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Abstract—In this paper, we introduce a novel approach to time-
series prediction realized both at the linguistic and numerical level.
It exploits fuzzy cognitive maps (FCMs) along with a recently pro-
posed learning method that takes advantage of real-coded genetic
algorithms. FCMs are used for modeling and qualitative analysis
of dynamic systems. Within the framework of FCMs, the systems
are described by means of concepts and their mutual relationships.
The proposed prediction method combines FCMs with granular,
fuzzy-set-based model of inputs. One of their main advantages is
an ability to carry out modeling and prediction at both numerical
and linguistic levels. A comprehensive set of experiments has been
carried out with two major goals in mind. One is to assess quality
of the proposed architecture, the other to examine the influence of
its parameters of the prediction technique on the quality of predic-
tion. The obtained results, which are compared with other predic-
tion techniques using fuzzy sets, demonstrate that the proposed ar-
chitecture offers substantial accuracy expressed at both linguistic
and numerical levels.

Index Terms—Fuzzy cognitive maps (FCMs), fuzzy systems, lin-
guistic prediction, prediction methods, time series.

I. INTRODUCTORY COMMENTS AND MOTIVATION

THIS paper proposes a novel application of fuzzy cognitive
maps (FCMs) to time-series analysis. Although applica-

tions of FCMs include a wide range of research and industrial
areas, with specific examples including diagnosis of language
impairment (SLI) [5], analysis of electrical circuits [28] and
failure modes effects [18], fault management in distributed
network environment [14], modeling and analysis of business
performance indicators [10], supervisory control systems [29],
software development projects [22], [26], virtual worlds [4],
plant control [7], representation of political affairs [12], and ge-
ographic information systems [19], their use in analysis of time
series has not been considered so far. In the proposed approach,
FCMs along with their recently introduced genetic algorithm-
based learning mechanism are aimed to provide the following:
1) a description of a given time series at a certain abstraction
level and 2) numerical and linguistic predictions (explained in
Section III). This paper introduces a complete, highly modular
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architecture of this prediction system, as well as provides
results of carefully performed experiments that validate the
usefulness of the design. This includes experiments performed
with diverse configurations of the system, tests on various data
sets, and analysis of impact of the statistical characteristics of
data sets on the prediction accuracy. Our results are compared
with other state-of-the-art prediction methods, which are based
on fuzzy sets. The main objectives and contribution of this
paper, including the motivation for choosing FCMs, are the
following.

1) Application of FCMs to time-series prediction. The moti-
vation behind using this particular technique comes from
its simple and comprehensive structure. It consists of con-
cepts connected by mutual relationships and is adaptable to
a given domain. FCMs are capable of capturing behavior of
a given dynamic system. Recently introduced learning al-
gorithm based on genetic optimization (genetic algorithm)
allows for automated development of the FCM from his-
torical data. This learning approach is flexible with respect
to the input data, i.e., each two observations at the succes-
sive time points and can be used to learn the map.
For instance, if some observations in the historical data are
missing, all the remaining pairs of points can be still suc-
cessfully used for learning.

2) Design and development of the highly modular prediction
system based on FCMs that is able to perform prediction at
two levels, i.e., numerical and linguistic. Fig. 1 highlights
the key design phases of the proposed system.
The proposed architecture falls within the realm of fuzzy
modeling and consists of three well-delineated and func-
tionally distinct modules. They are as follows: 1) input in-
terface, 2) processing core formed by an FCM, and 3) the
output interface. The modeling and prediction activities
supported by the FCM are realized at the linguistic level
as opposed to the numerical one at which the experimental
data become available. Therefore, in contrast to classical
time-series prediction systems that predict only numerical
values, the proposed system can also carry out prediction
at the linguistic level.
Let us briefly elaborate on the role of each of these mod-
ules. The dynamics of a given numerical time series is cap-
tured through its amplitude and change of the amplitude,
say ( ). These values are transformed through
a collection of predefined linguistic descriptors (Fig. 1, step
1), and become available in the form of their activation
levels. Here, the encoding (fuzzification) process entails
the determination of the membership values of the respec-
tive fuzzy sets. The computations here are straightforward
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Fig. 1. Overview of the proposed prediction system of the FCM; for the detailed description, refer to Section I and II.

as we only take the values of the membership functions
for the current numerical value of the time series and
its difference . Subsequently, the result of the en-
coding is processed by the FCM (refer to Fig. 1, step 2). In
the sequel, we are provided with the activation levels of the
nodes of the map that are obtained when successively iter-
ating over the map (Fig. 1, step 3). Note that each Cartesian
product of the linguistic terms (fuzzy sets) in the space of
amplitude and its changes corresponds to a certain node of
the map. The two alternatives to consider are as follows.

a) The result developed by the FCM can be presented at
the linguistic level (Fig. 1, step 4). Here, we just select
a node of the FCM with the highest degree of activa-
tion. The result of the prediction comes in the format
(Amplitude is A change of Amplitude is B) is where
A and B are the labels (fuzzy sets) forming the node of
the FCM while is the level of activation of this node.

b) Numerical level of prediction (Fig. 1, step 5). Here,
we consider all nodes of the FCM along with their
activation levels and return a single numerical value
by carrying out decoding (defuzzification).

3) Elaboration on usefulness of the proposed system to per-
form the prediction task. Until now, the following five con-
tributions were addressed.

a) In contrast to prior methods based on fuzzy-set pro-
cessing that were tested on individual data sets, this
paper applies three time series with different signal
characteristics to comprehensively evaluate the pro-
posed method.

b) The experiments were performed with different
setups, in terms of parameters of the proposed
system, and are followed by analysis of impact of
those parameters on the prediction accuracy.

c) The proposed method was compared with other fuzzy-
set-based algorithms (due to the fact that traditional
modeling methods are not able to represent linguistic
data, we limit our comparison to those approaches).
To the best of our knowledge, the time-series predic-
tion on the linguistic level was not addressed in the
prior works. The existing methods that use fuzzy-set-
based processing focus only on the numerical pre-
diction while they have the potential to perform the
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linguistic prediction. In this paper, both prediction
levels are taken into account.

d) An updated formula for the error measure was pro-
posed. The formula exploited in previous works was
found to be sensitive to the range of input data values.

e) Finally, the relation between the quality of the predic-
tion and the statistical characteristics of the time se-
ries was investigated. This allows to perform a priori
estimation of the prediction accuracy, i.e., based on
statistics derived from the data.

The remainder of this paper is organized as follows. Section II
gives a brief survey of fuzzy-set-based methods for time-series
prediction problems. It is followed by a concise introduction to
FCMs, which includes description of their underlying princi-
ples, and the ensuing learning algorithm. Section III gives de-
tails of the proposed prediction approach, its architecture, and
main components. Section IV describes experiments and results
and Section V presents summary and conclusions.

II. RELATED WORK

Analysis of time series has application in numerous modeling
and forecasting problems. With this regard, we may consider
financial markets (e.g., stock forecasting), meteorology (e.g.,
temperature prediction), engineering (e.g., network traffic fore-
casting), medical diagnosis (e.g., electrocardiogram analysis),
and many others. In many cases, the collected time series come
from nonlinear and nonstationary systems. This makes them
very difficult to model and predict with an acceptable level of
accuracy. At the same time, permanent demand exists for the ap-
proaches that are able to provide more precise predictions, such
as regarding financial markets data. Therefore, we are faced with
continuous challenges of building more advanced algorithms.

This paper concerns modeling and prediction tasks that are
performed using both numerical and linguistic data. Modeling
techniques that are suitable to handle such tasks are based on
fuzzy set theory [32], [33]. Several strategies for modeling and
prediction of time series with the use of fuzzy techniques have
been presented in literature. The reported methods can be di-
vided into the following.

1) The use of fuzzy sets at the parametric level. Here, fuzzy
sets are applied to parameters of the standard linear models
giving rise to the fuzzy regression models. The parameters
represented by fuzzy sets reflect the departure from the
linear numerical relationship.

2) The use of fuzzy sets at the structural level. Instead of
handling a mapping between numerical input–output data,
they are transformed through fuzzy sets, and then, a model
in the new space is built. As the new space is more abstract
and the transformation that uses nonlinear fuzzy mem-
bership functions injects nonlinearity, the model itself is
formed with the use of constructs typical for fuzzy models,
i.e., relational models. The proposed method, which is
based on FCMs, falls under the latter category.

FCMs, which were introduced by Kosko in 1986, are re-
garded as neurofuzzy systems [11]. They represent qualitative
approach to modeling of dynamic systems. Often, quantitative
modeling is not suitable to describe complex systems with
strong nonlinearities and unknown physical behavior [2]. Being

a qualitative approach, FCMs are free from most of the draw-
backs that are inherently associated with numerical modeling.
The main advantage of applying this particular method is its
simplicity in terms of model construction, representation, and
execution. FCMs are very powerful in representation of human
knowledge and in performing reasoning [13]. FCMs describe
given system by concepts and mutual relationships among
them. Concepts represent variables or terms, which are of
interest with respect to the modeled system. They also interact
with each other through relationships that may be threefold:
promoting, inhibiting, and neutral. Each relationship is ori-
ented, i.e., directed from concept to concept , and decoded
based on fuzzy sets to assume a floating point representation.
This floating point number expresses strength of a given rela-
tionship. The set of all possible values such relationships could
assume is usually normalized to the range , where
stands for the strongest negative, 0 for neutral, and for the
strongest positive relationship. Each type of relationship ex-
presses different cause–effect influence between two concepts.
Positive relationship refers to a situation, in which an increase
of the source concept value leads to an increase of the desti-
nation’s concept value (and vice versa). Negative relationship
describes a case, in which an increase of the source concept
leads to a decrease of the destination’s concept value (and vice
versa). Neutral relationship means that change of the source
concept value does not have direct effect on the destination’s
concept value.

FCMs can be conveniently visualized using a graph, which
consists of nodes linked by directed edges. The nodes depict
concepts, whereas edges express relationships among them.
Each edge is associated with a number (positive or negative),
which determines its strength. Neutral relationships (those with
zero or near-zero values) are removed from the graph, i.e., there
is no directed edge between corresponding concepts. Equiva-
lently, FCM may be expressed by a connection matrix, which
stores values of the relationships strengths. A graph is usually
more convenient to visualize the model, whereas connection
matrix facilitates computations. An example of FCM for time
series is shown in Fig. 1.

Once constructed, FCM can be experimented with. Any ex-
periment requires an initial condition where each concept is as-
signed a value that reflects the degree of its activation (pres-
ence). During the model’s execution at successive iterations,
these values are recalculated and they determine the state of a
given model at a particular time. In other words, simulation re-
quires calculating concepts’ activation values at each iteration
according to the following relationship:

(1)

where is the value of th node at the th iteration, is the
edge weight (relationship strength) from the concept to the
concept is the iterationnumber (timepoint), is thenumber
of concepts, and is the transformation (transfer) function.

The concept value at iteration depends on values of all
the concepts that exert influence on it through cause–effect re-
lationships at the preceding iteration . State of a given FCM
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that consists of nodes at a particular iteration is determined
by floating point values that correspond to the degree of the
concepts activation, which are called state vector. Such inter-
pretation makes this modeling technique different from other
techniques, say hidden Markov models (HMMs), despite that
they have similar graph representation. In contrary to FCMs, in
HMMs, each node represents a particular system state. Conse-
quently, this technique is suitable to model systems that have
finite number of states. Moreover, in HMMs, the transitions
among the states are governed by a set of probabilities, whereas
in FCMs the next state is calculated using (1). Transformation
function is used to reduce concept’s activation values to either
certain set (discrete-output function) or interval (continuous-
output function). In most reported cases, this interval ranges be-
tween 0 and 1, where 0 stands for an inactive concept, 1 for ac-
tive concept, and other values reflect different intermediate de-
grees of activation. The transformation function hinders quan-
titative results, yet allows for qualitative comparisons among
different concepts, i.e., active, inactive, or active to a certain
degree. Different possible simulation scenarios depend on as-
sumed transformation function [22]. A number of extensions to
the aforementioned generic FCMs were proposed. They mostly
targeted causal relationships representation and time-delayed
relationships between selected concepts [13], [19], [34], [35].
In this paper, generic FCMs are used.

A vast majority of FCM models were established manually
[1], i.e., they were based on the domain expert(s) knowledge.
The manually developed models have a substantial shortcoming
due to the model subjectivity and difficulties with assessing its
reliability. Several approaches for automated learning of FCM
models from data have been proposed in order to eliminate this
deficiency. One of the most recent methods exploits real-coded
genetic algorithm (RCGA) [8], which is a floating-point exten-
sion of the generic genetic algorithms [6]. This fully automated
learning approach [24], [25], [27] allows for establishing FCM
from raw data without human input and constitutes the core of
the proposed prediction model. This method is applied to build
an FCM which is used in time-series prediction.

The objective of the FCM learning method that applies
RCGA algorithm [25] is to develop candidate FCM, which is
able to mimic a given input data. This optimization problem
requires to establish parameters for a system that is
compounded of concepts. These parameters correspond to
strengths of the relationships among the concepts and they
completely define FCM. Consequently, the chromosome struc-
ture is defined as

(2)

where is the relationships strength from th to th concept.
Fitness function (or fitness, for short) evaluates chromo-

some’s quality, and is defined by taking advantage of an
inherent property of FCM execution model. More specifically,
the state of a given FCM at each iteration, except for the initial
one, depends only on the immediately preceding state. In other
words, FCM does not have memory. This observation allows
breaking the input data into tuples initial vector, system re-
sponse, in which the former is a system state at given iteration ,

and the latter stands for system state at immediately succeeding
iteration . The fitness function is expressed in the form [24]

(3)

where is a given
system response for initial vector,

is a candidate FCM response
for initial vector, is a number of input data points
(observations), is a number of concepts, and and are
certain positive scaling coefficients.

The fitness function exploits single-step simulations
of candidate FCM, and compares each result with the corre-
sponding given data.

Other RCGA parameters include recombination method, mu-
tation method, and selection method, probability of recombina-
tion, probability of mutation, population size, maximum number
of generations, and maximum fitness function value.

III. PROPOSED PREDICTION SYSTEM

The outline of a system for time-series prediction with the use
of FCM was introduced in [23]. As it was limited to linguistic
prediction, this new study substantially extends its architecture
to perform prediction in two modes, i.e., linguistic and numer-
ical prediction. Additionally, this newly proposed prediction ar-
chitecture has been thoroughly tested with diverse time-series
data sets and the results have been compared with other state-of-
the-art fuzzy-set-based prediction methods.

The heart of our method is an FCM along with the RCGA
learning algorithm. RCGA method is used to establish the model
of a given time-series signal, which then is used to predict the
future values. Fig. 2 shows high-level architecture of the pro-
posed prediction system.

The FCM prediction system realizes a series of well-delin-
eated steps as shown in Fig. 2. The input signal is preprocessed
in a preprocessing module, which plays a dual role. First, it ex-
tracts feature(s) of interest for the linguistic prediction. They
include change of signal, which is defined as a difference be-
tween two consecutive values of a given input signal, and the
signal’s amplitude. The change constitutes an additional time
series. Second, both signals are normalized linearly to the unit
interval. In order to avoid artificial enlargements of small signal
changes, the normalization of change signal is carried out based
on the range of the original time-series signal. More specifically,
the maximum possible change value is determined and the nor-
malization is performed with respect to this value. As a result,
from the preprocessing module, two normalized signals, i.e.,
input and change, are obtained. The first value of input signal
is dismissed to have equal length of both signals.

After preprocessing, information granules [17] of the signal
determining its current status are extracted and linked in fuzzifi-
cation module. This process involves linguistic descriptors (la-
bels), which are given as a set of fuzzy sets. Based on their defi-
nitions, membership values are calculated for each value of both
signals. The linguistic descriptors can be defined uniformly or
independently for each signal. Consider time series as an
input to this module and number of corresponding linguistic
descriptors denoted by the . In the first phase,
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Fig. 2. High-level diagram of the proposed prediction method.

these signals are represented in terms of membership values of
given fuzzy sets, which results in having

fuzzy time series. Next, granularization process takes place,
which links fuzzy time series with the use of fuzzy operators.
As a result, the representation of each data point (observation),
which is a unit hypercube at the entry to this module,
extends to . Therefore, the total number of
granular time series that form the output from this module is

. Each of these time series expresses the
level the given signal can be characterized by corresponding lin-
guistic descriptors. We provide unique linguistic labels over the
entire time series by choosing the descriptors with the highest
values at each time point.

The presence of the next, data divider, module is caused by
organization of our experimental setup, and thus, it does not
belong to the proposed prediction method per se. In particular,
it serves for experimental evaluation of the prediction method
dividing the input data set into training and test subsets. The
former subset is used to develop appropriate FCM, whereas the
latter one is separate and is used to test prediction accuracy on
unseen data.

The actual learning of FCM is performed in the RCGA
module, which establishes FCM based on training data. This
process exploits the genetic learning algorithm, which is de-
scribed in Section II. Number of nodes in candidate FCM
corresponds to number of granular time series from the output
of fuzzification module. The nodes depict complete signal
description within the assumed fuzzy domain, i.e., each node
corresponds to a single combination of linguistic descriptors of
granular time series. We emphasize that all FCM’s parameters
that define the model are established automatically, i.e., without
any substantial intervention of a model’s designer.

A fully developed FCM is used by linguistic prediction
module to carry out the signal prediction in fuzzy domain
(linguistic prediction) on the test data. This process involves a

model simulation according to scenario defined in data divider
module. Linguistic prediction uses fuzzy operations on granular
time series obtained from simulation.

Numerical prediction requires fuzzy values to be defuzzified.
Defuzzification module performs this process according to a pre-
defined defuzzification method on granular time series, which is
obtained from simulation and then is carried out on the test data.
The numerical prediction is performed based on the defuzzified
values. In addition to defuzzified signal value, other signal fea-
tures defined in preprocessing module may be also used as a
supplement, or correction coefficient, during prediction.

IV. EXPERIMENTAL STUDIES

The goal is to assess quality of the proposed prediction system
and to examine influence of its parameters, such as the number
of linguistic labels, on the system’s accuracy. Comprehensive
tests have been performed with three different data sets, and the
results have been compared with other fuzzy-based time-series
methods.

A. Data Sets

The first data set concerns 21 observations of enrollment at
the University of Alabama during 1972–1992. This data set was
often used by other researchers [3], [9], [20], [21], [30], and
this allows for a direct comparison of results obtained by dif-
ferent fuzzy time-series models. The second data set consists of
daily values of Taiwan Stock Exchange Capitalization Weighted
Stock Index (TAIEX) from January 1, 2000 to December 30,
2000 (it consists of 242 observations). This data set has been
used in a recent related publication from this field [31]. The
third data set, larger than the two first ones, deals with monthly
civilian unemployment rates in the USA from January 1, 1948 to
August 1, 20041 and consists of 680 observations. Fig. 3 shows
plots of these three time series.

1http://www.forecasts.org/unemploy.htm
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Fig. 3. Data sets used for experiments.

TABLE I
STATISTICAL ANALYSIS OF DATA SETS

Each of the data set was characterized by its mean and stan-
dard deviation values. For each data set, the characteristics were
computed for both the signals amplitude and change after nor-
malization (see Table I) and these values were used to evaluate
the relative difference in prediction difficulty.

The time series are comparable in terms of the spread of
the amplitude signal. When analyzing the change signal, the
standard deviations are almost identical for unemployment and
TAIEX data sets, yet they are less than half the size of the en-
rollment data set. This suggests that the last data set may be
the most difficult for prediction. Moreover, TAIEX data set has
larger standard deviation than unemployment time series, thus
the latter one seems to be the easiest.

B. Prediction System Setup

The experimentation follows evaluation procedures that
were applied in previously reported fuzzy-set-based time-series
models, which distinguish between modeling and forecasting
accuracies [30]. Modeling accuracy evaluates performance
when all available data were used to establish the model. In
this case, accuracy is measured on the same data set that was
used for model development. Forecasting accuracy, on the
other hand, refers to the evaluation method, in which data set
is split into training and test subsets. The former one is used
to establish model, whereas the latter one is used to test model
accuracy. Subsequently, parameters concerning setup of the
proposed prediction method with respect to the considered data
sets are described.

Linear normalization of signals, which is performed in the
preprocessing module, uses the min–max approach (positive
values of time series are assumed) for the following:

1) amplitude

(4)

2) change

(5)

To be consistent with published experiments for the enroll-
ment data set 20 000 and 13 000; see, e.g., [20].
Similarly, for the TAIEX data set, 10 300 and
4600 [31]. Since the third data set has not been reported in liter-
ature, then and were set to the maximal and minimal
values in this set, i.e., and .

The fuzzification and defuzzification modules use triangular
membership functions with 0.5 overlap between neighboring
fuzzy sets. These particular functions were selected due to their
desirable properties, such as zero value of the reconstruction
error [16]. Since the preprocessed signals have been normal-
ized, the universe of discourse is the unit interval. Two fuzzy set
distribution definitions are used and tested in the experiments
reported in this paper. The first one, denoted as equal width
of fuzzy sets, defines fuzzy sets uniformly over our universe of
discourse. The second one, equal data frequency, defines the
distribution of fuzzy sets taking into account density of occur-
rence of individual data points, based on the method presented
in [15]. The goal of the latter distribution definition is to ensure
that all the fuzzy sets are evenly supported by the experimental
data. Table II shows an example of experiment results that il-
lustrate the difference between these two fuzzy set distribution
definitions.

The matrix which is located on the left-hand side of Table II
refers to the equal width of fuzzy sets, whereas the other one
concerns the equal data frequency distribution. The rows cor-
respond to real labels (linguistic descriptors of the time-series
signal), the columns to predicted descriptors, and the number in
each cell expresses the number of corresponding observations.
Significant number of zeros in case of equal width of fuzzy sets
shows that only a small part of the linguistic descriptors is used
due to the selected distribution definition. At the same time, the
used (nonzero) descriptors are significant with respect to char-
acteristics of the input time series. In contrast, the equal data
frequency uses all linguistic descriptors, but each of them is as-
sociated with a smaller number of observations from the input
time series.

The same number of linguistic descriptors (labels), say , is
used for describing variables of amplitude and change of am-
plitude. Thus, the output of the fuzzification module consists of

granular time series that correspond to all possible com-
binations of descriptors between the two signals, e.g., small am-
plitude and small change, small amplitude and high change, etc.
Fuzzy values of the combined descriptors were defined based on
AND (min) operator to join each pair of amplitude-change time
series into one granular time series.

Two strategies have been applied in the data divider module
to be consistent with the experiments reported in the literature.
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TABLE II
SAMPLE CONFUSION MATRICES FOR TWO DISTRIBUTION DEFINITIONS

TABLE III
RESULTS FOR ENROLLMENT DATA SET

The experiments include modeling and forecasting tasks. The
former group of experiments involves entire data set to create a
corresponding model and to evaluate its accuracy (reported as
entire data set in Section IV-C). The latter group of experiments
involved splitting the entire data set into subsets and performing
out-of-sample experiments with each subset separately. The size
(length) of the subsets is defined by the window parameter and
remains constant within each group of experiments, which have
been performed as follows. Assuming that the input time-series
data set consists of data points, window , where ,
which means that given time series have been divided into
subsets of length , where first observations have been
used for learning, and the last point was excluded from learning
and used only as an out-of-sample prediction. On average, over
the predicted values, prediction results for each group of
experiments, which are referred to as window , are reported.
Additionally, in case of TAIEX data set, in order to be consistent
with the experimental setup described in [31], this data set was
divided into training (data from 2000/1/4 to 2000/10/31) and test
(data from 2000/11/1 to 2000/12/30) subsets (reported as Test in
Table IV).

RCGA learning parameters (whose values have been estab-
lished experimentally) include the following: 1) single-point
crossover, 2) mutation method: randomly chosen from random
mutation, nonuniform mutation, and Mühlenbein’s mutation,
3) selection method: randomly chosen from roulette wheel and
tournament, 4) probability of recombination: 0.9, 5) probability
of mutation: 0.5, 6) population size: 100 chromosomes, 7) max-
imum number of generations: 10 000, and 8) maximum fitness
function value: 0.999. After a candidate FCM is constructed
from the training data by the RCGA module, the prediction is
carried out at two levels, linguistic and numerical.

The prediction is computed based on simulation performed
with the candidate FCM. Predicted linguistic label is selected
from the set of descriptors represented by concept nodes of
FCM by choosing corresponding node with the highest activa-
tion value. More specifically, to perform the prediction, granular
time series are separated back to amplitude and change fuzzy
time series in the linguistic prediction module. This process is
performed with the use of OR (max) operator. For instance, to
extract amplitude fuzzy time series that correspond to high lin-
guistic label, the max operator is applied among all fuzzy time
series that have the high-amplitude signal label and different la-
bels of change signal (e.g., small, medium, high). Given mem-
bership values for fuzzy sets associated with both signals, de-
fuzzification is carried out applying center of area method in
the defuzzification module.

Next, the experimental assessment procedure and criteria are
explained. Let us denote the following:

number of test observations;

original numerical value of th data point;

predicted numerical value of th data point;

maximum value of input time series;

minimum value of input time series;

original linguistic label of th data point;

predicted linguistic label of ith data point;

and

if
otherwise
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TABLE IV
RESULTS FOR TAIEX DATA SET

The following criteria are defined:
• linguistic accuracy (LA)

LA %

• numerical error (NE)

NE %

• normalized numerical error (NNE)

NNE %

Linguistic accuracy (LA) is used to evaluate linguistic predic-
tion quality. It is defined as a sum of the correctly predicted lin-
guistic labels divided by the total number of test data points. The
number of considered linguistic labels is equal to a product of
the number of labels for amplitude and the number of labels for
change signals, which are equal. Numerical error (NE) has been
used in the literature to assess accuracy of prediction [9], and
thus, it is used to perform direct comparison with prediction ac-
curacy of other reported fuzzy-set-based time-series prediction
methods. However, this measure has a substantial drawback.
The numerical error measure is sensitive to the range of values in
a given time series, and thus, it does not allow for comparison of
results between different time series, but only for individual data
sets, i.e., its values are different for data sets with small values
than for those with large values. Therefore, a new measure of
error, called normalized numerical error (NNE), was introduced.
It allows for comparison of results between different time series.
Based on the previous definitions, higher value of LA indicates
better prediction, while for both NE and NNE, better prediction
results in lower value of the corresponding criterions.

TABLE V
RESULTS FOR ENROLLMENT DATA SET

C. Experiments Results

Two main experiments were carried out. First, the influence
of various parameters on the prediction accuracy is tested. Next,
the prediction accuracy of the proposed method is compared
with other leading fuzzy time-series prediction methods. Av-
erage values of the quality measures given in Section IV-B, i.e.,
LA, NE, and NNE are reported for each experimental setup. LA
is the average by definition, while NE and NNE are reported as
averages over all test data points.

1) Experiments With Respect to Parameters of Proposed Pre-
diction Method: Comprehensive tests that involve the three data
sets are reported in Tables III–V. The first set of experiments ex-
amines influence of the number of linguistic labels (number of
used fuzzy sets), and the two fuzzy set distribution definitions,
on the prediction accuracy for the three data sets. Number of la-
bels denotes number of linguistic descriptors for each of the two
signals, i.e., amplitude and change. Thus, the number of nodes in
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Fig. 4. Cumulative average LA for two fuzzy sets distribution definitions.

the FCM used for prediction is the Cartesian product square of
the number of labels. Each table is divided horizontally into three
subsections, which correspond to the three quality measures for
different number of linguistic labels. Columnwide tables are first
divided by different distribution definitions, while subcolumns
report results for different testing strategies. Entire data set refers
to the modeling error, i.e., prediction is performed on the same
data set that has been used to establish model. Window columns
show forecasting error for different sizes of window used as a
training set, i.e., 3, 4, or 5 data points are used to develop model,
which is used to predict the proceeding observation.

To facilitate analysis of experiments results, Figs. 4 and 5
show cumulative average linguistic accuracy and numerical
error values throughout all data sets. Left-hand plots correspond
to experiments with equal width of fuzzy sets, while right-hand
plots correspond to experiments with equal data frequency.
Average errors are calculated for both fuzzy sets distribution
definitions and for a given experimental configuration, i.e.,
number of linguistic labels and training window size. Fig. 4
shows influence of number of linguistic labels (top plots) and
window size (bottom plots) on the linguistic accuracy (LA).

Several interesting conclusions can be drawn when analyzing
results obtained at the linguistic level. First, the accuracy is
substantially lower for experiments with equal data frequency
distribution—the average accuracy across the three data sets is
88.05% in case of the equal width of fuzzy set, and 35.88%
in case of equal data frequency distribution. As illustrated in
Table II, the latter approach results in spreading data points

over all the possible linguistic labels, which makes the pre-
diction more difficult and explains the difference in accuracy.
Linguistic accuracy increases slightly along with the increasing
training data window size—the average accuracy for window 3
is 54.45%, for window 4 is 59.26%, and for window 5 is 59.71%,
while the modeling accuracy is 74.45%. On the other hand, the
prediction accuracy decreases with increasing number of lin-
guistic labels 69.60% for two labels, 61.57% for three labels,
and 54.72% for four labels. The increasing number of input data
(window size) gives more information about particular time se-
ries, and thus the prediction has higher accuracy. The bigger the
number of considered linguistic labels is, the finer (more spe-
cific) the linguistic description of a given signal becomes. How-
ever, statistically, we have smaller chance to make a correct pre-
diction. Both of these trends are more evident for experiments
with equal data frequency distribution definition. In general, the
best results are obtained for unemployment data set (average LA
is 67.38%), while the worst results are obtained for enrollment
data set (average LA 56.58%), which is consistent with the sta-
tistical characteristics of the sets given in Table I.

Next, we concentrate on the analysis of accuracy of numer-
ical prediction. Since three data sets of varying ranges of values
are used, the accuracy is evaluated using NNE rather than NE
measure. Fig. 5 shows the influence of the number of linguistic
labels (top plots) and the window size (bottom plots) on the NNE
measure.

The average NNE decreases along with increasing number
of labels 10.06% for two labels, 8.78% for three labels, and
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Fig. 5. Cumulative average NNE for two distributions of fuzzy sets.

8.17% for four labels. A decreasing NNE value trend with an
increasing window size is also clearly visible (from 10.46% for
window 3 to 7.13% for modeling error). The numerical predic-
tion results are consistent with the results obtained for linguistic
prediction. When analyzing the quality of numerical prediction
for individual data sets, once again the best results are obtained
for unemployment data set (average NNE is 6.61%), while the
worst results are obtained for enrollment data set (average NNE
is 10.75%).

The results show that FCM-based prediction generates good
quality predictions for both numerical and linguistic cases. An
average of about 60% linguistic prediction is considered to be
high, due to the relatively large number of possible predictions,
i.e., 4, 9, and 16 for 2, 3, and 4 labels, respectively. The numer-
ical prediction, which on average ranges between 6% and 10%,
also suggests a high quality of the proposed prediction method.

The number of linguistic labels determines granularity of the
linguistic representation with respect to the numerical values.
Having this number high enough, we could assign each numer-
ical value with a corresponding label. However, the more la-
bels we use, the lower interpretability of the model is. The lin-
guistic prediction can be seen as a classification task with a given
number of linguistic signal descriptors. Naturally, this task be-
comes more difficult along with the increasing number of dif-
ferent labels, and this explains the lower linguistic accuracy. We
also note that the numerical error decreases with the increasing
number of labels. A possible explanation for this is that when
there is a low number of linguistic labels, the effect of an error
in a value of a single node has a significant impact on the pre-

dicted value obtained after defuzzification. When increasing the
number of labels, an error from a single node does not influ-
ence the predicted value as heavily, since in defuzzification all
the concept values are taken into account. Therefore, the above
tradeoff is established.

2) Comparison With Other Methods: The following results
obtained by the proposed method are compared with the results
reported in literature. We note that the existing fuzzy-set-based
prediction methods have been tested only on one or two data
sets. In contrary, our paper includes comprehensive test suite
and comparison with all the competing methods. As indicated
in Section IV-B, researchers have usually reported NE. Hence,
Tables VI and VII also report this error measure. Table VI com-
pares results for the enrollment data set, while Table VII reports
results for TAIEX data set. The experimental comparison for
TAIEX follows the procedure defined in [31]. The results for
the proposed method are shown in Test column in Table IV.

The results show that the proposed method gives better re-
sults for enrollment data set when compared to three competing
state-of-the-art methods. The proposed system with three la-
bels (nine nodes FCM) achieved 2.13 NE for the time-invariant
test, while the second best Song–Chissom method scored 3.20.
Similarly, for the time-variant test, the proposed method was
best and scored 2.66. At the same time, results for TAIEX data
show superiority of the Chen’s methods. We note that although
the comparison shows that the proposed method has similar
quality between the two data sets when compared with other
methods, its unique advantage is the ability to provide linguistic
prediction.
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TABLE VI
EVALUATION OF OUR APPROACH—ENROLLMENT DATA SET

TABLE VII
EVALUATION OF OUR APPROACH—TAIEX DATA SET

V. CONCLUSION

In this paper, we have introduced a novel two-level time-se-
ries prediction that exploits FCMs. Based on fuzzy sets, the
method supports prediction completed both at numerical as
well as linguistic levels. Although several existing methods are
shown to provide comparable results of numerical prediction
when compared with the proposed method, our method offers
an ability to complete linguistic prediction.

The novelty of the proposed study directly relates to the appli-
cation of FCMs to time-series prediction. The outstanding fea-
ture of this FCM-based modeling concerns the genetic learning
of the maps.

This paper describes architecture of the proposed prediction
method and performs comprehensive tests to verify its quality.
The tests show that the linguistic accuracy of the proposed
method decreases as the number of considered linguistic la-
bels becomes higher, while at the same time, the numerical
prediction accuracy increases. This shows that some tradeoff
exists between the quality of the numerical and linguistic
predictions. By selecting a proper number of labels, user
can control quality and scope of the prediction in terms of
granularity of the linguistic description. Both linguistic and
numerical prediction accuracy are shown to improve along
with the increasing number of input data points that are used
to develop the prediction model. This is also reported in [27].
The tests also show that the statistical characteristics of the
input time series have influence on the quality of the results.
A higher standard deviation of the input time series results in
a slightly worse accuracy of prediction. The proposed method
generates numerical prediction with accuracy comparable to
other state-of-the-art prediction methods. Finally, the tests show
a relatively high accuracy of linguistic prediction performed by
the proposed method.

One interesting follow-up to this work is the comparison of
the proposed FCMs with other graphical models, such as hidden
Markov models and Bayesian networks, in the context of time-
series analysis and prediction.
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