in medicine [39-42] and in numerous other fields [43-
45]. To the best of our knowledge, we are the first to apply 
FCMs to predict protein-ligand interactions.  

2 MATERIALS AND METHODS 
2.1 Datasets 

We develop and test our predictive tool using datasets 
of proteins with the annotated DNA-binding residues. We 
rely on the datasets that were published recently alongside 
the hybridNAP method [12] and the recent assessment of 
tools that predict the DNA-binding residues [19]. The 
training and validation datasets, which we use to empiri-
cally design our predictor, are sourced from [12] and were 
extracted based on the annotated proteins from the BioLiP 
database [46]. BioLiP is a semi-manually curated database 
of protein-ligand interactions that are extracted from PDB. 
This database labels a residue as a DNA-binding if the dis-
tance between an atom of this residue and an atom of DNA 
in the protein-DNA complex < 0.5Å plus the sum of the 
Van der Waals radii of the two atoms.  

We borrowed the DNA_T test dataset from [19] to eval-
uate and compare predictive performance of our tool. This 
benchmark dataset was developed specifically to compare 
predictors of the DNA-binding residues. It contains 47 
DNA-binding proteins and 9106 residues including 875 
DNA-binding residues and 8231 non-DNA-binding resi-
dues, resulting in the 1 to 9.4 ratio of DNA-binding to non-
DNA-binding residues. Importantly, we ensure that the 
protein sequences in the DNA_T dataset are dissimilar to 
the proteins in the training and validation datasets. We use 
BLASTCLUST [47] to remove the training and validation 
proteins that share sequence similarity > 30% with the pro-
teins in TEST_T. This ensures a fair comparison with other 
methods, such as the recently released hybridNAP. 

After removing similarity to DNA_T, the dataset ex-
tracted from BioLiP includes 18,995 protein sequences with 
a total of 32,055 DNA-binding residues. We balanced the 
number of DNA-binding and non-DNA-binding residues 
in this dataset to ease computational learning of the pre-
dictive model. We include all native DNA-binding resi-
dues and we randomly subsample the same number of the 
non-DNA-binding residues. We randomly split the result-
ing set of 64,110 residues into two subsets: 70% is used for 
the training dataset and the remaining 30% for the valida-
tion dataset. Only the final model, which we optimize by 
maximizing its predictive performance on the validation 
set, is used to perform predictions on the TEST_T dataset. 
The training and test datasets are available at http://bio-
mine.cs.vcu.edu/servers/funDNApred/.  

We emphasize that the training, validation and test da-
tasets benefit from high-quality annotations of DNA-bind-
ing residues that were performed in [12, 19]. In contrast to 
older studies that consider one protein-DNA complex per 
protein to annotate binding residues, we combine annota-
tions coming from potentially multiple complexes that 
cover the same protein in order to provide a more complete 
set of the DNA binding residues. First, we map all protein 
sequences to UniProt with the help of SIFTS [48]. Next, we 
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transfer the DNA-binding annotations from the multiple 
BioLiP/PDB protein chains that are linked to the same 
(unique) UniProt protein. As we show in [12], this results 
in 19.7% increase in the number of annotated DNA-bind-
ing residues when compared with the best case scenario 
that represents the approach that prior works took to an-
notate the binding residues, i.e., when chains with the 
highest number of the DNA-binding residues are utilized.  

 
2.2 Overview for the Predictive Model 

Our method makes predictions for individual residues 
in an input protein sequence. It can be used to predict all 
residues in the given chain as well as a selected subset of 
residues, i.e., a local segment of adjacent residues in the in-
put protein sequence. The prediction process consists of 
three steps: 

 The ith input residue is represented by a small set of 
numeric features (concepts) 

 The values of these features are input into the FCM 
model 

 The FCM model computes the prediction and out-
puts propensity for DNA-binding P(i), i.e., higher 
value suggests a higher likelihood that ith residue in-
teracts with DNA 

 
Several studies investigated sequence-derived features 

that are commonly used to characterize and predict DNA-
binding residues [12, 49-52]. A recent article that summa-
rized these studies concludes that the most frequently used 
features are evolutionary conservation (ECO), relative sol-
vent accessibility (RSA), and relative propensity of specific 
amino acids (AAs) for the DNA-binding (RAA) [12]. ECO 
is relevant since residues that interact with DNA are typi-
cally conserved across homologous protein sequences [53]. 
RSA quantifies accessibility of residues to the solvent that 
surrounds proteins that is normalized to the size of specific 
AAs. The use of RSA stems from the fact that protein-DNA 
interaction occurs on the protein surface. Finally, these 
studies also suggest that the type of the interacting AAs 
and their immediate neighbours in the protein sequence 
can be also used to determine relative propensity for the 
DNA binding. Consequently, we use these three features 
as inputs for the FCM. 

 
RAA is quantified with relative difference in abundance 

of a given AA type between the DNA-binding residues 
and the corresponding non-DNA-binding residues on the 
protein surface. We consider only the surface to eliminate 
a confounding factor related to a bias in composition of 
AAs in the protein core; these residues typically do not 
bind DNA and can be identified with RSA. RAA is defined 
as the difference between fractions of a given AA type 
among the DNA-binding residues and among the surface 
non-DNA-binding residues divided by the fraction among 
the non-DNA-binding residues. The positive (negative) 
RAA values denote enrichment (depletion) among the 
DNA-binding residues compared to the non-DNA-bind-
ing residues on the surface. We compute the relative dif-
ferences using Composition Profiler program [54]. Moti-

vated by [12], we use a weighted average of the RAA val-
ues for the residue that is predicted (with weight = 0.5) and 
its two neighbors in the sequence (with weights = 0.25) as 
one of the inputs for the FCM model. 

 
RSA values are derived from the protein structure, typ-

ically using the DSSP program [55]. However, since our 
sole input is the protein sequence we have to substitute the 
native RSA with putative RS. We generate the putative 
RSA directly from the sequence with a very fast and accu-
rate ASAquick program [56]. More precisely, we divide the 
absolute surface area predicted with ASAquick by the 
maximal value of surface area of a given AA, which we ob-
tain from [57], to compute the putative RSA values.  

 
ECO is computed from the multiple sequence align-

ment generated with HHBlits [58] against the redundancy 
reduced UniProt20 database ver. 2015_06 using the default 
parameters. We use the alignment to produce n×20 matrix 
of position-specific frequencies pAAi where AAi represents 
the 20 AA types and n is the protein sequence length.  Next, 
we used this matrix to calculate evolutionary conservation 
based on formula from [59]: 

ܱܥܧ ൌ
∑ 

మሺሻమబ
సభ /బሺሻ

∑ ሺሻ
మబ
సభ /బሺሻ

 (1)  

where i is position in the sequence and p0(i) is the 
BLOSUM62 background distribution for the ith position 
[60]. Like in [12], we use the hidden Markov model-based 
position-specific frequencies generated with HHblits ra-
ther than the PSSM-based scores since they provide a faster 
to compute and better measure of evolutionary conserva-
tion [61]. 

 

Fig.1. Distributions of the values of the three features (RAA, RSA and 
ECO) for the DNA-binding residues (black curves) and non-DNA-bind-
ing residues (grey curves) in the training dataset. 

We empirically analyze whether these three features 
can differentiate between DNA-binding and non-DNA-
binding residues. Fig. 1 compares distributions of the val-
ues of these features between the native DNA binding res-
idues (black curves) and native non-DNA binding residues 
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(grey curves) in the training dataset. As expected, we ob-
serve that the RAA values are much higher for the native 
DNA-binding residues when compared to the non-DNA-
binding residues (solid lines in Fig. 1). The Mann-Whitney 
test reveals that the two distributions are significantly dif-
ferent (p-value < 0.0001). Similarly, the RSA values (dashed 
lines) and ECO values (dotted lines) for the residues that 
interact with DNA are substantially larger. Again, the 
Mann-Whitney test shows that the differences between the 
corresponding distributions for the DNA-binding and 
non-DNA-binding residues are statistically significant (p-
value < 0.0001). These results agree with the analysis in 
[12], and they justify the use of these three features in our 
FCM model. 

 
2.3 Assessment of the Predictive Model 

The predictions generated by our model are real-values 
that quantify propensity for the DNA binding. The predic-
tive quality of these propensities is measured with the area 
under the ROC curve (AUC). The curve is obtained by 
plotting TPrate = sensitivity = TP/(TP+FN) versus FPrate 
= 1 – specificity = 1 – TN/(TN+FP), where TP (TN) is the 
count of the correctly predicted DNA-binding (non-DNA-
binding) residues, FP is the number of the native non-
DNA-binding residues that have been incorrectly pre-
dicted as DNA-binding residues, and FN is the number of 
the native DNA-binding residues that have been incor-
rectly predicted as non-DNA-binding. The TPrate and 
FPrate values are established by thresholding the propen-
sities using every unique value of the output propensity. 
For each threshold, we assume the residues with propen-
sities > threshold as DNA binding and the remaining resi-
dues as non-DNA binding. We use the AUC value as a cri-
terion that we optimize (maximize) in the process of learn-
ing the FCM model from the training dataset. 

 
We also evaluate and compare binary predictions on the 

TEST_T dataset. We generate these predictions from the 
real-value propensities. Residues that are predicted with 
propensities > a given threshold are predicted as DNA 
binding while the remaining residues as set as non-DNA-
binding. We set the threshold value such that the resulting 
binary predictions have FPrate = 10%. This corresponds to 
the prediction where the FPrate is similar to the rate of na-
tive DNA binding residues in the TEST_T dataset. Ensur-
ing that the methods evaluated on TEST_T are set to the 
same FPrate allows for a robust side-by-side comparison of 
their binary measures of predictive performance. We as-
sess the binary predictions with four measures:  sensitivity, 
specificity, accuracy and Matthews correlation coefficient 
(MCC): 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ൌ ݁ݐܽݎܲܶ ൌ 	
ܶܲ

ܶܲܰܨ
 (2) 

ݕݐ݂݅ܿ݅݅ܿ݁ݏ ൌ 1 െ ݁ݐܽݎܲܨ ൌ 	
ܶܰ

ܶܰܲܨ
 (3) 

ݕܿܽݎݑܿܿܽ ൌ 	
ܶܲܶܰ

ܶܲܶܰܲܨܰܨ
 (4) 

ܥܥܯ ൌ 	
ܶܰ∗ܶܲെܲܨ∗ܰܨ

ඥሺܶܲܲܨሻ∗ሺܶܲܰܨሻ∗ሺܶܰܰܨሻ∗ሺܶܰܲܨሻ
 (5)                                          

Sensitivity determines the predictive quality for the na-
tive DNA-binding residues, specificity for the native non-

DNA-binding residues, while accuracy measures the over-
all predictive quality. MCC is suitable to evaluate imbal-
anced datasets, such as TEST_T set where 9.4% of residues 
are DNA-binding. Values of MCC range between -1 and 1 
and should be interpreted like other correlation coeffi-
cients. The same measures were used in the past to assess 
predictors of the DNA-binding residues [11, 12, 18, 19]. 

 
2.4 Fuzzy Cognitive Maps        

FCMs were first proposed by Kosko [35]. The FCM 
model is a graph composed of nodes and edges. The nodes 
are used to model features (concepts) relevant to a given 
application area. In our case these are the three predictive 
features (ECO, RSA and RAA) and the output feature that 
denotes propensity for DNA-binding. The edges express 
causal relationships between features. For our project, they 
quantify relations between the predictive features and out-
put as well as relations between the three predictive fea-
tures. The causal relations between features are deter-
mined either by specialists or by means of learning from 
data [62-65]. 

The values of features in the FCM are determined by a 
vector F = [F1, F2, …, FN] where Fi[0 1], i=1…N, and N is 
the number of features. N = 4 for our FCM model. The 
causal relationships between nodes are defined with an 
N×N dimensional matrix W: 

ܹ ൌ ൦

0 ଵଶݓ … ଵேݓ
ଶଵݓ 0 … ଶேݓ
⋮ ⋮ ⋱ ⋮

ேଵݓ ேଶݓ … 0

൪ (6) 

where wij[-1 1] is a weight that quantifies strength and 
direction of a relation for an edge from ith to jth feature. 
These causal relations are defined as follows: 

 If wij > 0 then an increase in value of feature Fi leads 
to an increase in value of feature Fj that is propor-
tional to |wij| 

 If wij < 0 then an increase in value of feature Fi leads 
to reduction in value of feature Fj that is proportional 
to |wij| 

 If wij = 0 then there is no causal relationship between 
feature Fi and Fj 

The entries on the diagonal of W are zero since inclusion of 
relations of a feature with itself can lead to instability. Fig. 
2 shows a sample FCM with 3 features and 4 edges to-
gether with its weight matrix W. 

 

Fig.2. A sample FCM with 3 features and the corresponding weight 
matrix W. 

FCMs are executed iteratively to update values of the 
features. The value of each feature in the (t+1)th iteration is 

F2 
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determined based on the weight matrix W and the values 
in the tth iteration for the features connected to that feature 
as follows: 

ݐሺ݅ܨ  1ሻ ൌ ߮ሺ݅ܨሺݐሻ  ∑ ሻே݆݅ݓሻݐሺ݆ܨ
ୀଵ,ஷ  (7) 

In Eq.7, Fi(t) is the value of the ith feature (node in the 
FCM graph) in the tth iteration and ߮ሺሻ is a transfer func-
tion for which the values are limited to [0, 1] interval. While 
several different transfer functions were proposed, the sig-
moid transfer function are preferred [66]. Thus, we also ap-
ply the sigmoid function: 

߮ሺݔሻ ൌ
ଵ

ଵାషഀೣ
 (8) 

with a typically used value of parameter ߙ ൌ 5 [67]. 
 

2.5. Learning Fuzzy Cognitive Maps       
The task of training an FCM determines the weight ma-

trix W from the training dataset. The coefficients in the ma-
trix are typically learned using an algorithm [68]. While 
earlier methods relied on Hebbian [69, 70] and genetic al-
gorithms [62, 63, 71, 72], newer methods apply other strat-
egies including ant colony optimization [73] and particle 
swarm optimization (PSO) [74] algorithms. We apply the 
PSO algorithm motivated by its successful applications in 
several recent studies [75-77]. 

PSO  is an evolutionary algorithm based on social inter-
actions between particles that possess swarm intelligence, 
which was proposed by Kennedy and Eberhart [78]. In 
PSO, every particle is represented by a vector in d dimen-
sional problem space. The initial population of particles in 
this space is initialized by a random position vector Xi = 
(xi1, xi2, …, xid) and velocity vector Vi = (vi1, vi2, …, vid). The 
algorithm uses a fitness function to find out whether the 
particles are close to an optimal solution. We define the op-
timal solution as such that produces maximal AUC value 
on the training dataset based on the values of the output 
feature. Each particle is associated with two vectors: pbesti 
(the best position of the ith particle in the course of its dis-
placements) and gbest (the best vector for all particles). The 
Eqs. 9 and 10 are used to modify the two vectors in the 
course of the optimization performed by the PSO algo-
rithm: 

ݐሺݒ  1ሻ ൌ ሻݐሺݒ߱  ܿଵݎଵ൫ݐݏܾ݁ሺݐሻ െ ሻ൯ݐሺݔ  
ܿଶݎଶ൫ܾ݃݁ݐݏሺݐሻ െ  ሻ൯   (9)ݐሺݔ

ݐሺݔ  1ሻ ൌ ሻݐሺݔ  ݐሺݒ  1ሻ (10) 

where  is the learning coefficient, c1, c2[1.5, 2] (with 
uniform distribution) are used to guide a trade-off between 
the positions of the best particle solution and the best 
global solution, and r1  and r2 are random numbers in the 
[0, 1] interval [79]. Use of a large learning coefficient value 
results in a more global search while a smaller value makes 
the search more local. Based on [80], we gradually reduce 
the learning coefficient value in subsequent iterations us-
ing Eq. 11: 

߱ ൌ ߱௫ െ ݐ
ఠೌೣିఠ

்
 (11) 

where min and max are the minimal and maximal value 
of the learning coefficient, respectively, and T is the total 
number of iterations. We set the values of the parameters 
as follows: min =0.2, max=-0.3, and T =2000.  

 

To sum up, we use PSO to optimize values in matrix W. 
In each iteration of this optimization the FCM model and 
Eq. 7 are used to produce the value of the output feature 
(propensity for the DNA binding) from the values of the 
three input features (RSA, RAA and ECO) for each residue 
in the training dataset. The resulting predictions (values of 
the output feature generated by FCM) are utilized to com-
pute AUC. Next, the AUC value is used to update the PSO 
search using Eqs. 9 and 10 and the process iteratively re-
peats until convergence. We define convergence as either 
of the following two conditions: 1) AUC value on the vali-
dation dataset decreases over 30 consecutive iterations, 
which suggests overfitting into the training dataset; and 2) 
AUC value on the training dataset does not increase over 
30 consecutive iterations. The solution is the matrix W that 
results in the maximal AUC value. 

 
We also study impact of neighboring residues on the 

predictive performance of the FCM-based prediction. To 
accomplish that we use a sliding window, where the pre-
dictions for the residues that are adjacent to the currently 
predicted residue are used together with the predictions 
for this residue to compute the final propensities for the 
DNA binding. The FCM predictions for the residues inside 
the window are combined using a weighted sum where the 
values of these weights ck[0, 1] are included into the PSO 
optimization (along with the matrix W): 

ݕݐ݅ݏ݊݁ݎ	ܾ݃݊݅݀݊݅	ܣܰܦ ൌ ܿ ∗  (12) ݇_ݐݑܯܥܨ
where k = 1, 2.., K is the index of a residue in the win-

dow, K={3, 5, 7, …} is the window size, and FCMout_k is the 
value of the output feature in FCM for the kth residue in the 
window. The window with K = 3 includes the predicted 
residue in the center + one immediate neighbor on each 
side in the sequence, with K = 5 includes residue in the cen-
ter + two neighbors on each side, etc. The process of pre-
diction with the FCM model for K = 3 is depicted in Fig. 3.  
 

Fig. 3. Flow of prediction with the FCM-based predictive model. 

The PSO optimization generated the following sets of 
weights: [0.3456, 0.9981, 0.2843] for K = 3; [0.2095, 0.1790, 
0.9997, 0.05, 0.3150] for K = 5; and [0.3637, 0.0505, 0.2750, 
0.9965, 0.0766, 0.1476, 0.3648] for K = 7. As expected, the 
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weight for the residue in the center of the window is the 
largest. This is the residue for which the DNA-binding pro-
pensity is ultimately predicted. The flanking residues are 
associated with lower weight value. The cumulative values 
of these weights are similar on the left and right side of the 
window. This again is an anticipated result since protein 
sequence has no particular direction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Comparison of predictive performance measured with AUC for 
FCM, SVM, Naïve Bayes and kNN models that make predictions for 
a single residue and using short residue windows. 

3 RESULTS AND DISCUSSION 
3.1 Selection of Window Size 

We empirically compare the FCM that makes predic-
tions for a single residue with the FCM models that use 
windows. Black lines and markers in Fig. 4 summarize the 
results on the validation dataset and compares them with 
the corresponding results on the test dataset. The FCM that 
does not utilize the window secures AUC =0.70 on the val-
idation dataset and 0.69 on the TEST_T dataset. Use of the 
window to process the FCM’s outputs increases the pre-
dictive performance to 0.72 for window size 3 and to 0.73 
for window sizes 5 and 7, when tested on the validation 
dataset. We do not consider longer windows since the 
FCM model already did not register improvements be-
tween sizes 5 and 7. The same FCMs on the TEST_T dataset 
obtains AUC values equal 0.71 (K=3), 0.72 (K=5) and 0.71 
(K=7). Altogether, the results reveal that window size K = 
5 is the best choice.  

 
3.2 Comparison of Protein-fragment based 

Predictors of DNA-binding Residues 
We focus comparative assessment on the methods that 

predict DNA-binding residues in protein fragments. We 
compare the predictive quality of the FCM-based predictor 
with a selection of machine learning algorithms and the re-
cent predictor of DNA-binding residues in local sequence 
segments, hybridNAP [12]. The selection of the machine 
learning algorithms is motivated by their use to implement 
the whole-sequence predictors of the DNA-binding resi-
dues. We include SVM that was used to implement three 

whole-sequence predictors: ProteDNA [28], BindN+[29], 
DP-Bind [25, 26]; kNN that was utilized by another three 
whole-sequence predictors: DISIS [27], DBS-Pred [20], and 
DBS-PSSM [21]; and Naïve Bayes that was used to develop 
DNABindR [23, 24]. These three algorithms are used with 
the same inputs that are available to the FCM-based pre-
dictor: ECO, RAA and RSA. For each algorithm, we com-
pute the predictive model on the training dataset and make 
predictions on the TEST_T dataset. 

Similar to FCM, we selected the best window size for 
each of the three other algorithms. Fig. 4 shows that trends 
in the AUC values for SVM, kNN and Naïve Bayes are sim-
ilar to the trend for FCM. Namely, the AUCs improve 
when increasing the window size from 1 to 3, and from 3 
to 5. However, the results on the validation dataset for the 
window size 7 (solid lines in Fig. 4) are either lower (for 
Naïve Bayes and kNN) or similar (for SVM) to the results 
for the window size 5. Moreover, the results on the TEST_T 
dataset (dashed lined in Fig. 4) follow the same pattern, i.e., 
the AUCs for window size 7 are either the same or worse 
when compared to the results for window size 5. We con-
clude that the considered predictors provide the best re-
sults for the window size equal 5. Consequently, Table 1 
compares results on the TEST_T dataset for the window 
size = 5 and compares them to the results based on a single 
residue and window size = 3. Moreover, we compare with 
the results of the regression-based hybridNAP. Inclusion 
of this model covers two regression-based whole-sequence 
tools: DRNApred [34] and DisoRDPbind [32, 33]. Finally, 
we compare these methods to a baseline predictor which 
generates random numbers. The binary assessment (accu-
racy, sensitivity and MCC) is performed at a fixed FPrate 
= 10% to facilitate side-by-side comparison of these values. 
We note that specificity of all methods = 90% given the 
fixed value of the FPrate. This FPrate was selected to mimic 
the rate of the native DNA-binding residues in the TEST_T 
dataset.  

 Table 1 reveals that the FCM-based solution outper-
forms all other considered machine learning algorithms. 
When predicting using a single residue, FCM model se-
cures AUC = 0.693 and sensitivity = 30.5%. To compare, the 
other machine learning algorithms obtain AUC ≤ 0.683 and 
sensitivity ≤ 25.5%. The differences in accuracy are rela-
tively small due to the imbalanced nature of the dataset. 
The substantial increase by 5% in sensitivity produced by 
our solution translates to 0.5% increase in accuracy since 
positive instances (DNA-binding residues) constitute 
about 10% of the TEST_T dataset. We also observe a visible 
increase in the MCC, which equals 0.19 for the FCM com-
pared to 0.14 for the second best machine learning algo-
rithm. When compared to hybridNAP, the FCM-based 
predictor features higher AUC (0.693 vs. 0.685), sensitivity 
(30.5% vs. 28.8%) and MCC (0.19 vs. 0.17). The improve-
ments of FCM over the other methods stem from the in-
trinsic to the FCM model use of relations between the pre-
dictive inputs. The other algorithms rely solely on the rela-
tions between the inputs and the output. 
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TABLE 1. COMPARISON OF THE PREDICTIVE PERFORMANCE OF THE FCM PREDICTOR WITH MACHINE LEARNING MODELS AND THE 
RECENT RELEVANT PREDICTOR, HYBRIDNAP, ON THE TEST_T DATASET. THE LAST LINE SHOWS BASELINE RESULTS PRODUCED 

WITH A RANDOM PREDICTOR. SPECIFICITY OF ALL METHODS IS SET TO 90% (FPRATE = 10%). 

Inputs Algorithm AUC Accuracy [%] 
at FPrate=10%  

Sensitivity [%] 
at FPrate=10%  

MCC 
at FPrate=10% 

Single residue (no window) 

FCM 0.693 84.5 30.5 0.189 

SVM 0.683 83.8 25.5 0.143 

Naïve Bayes 0.683 83.7 24.6 0.135 
kNN 0.673 83.9 25.3 0.144 

Window size = 3 

FCM 0.713 84.3 31.0 0.190 
SVM 0.692 84.1 28.5 0.169 
Naïve Bayes 0.692 83.8 25.7 0.145 
kNN 0.681 83.8 25.4 0.142 

Window size = 5 

FCM 0.717 84.5 32.6 0.203 
SVM 0.698 84.0 28.0 0.165 
Naïve Bayes 0.695 83.9 26.5 0.152 
kNN 0.683 83.7 25.3 0.140 

hybridNAP (no window) 0.685 84.2 28.8 0.170 

Baseline (random predictor) 0.494 82.3 9.8 -0.001  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 5. ROC curves for the hybridNAP and the FCM, SVM, Naïve 
Bayes and kNN predictors that use window size = 5 on the TEST_T 
dataset. An inset in the bottom right corner shows an enlarged version 
of the ROC curve for the FPrate range between 0 and 0.1. 

Table 1 also quantifies improvements due to the use of 
the window-based prediction. The predictive quality of the 
FCM method improves with the use of the window. In gen-
eral, the results for the window size = 3 are better than 
when the window is not used. Similarly, results for the 
window size = 5 are better than for the window size = 3. 
We note that use of larger windows is not expected to lead 
to further improvements (see Fig. 4). The FCM’s AUC 
grows from 0.693 (no window) to 0.717 (window size = 5). 
Similarly, its sensitivity and MCC increase from 30.5% to 
32.6% and from 0.19 to 0.20, respectively. The other meth-
ods also register increases. The AUC and sensitivity of the 

best of the three considered machine learning algorithm, 
SVM, improve from 0.683 to 0.698 and from 25.5% to 28%, 
respectively. This reveals that the use of the relevant infor-
mation for the adjacent residues is helpful. Moreover, the 
lowest predictive performance of kNN could be explained 
by the low similarity between the proteins in the training 
and TEST_T datasets.  

Fig. 5 compares the ROC curves for hybridNAP and the 
FCM, SVM, Naïve Bayes and kNN predictors that use win-
dow size = 5. The curve for the FCM method is above the 
other curves for the entire FPrate range. The inset in the 
lower right corner, which focuses on the low FPrate values, 
reveals that FCM and hybridNAP provide similar results 
for FPrate < 0.06. However, FCM provides a visible ad-
vantage for the FPrates between 0.06 and 0.8. Interestingly, 
Naïve Bayes and kNN-based predictors maintain similarly 
low predictive quality when FPrate<0.1. 

A side-by-side comparison of the best FCM model with 
window size = 5 and hybridNAP shows a substantial ad-
vantage for the former model. Table 1 shows that the FCM 
model secures AUC = 0.171 vs. 0.693 for hybridNAP. We 
also compare sensitivity values for different levels of 
FPrates. Based on Fig. 5, we observe that FCM registers 
3.8% improvement in sensitivity when FPrate = 10% (sen-
sitivity = 32.6% for FCM vs. 28.8% for hybridNAP), 3.9% 
increase when FPrate = 20% (sensitivity = 50.6% vs. 46.7%), 
and 4.6% improvement when FPrate = 30% (sensitivity = 
62.2% vs. 57.6%). This confirms that the improvements in 
sensitivity over hybridNAP are consistent over a wide 
range of the FPrates.  

We investigate statistical significance of differences in 
the predictive performance between the FCM method and 
the other considered predictors. We generate results on a 
diverse collection of protein sets to evaluate whether the 
improvements offered by the FCM model are robust, i.e., 
whether they consistent over the considered collection of 
protein sets. More specifically, we select half of the pro-
teins in the TEST_T dataset at random and without re-
placement, and we evaluate AUC on these proteins. We re-
peat this 100 times and report the corresponding averages 
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and standard errors in Fig. 6. We also run paired t-test to 
assess whether the differences between the 100 pairs of re-
sults between the FCM predictor and each of the other four 
algorithms are statistically significant. The corresponding 
p-values are shown at the top of the Fig. 6. The results 
demonstrate that the increases in the AUC provided by the 
FCM are statistically significant when compared with hy-
bridNAP and the methods that rely on the SVM, Naïve 
Bayes and kNN algorithms. This conclusion holds for 
every configuration, including approaches with and with-
out the window.  

We also assess statistical significance of differences be-
tween different versions of the FCM models. The AUC of 

the FCM that uses window size = 5 is significantly better 
than the AUC of the version with shorter window (p-value 
= 4.41*10-29) and without the window (p-value = 9.14*10-41). 
Similarly, the version that applies window size = 3 obtains 
significantly higher AUC than the window-less version (p-
value = 1.54*10-35). We note that although the magnitude of 
these improvements is modest (the averages over the 100 
experiments are 0.718 vs. 0.713 vs. 0.695), the significance 
analysis reveals that the corresponding differences are con-
sistent over many diverse protein sets, which on average 
share only 50% of data. 
 

TABLE 2. COMPARISON OF THE PREDICTIVE PERFORMANCE OF THE SEGMENT-BASED PREDICTORS (FCM MODEL AND HYBRIDNAP) 
WITH THE WHOLE-SEQUENCE PREDICTORS ON THE TEST_T DATASET. THE LAST LINE SHOWS BASELINE RESULTS PRODUCED WITH 

A RANDOM PREDICTOR. SPECIFICITY OF ALL METHODS IS SET TO 90% (FPRATE = 10%). 

Type of algorithms Algorithm AUC Accuracy [%] 
at FPrate=10%  

Sensitivity [%] 
at FPrate=10%  

MCC 
at FPrate=10% 

Segment and whole-se-
quence algorithms 

FCM 0.717 84.5 32.6 0.203 
hybridNAP 0.685 84.2 28.8 0.170 

Whole-sequence algorithms 
BindN+ 0.797 85.5 43.7 0.293 
DBS-PSSM 0.796 86.0 48.3 0.329 
DP-Bind 0.797 85.6 43.9 0.295 

Baseline (random predictor) 0.494 82.3 9.8 -0.001  

 
 

Fig. 6. Analysis of statistical significance of differences in AUCs be-
tween FCM and the other predictors including hybridNAP, SVM, Naïve 
Bayes and kNN on the TEST_T dataset. Solid, dashed and dotted 
lines represent results secured with window sizes 5, 3 and 1 (no win-
dow), respectively. 

3.3 Comparison of whole-sequence based 
Predictors of DNA-binding Residues 

We also perform comparative assessment for the whole-
sequence methods that predict DNA-binding residues in 
complete protein sequences. We compare the FCM method 
and hybridNAP that predict at the sequence fragment and 
the whole-sequence levels with three popular whole-se-
quence predictors of the DNA-binding residues that were 
recently evaluated on the same TEST_T dataset in [12, 19]. 
These three methods include BindN+ [29], DBS-PSSM [21], 
and DP-Bind [25, 26]. The results are summarized in Table 
2. The AUC for the FCM model is 0.717 while the other 
fragment-based method, hybridNAP, has a lower AUC = 
0.685. Moreover, AUCs for BindN+, DBS-PSSM, and DP-
Bind are 0.797, 0.796 and 0.797, respectively. The sensitiv-
ity of the whole-sequence based methods, which equals 
48% for DBS-PSSM and 44% for BindN+ and DP-Bind, is 
also higher than the sensitivity for the fragment-based 
methods that equals 33% for the FCM model. We conclude 
that, as expected, the whole-sequence based methods pro-
vide more accurate results but at a cost of forcing the pre-
dictions over the entire protein sequence. The main reason 
for the higher accuracy is the fact that the whole-sequence 
based predictors use more information (whole sequence 
vs. a short fragment) and a much higher number of fea-
tures. Specifically, BindN+, DP-Bind, and DBS-PSSM use 
286, 140 and 100 and features, respectively. To compare, 
the FCM-based predictor uses an order of magnitude 
fewer features, i.e., 15 features when window size is set to 
5. Consequently, the whole-sequence based methods re-
quire substantially longer runtime. They calculate hun-
dreds of features and they also use computationally de-
manding PSI-BLAST algorithm [81] to derive PSSM, which 
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in turn is used to compute some of these features. As a re-
sult, the whole-sequence based methods take several 
minutes to generate prediction for an average size protein 
sequence. To compare, running the FCM model requires 
only several seconds. Moreover, the FCM model can be 
used to provide predictions for small segments of the pro-
tein chain (say, segments of five consecutive residues when 
using the version with window size = 5). This is useful 
when some of the inputs (e.g., evolutionary conservation 
that requires well-defined position-specific frequencies or 
PSSM scores, which in turns require sufficiently deep mul-
tiple sequence alignment) are not available for some of the 
residues in the input protein sequence. Importantly, Table 
2 demonstrates that the recently released hybridNAP 
method, which like FCM can be used to predict small seg-
ments [12], is outperformed by the FCM-based solution.  

4 SUMMARY AND CONCLUSIONS 
We present and empirically test a new FCM-based 

method for the prediction of DNA-binding residues in lo-
cal segments of protein sequences. This is the first applica-
tion of the FCM to model protein-ligand interactions in 
protein sequences. The FCM model takes three sequence-
derived features (RAA, putative RSA, and ECO) in a short 
sliding window to derive real-valued propensities for the 
DNA binding. The model was parametrized using the PSO 
algorithm. 

The empirical tests on a recently published benchmark 
dataset reveal that FCM outperforms several other frag-
ment based approaches that include popular machine 
learning algorithms (SVM, Naïve Bayes and kNN) and the 
recently released predictor of DNA binding residues, hy-
bridNAP. These improvements stem from an intrinsic fea-
ture of the FCM model which considers not only the rela-
tions between inputs and the output (like the other models 
do) but also relations between the input features. We also 
demonstrate that the best results are achieved for the win-
dow size of 5 and that the improvements offered by our 
solution are robust. 

Although this study focuses on the prediction of DNA-
binding residues, the novel FCM-based architecture can be 
extended to predict other types of interactions, such as pro-
tein-protein and protein-RNA interactions. These exten-
sions will be the subject of future work.  

Lastly, we make the proposed here predictor available 
online as a convenient and free webserver named funD-
NApred (Fuzzy Cognitive Map approach to DNA residues 
prediction). The computations are performed on the server 
side and the end user only needs to enter the input protein 
chain to acquire the predictions. The server accepts up to 
10 sequences at the time and it delivers the results via email 
and in the web browser window. The funDNApred web-
server is available at http://biomine.cs.vcu.edu/serv-
ers/funDNApred/. 
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