
 
 

 

  

Abstract— Fuzzy Cognitive Maps (FCMs) are a convenient 
tool for modeling of dynamic systems by means of concepts 
connected by cause-effect relationships. The FCM models can 
be developed either manually (by the experts) or using an 
automated learning method (from data). Some of the methods 
from the latter group, including recently proposed Nonlinear 
Hebbian Learning (NHL) algorithm, use Hebbian law and a set 
of conditions imposed on output concepts. In this paper, we 
propose a novel approach named data-driven NHL (DD-NHL) 
that extends NHL method by using historical data of the input 
concepts to provide improved quality of the learned FCMs. 
DD-NHL is tested on both synthetic and real-life data, and the 
experiments show that if historical data are available, then the 
proposed method produces better FCM models when 
compared with those formed by the generic NHL method. 

I. INTRODUCTION 

uzzy Cognitive Maps (FCMs), introduced by Kosko 
[1] in 1986, are a convienient conceptual and computing 

machinery for modeling and simulation of dynamic systems. 
They represent knowledge in a symbolic manner and relate 
states, variables, events, outputs and inputs using a cause 
and effect approach. When compared to other techniques, 
FCMs exhibit a number of highly appealing properties. In 
particular, knowledge representation becomes easy and 
intuitive. One can easily model feedback relationships and 
capture hidden dependencies between the concepts. [2]. 
Applications of FCMs are in various areas including 
engineering [3], [4], medicine [5], political science [6], 
economics [7], earth and environmental sciences [8], etc. 

There are two main groups of approaches to develop 
Fuzzy Cognitive Maps: (1) manual methods carried out by 
expert(s) who have knowledge of both FCMs and the 
domain of application, and (2) automated or semi-automated 
methods, which use learning algorithms to establish models 
from historical data (simulations of concept values). The 
methods from the latter group exhibit numerous advantages 
over the manual methods, such as independence of the 
domain of application which may lead to the development of 
unbiased models [9]. One of the paradigms used to automate 
development of FCMs stems from the Hebbian law. The 
first attempt to learn FCMs using this approach was 
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proposed by Dickerson and Kosko in 1994, and was referred 
to as Differential Hebbian Learning (DHL) [10]. This 
method was further extended into Nonlinear Hebbian 
Learning (NHL) [11]. The NHL algorithm learns FCMs 
from initial expert-derived FCM model and a set of 
conditions imposed on output concepts. The algorithm does 
not use historical data and requires an expert to develop an 
initial map. To this end, we propose a novel extension to 
NHL method, called data-driven NHL (DD-NHL) which 
uses historical data to improve the quality of learned FCM 
models when compared with generic NHL method. It is also 
worth emphasizing that the proposed method does not rely 
on some initial, expert-derived FCM model.  

The study is organized as follows. Section II presents 
background information on Fuzzy Cognitive Maps and 
motivation of this research. In Section III our algorithm, 
DD-NHL, is introduced. Section IV and Section V describe 
experiments that have been performed and elaborate on the 
results, whereas Section VI summarizes this paper.   

II. BACKGROUND AND MOTIVATION 

A. Fuzzy Cognitive Maps 
FCMs define a given dynamic system by means of 

concepts associated by mutual cause-effect relations. Each 
relation is described by a number from interval [-1, 1], 
which corresponds to its strength. Positive values reflect 
promoting effect, whereas negative values correspond to 
inhibiting effect. The value of –1 represents full negative, +1 
full positive and 0 denotes neutral relation. Other values 
correspond to different intermediate levels of causal effect. 
FCMs are conveniently expressed in the form of graphs. In a 
graph, the nodes correspond to states, and arrows associated 
with numbers correspond to relations. The graph 
representation is equivalent to a square matrix, called 
connection matrix, which stores all weight values of edges 
between corresponding concepts.  

Figure 1 shows an example a process control problem 
[11], which is modeled by the FCM shown in Figure 2. 
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Fig. 1.  Simple process control problem 

 
Valve 1 and valve 2 provide two different liquids into the 

tank. The liquids are mixed and a chemical reaction takes 
place. The control objective is to maintain the desired level 
of liquid and its specific gravity. Valve 3 is used to drain 
liquid from the tank. 

Three experts have developed the initial FCM model for 
this system [11]. It consists of five concepts that are defined 
as follows:  
C1 – the amount of the liquid in the tank 
C2 – the state of Valve 1  
C3 – the state of Valve 2  
C4 – the state of Valve 3  
C5 – the specific gravity of the liquid into the tank 
 

 

 

 C1 C2 C3 C4 C5 
C1 0 -0.4 -0.25 0 0.3 
C2 0.36 0 0 0 0 
C3 0.45 0 0 0 0 
C4 -0.9 0 0 0 0 
C5 0 0.6 0 0.3 0 

 
Fig. 2.  Example of an FCM graph along with its connection matrix 

 
In FCMs, each concept has a value that reflects the degree 

to which the concept is active in the system at a particular 
iteration (discrete time moment). This value, called 
activation level, is a floating-point number between 0 
(inactive) and 1 (active). For the above example, activation 
level of each valve determines degree to which it is open. 
The value of 0 means that a given valve is closed, value of 1 
means that it is fully opened, and other values represent 
partially opened valve. Similarly, values of the two 
remaining concepts correspond to different amount of the 
liquid and its gravity. 

Once an FCM has been formed and initial values of all 
concepts were determined as initial state of the entire 
system, the model can be simulated. Simulation boils down 
to calculating future values of concepts at discrete time 
points based on equation (1), which takes into account the 
activation levels at the previous iteration and the connection 
matrix 
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where: Cj(t) – activation level of concept jth
  at iteration t 

   eij – strength of relation from concept Ci to concept Cj 

    f – transformation function 
The transformation function is used to maintain the values 

of the weighted sum within a certain range. The 
normalization hinders quantitative analysis, but, at the same 
time, it allows to compare activation levels of different 
concepts. 

A snapshot of activation levels of all nodes at a particular 
iteration defines the system state. It can be conveniently 
represented by a state vector, which consists of the nodes’ 
activation values. Initial state vector refers to the system 
state at the first iteration. Successive states are calculated by 
iterative application of the formula (1).  

Figure 3 shows a sample simulation result of the model 
from Figure 2 started from initial state vector suggested in 
[11], i.e. 0.3] 0.717, 0.612, 0.708, 0.4,[)0( =C  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

Iteration number

Va
lu

e 
of

 n
od

e

C1 C2 C3 C4 C5

 
Fig. 3.  Sample FCM simulation result  

 
The values of all concepts stabilize after a few iteration 

steps, and they correspond to a stable state of the system. 
Particularly interesting are values of concepts C1 and C5 
since they represent target variables in this system.   

B. Development of Fuzzy Cognitive Maps from Data 
Differential Hebbian Learning (DHL) [10] is an 

automated method for learning FCMs, in particular learning 
the connection matrices, which is based on the law which 
correlates changes of causal concepts. 

deij = −eij + dCidCj            (2)  
where deij is the change of weight between concept ith and 

jth eij is the current value of this weight, and dCi, dCj are 
changes in concepts ith and jth values, respectively. 

The learning process iteratively updates values of all 
weights from the FCM graph until the desired structure 
(connection matrix) is found. Nevertheless, the results of 
experiments performed with this learning method were 
inconclusive. As a result, several other learning approaches 
based on the Hebbian principle have been proposed. One of 
them, the Nonlinear Hebbian Learning algorithm (NHL) that 
was recently introduced by Papageorgiou and colleagues 
[11], [2] is used in this paper. This method adjusts the 
weights based on initial experts’ knowledge, i.e. initial 
sketch of the map, and additional information on the 



 
 

 

modeled system expressed by restrictions imposed on some 
concepts, to derive the connection matrix. Therefore, the 
main application of NHL method is to fine-tune the initial 
model.  

The NHL algorithm is based on the nonlinear Hebbian-
type learning rule that was introduced for Artificial Neural 
Networks [12], [13]. More precisely, it uses Oja learning 
rule originally introduced to learn weights of neurons. 
Adapted to Fuzzy Cognitive Maps, the rule is expressed as 
follows 

( ))1()sgn()1()( −−+−= keCeCCkeke ijjijijijij η  (3)  
where: Ci, Cj are the current activation values of the 

concept ith and jth calculated for each iteration according to 
the formula (1), eij(k) is the weight value of the relation 
between concept ith and jth at the iteration k, and η is the 
learning coefficient.  

Hebbian learning principle assumes that the update of the 
weight eij is proportional to the product of the Ci and Cj 
concepts activations. However, this may lead to infinite 
growth of the weight value. The key idea behind the Oja 
learning rule is to avoid this effect by using forgetting term, 
which is subtracted from the right hand side. In this 
particular method, the forgetting term is proportional not 
only to the value of the weight, but also to the square of the 
value of the target concept (for eij Cj is the target concept). 

NHL method assumes that all the concepts are 
synchronously triggered at each iteration and that they 
synchronously change their values. The learning algorithm 
takes the initial FCM and initial values of all concepts and 
iteratively updates the model until the desired map is found. 

This method has two termination conditions. The first one 
utilizes information on desired values of some concepts, 
which come from expert knowledge or problem 
specification. These concepts are called Desired Output 
Concepts (DOCs) and they usually have predefined range of 
desired values. Depending on the particular problem, 
learning may terminate when all the desired concepts reach 
the desired activation levels or when they are close enough 
to these levels. For the example shown in Figure 2, concepts 
C1 and C5 have been determined as DOCs. The second 
condition takes into consideration the variation of the 
subsequent values of the DOCs and is held if all of them 
changes less than predefined very small constant e. When 
the variation of the DOCs is smaller than e it is pointless for 
the algorithm to continue the learning process. 

C. Motivation   
The NHL algorithm learns FCMs from initial expert 

knowledge and a set of conditions imposed on Desired 
Output Concepts. It does not exploit any additional 
information that could improve learning and generate more 
accurate models. We note that historical data that describe 
given system (a simulation of concept values) are often 
available. Since the NHL algorithm does not take advantage 
of these data to improve the learning, in this paper we 

propose a novel extension to NHL method that utilizes the 
historical data to develop models of better quality than the 
models learned using the generic NHL.  

The two main objectives of the study can be outlined as 
follows: 

• to propose a novel approach to learn FCMs from data 
based on NHL algorithm, which is called data-driven 
nonlinear Hebbian Learning method (DD-NHL) 

• to test the proposed method by comparing the quality 
of learned maps obtained from DD-NHL to the maps 
obtained from the generic NHL.  

III. DATA-DRIVEN NONLINEAR HEBBIAN LEARNING 
METHOD 

The generic Nonlinear Hebbian Algorithm (NHL) for 
learning Fuzzy Cognitive Maps consists of seven steps [2], 
[11] 

 
NHL Algorithm 

STEP 1. Given: values of concepts C(0) and initial 
connection matrix E(0), and restrictions imposed on 
desired values of DOCs in the form of inequalities 
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STEP 2. For each iteration step k 
STEP 3. Update the weights according to equation (3) 
STEP 4. Calculate C(k) for each concept according to (1) 
STEP 5. Evaluate termination conditions using C(k) from 

STEP 4, E(k), and E(k-1). 
STEP 6. Until both termination conditions are met, go to 

STEP 2 
STEP 7. Return the final connection matrix WFINAL 
 

The two conditions from STEP 6 can be expressed as 
follows 
CONDITION 1 (minimizing the cost function F) 
STEP 1. Calculate cost function for each 
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The objective of the training process is to determine the set 
of weights that minimize function F. 

 
CONDITION 2 (terminate algorithm after a limited 
number of steps) 
STEP 1. Calculate the maximum difference emax between 

eij(k) and eij(k-1) 
STEP 2. If the absolute value of emax is less than ε return 

TRUE, otherwise return FALSE 
 
Now, let us assume that historical data are available for 

the given system. They form a matrix D, where dij 
corresponds to the value of ith concept at the jth time point. In 



 
 

 

other words, values of the concepts are expressed as time-
series. The size of D is KxN where K is the number of 
available data points and N is the number of concepts in the 
modeled system. For instance, the data shown in Figure 3 
would form a matrix D of size 10x5. 

Data-driven Nonlinear Hebbian Algorithm (DD-NHL) 
utilizes available historical data in STEP 4, which is 
modified to the following form: 

 
STEP 4. Assign C(k) with the next row of matrix D 

 
Thus, the matrix update is carried out based on the 

available data, which are used at each iteration step of the 
algorithm. In case all data are points exploited and the 
termination conditions are not satisfied, we start using the 
same data points again (first row of matrix D). 

Basically, DD-NHL still uses the Oja learning rule, but 
instead generating data used for learning only from the 
current model, it takes advantage of data available for a 
given system. DD-NHL still needs the initial connection 
matrix but instead of expert-generated map, it can use a 
randomly generated initial map. 

Since the problem of learning in this case is to obtain an 
FCM model, which if started from a given initial state vector 
converges to a state that fulfills certain conditions we also 
updated the first termination condition. After each iteration 
of weight update (learning), current FCM is simulated from 
the initial state vector until a stable state is reached. Then, 
the values of DOCs from this state are compared with the 
desired values of DOCs. This procedure guarantees that if 
the solution is found, it would meet all the learning 
requirements. Therefore, the Condition 1 is now expressed 
in the following way: 
 
CONDITION 1 (checking conditions imposed on DOCs) 
STEP 1.  Simulate the current FCM defined by E(k) 

starting from the initial condition C(0) until a fixed 
state is reached 

STEP 2. For each Cj that has been defined as DOCj check 
whether the fixed value Cj(n) meet the restriction 
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STEP 3. If there is at least one Cj that does not meet the 
restriction from STEP 2, return FALSE 

STEP 4. Otherwise, return TRUE 

IV. EVALUATION 
In this paper, we used both synthetic and real-life data to 

evaluate the DD-NHL algorithm. The goal of the 
experiments is to compare quality of the solutions found by 
NHL algorithm with DD-NHL method.   

A. Data Sets 

1) Synthetic data 
The synthetic data used in experiments were obtained by 

generating random FCMs along with random initial vectors. 
Three groups of data have been prepared with maps that 

consist of 5, 10, and 20 concepts, respectively. As noted in 
[14], in practice FCMs are usually relatively small, and 
typically involve 5–10 nodes. Additionally, for each group 
we generated two subsets with different map densities 
(defined as the ratio of the non-zero weights to the total 
number of weights) equal to 20% and 40%, respectively. 
Again, our choice is motivated by the results of analysis 
presented in [14], which reveals that the typical density of 
FCMs is in the range of 20–30%. Consequently, for the 
experiments we formed six different setups. In addition, ten 
independent maps were generated for each setup to assure 
statistical validity of the results. 

2) Real-life data 
For real-life experiments we chose an FCM model for a 

process control problem that was introduced in [11] and 
already shown in Figure 1 and 2. The model has 5 concepts 
and the density of the map  is 32%. We decided to use a real 
FCM model rather than raw data since the NHL method 
requires an initial connection matrix as an input. This way 
we could investigate the impact of providing the true or a 
randomized matrix as the input. 

B. Experiments 

1) Synthetic data 
For each setup, we took the generated models and initial 

vectors and performed simulation until convergence was 
reached. Then, we arbitrary chose 40% of concepts to be 
DOCs (this value was selected to be consistent with the real-
life model reported in [11]). It corresponds to 2, 4, and 8 
DOCs for maps that include of 5, 10, and 20 nodes, 
respectively. For the selected concepts the desired range of 
values were established as ±0.1 of the stable value. It means 
that if a given concept Ci stabilized after the simulation at 
the activation level of a, minCi and maxCi has been 
calculated as a-0.1, and a+0.1, respectively. These values 
were used as the first termination criterion in both NHL and 
DD-NHL methods. The second criterion e was set to 0.02 as 
suggested in [11].  

The learning procedure for both NHL and DD-NHL was 
carried out as follows. Firstly, we randomly generated initial 
map. Next, we performed learning using both NHL and DD-
NHL. Additionally, if the termination criteria could not be 
met after 10000 iterations, the procedure was restarted with 
a new initial map.  

2) Real-life data 
The model of a process control system from [11] was 

used to perform two groups of experiments: 
1. In the first one, we took the initial model proposed by 

experts (Figure 2) and performed learning with NHL 
method. The map that has been established met all the 
restrictions defined in [11], i.e. 70.0168.0 ≤≤ N  
and 80.0574.0 ≤≤ N , and, therefore, was considered as 
the desired model of this system for the remaining 
experiments. Next, we generated data by simulating this 



 
 

 

model, and performed learning using DD-NHL method. 
2. In the second group of experiments, we randomly chose 

initial matrix and carried out learning using both NHL 
and DD-NHL using the same procedure as for single 
experiment with synthetic data. 

C. Evaluation Criteria 
We considered three evaluation measures to assess the 

performance of the proposed method. They are consistent 
with the FCM evaluation criteria proposed in [14] and they 
have been used with experiments on both synthetic and real-
life data: 
• in-sample error  – difference between the available data, 

and data generated by simulating the learned model from 
the same initial vector. The criterion is defined as a 
normalized average error between corresponding concept 
values at each iteration between the two state vector 
sequences. 
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 where )(tCn is the value of a node n at iteration t in the 
input data, )(ˆ tCn

is the value of a node n at iteration t 
from simulation of the learned model, K is the input data 
length, and N is the number of concepts. 

• out-of-sample error – evaluation of the generalization 
capabilities of the learned FCM. To compute this 
criterion, both the desired and learned models are 
simulated from ten randomly chosen initial state vectors. 
Subsequently, the value of the measure error_initial is 
computed for each of the simulations to compare state 
vector sequences generated by these models, and an 
average of these values is computed.  
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 where )(tC p
n

is the value of a node n at iteration t for data 
generated by desired model started from pth initial state 
vector, )(ˆ tC p

n  is the value of a node n at iteration t for 
data generated by learned model started from pth initial 
state vector, K is the input data length, N is the number of 
concepts, and P is the number of random initial state 
vector. 

• final-state accuracy – evaluation of meeting the 
restrictions on DOCs. The model is simulated from the 
initial condition until fixed state is reached, and then the 
following formula is used 

%100⋅=
i

i

DOC
DOCACC  (6) 

where iDOC  is the number of DOCs that meet the 
restrictions after simulating corresponding model from 
the initial vector, and DOCi is the total number of DOCs. 
This measure is calculated for both in-sample and out-of-
sample experiments. 
 

 
TABLE I 

IN-SAMPLE ERROR RESULTS FOR SYNTHETIC DATA 

  NHL DD-NHL 

SIZE DENSITY IN-SAMPLE ACC IN-SAMPLE ACC 

5 20% 0.153 
(0.015) 70 0.129 

(0.013) 100 

 40% 0.149 
(0.014) 80 0.129 

(0.008) 100 

10 20% 0.182 
(0.017) 60 0.176 

(0.015) 100 

 40% 0.193 
(0.009) 70 0.180 

(0.016) 100 

20 20% 0.213 
(0.015) 80 0.180 

(0.018) 100 

 40% 0.210 
(0.015) 60 0.207 

(0.014) 100 

 
TABLE II 

OUT-OF-SAMPLE ERROR RESULTS FOR SYNTHETIC DATA 

  NHL DD-NHL 

SIZE DENSITY OUT-OF-
SAMPLE ACC OUT-OF-

SAMPLE ACC 

5 20% 0.152 
(0.007) 70 0.129 

(0.011) 100 

 40% 0.149 
(0.011) 80 0.129 

(0.015) 100 

10 20% 0.182 
(0.014) 60 0.175 

(0.010) 100 

 40% 0.193 
(0.016) 70 0.180 

(0.011) 100 

20 20% 0.213 
(0.014) 80 0.180 

(0.014) 100 

 40% 0.210 
(0.017) 60 0.207 

(0.016) 100 

V. RESULTS 

A. Synthetic Data 
Table I and Table II summarize the experimental results 

for the synthetic data. Reported values have been calculated 
as averages obtained from 10 independent experiments (with 
different models) for each setup. The rows correspond to 
different experimental setups in terms of maps’ sizes (5, 10, 
and 20) and densities (20% and 40%), and the value in each 
cell expresses the average value of a corresponding 
criterion. For in-sample and out-of-sample errors the 
average values are followed by standard deviations (in 
brackets) across all ten runs.  

 
Experimental results show that the data-driven approach is 

on average better when it comes to the in-sample errors, i.e., 
average errors equal 0.183 for NHL vs. 0.167 for data-
driven NHL. This is because we use historical data for 
learning data-driven NHL, whereas the generic NHL 
algorithm takes into consideration only the final state. 
However, more important are results included in Table II, as 
they determine how well a given model captures 
(generalizes) the knowledge of the target domain. This is 
because out-of-sample experiments are performed on 



 
 

 

previously unseen data. They show that DD-NHL 
consistently, over different map sizes and densities, 
produces better FCM models when compared with NHL. 
 The quality of learning decreases slightly with the 
increase the map size for both methods. The out-of-sample 
errors are 40% worse for 20 nodes maps when compared 
with errors for 5 nodes in case of NHL, and 49% worse in 
case of DD-NHL. Also, we note that the map density does 
not have significant influence on the learning process. 
 Taking into consideration the last criterion, i.e. final-state 
accuracy, the advantage of using DD-NHL method becomes 
evident. The solutions found by NHL method do not meet 
the learning objective in 20-40% of experiments. Our 
method is guaranteed to meet the conditions for DOCs for 
the in-sample experiments. However, it turns out that the 
DOC conditions were also satisfied in all out-of-sample 
experiments performed with DD-NHL method. 

Table III covers the results of statistical analysis of the 
differences between the results produced by the NHL and 
DD-NHL We performed paired t-test at 95% confidence 
between the corresponding pairs of 10 experiments 
performed with NHL and DD-NHL methods.  
 

TABLE III 
OUT-OF-SAMPLE STATISTICAL RESULTS COMPARISON THROUGH PAIR T-

TESTS 

  NHL vs. DD-NHL 

SIZE DENSITY T-VALUE 

5 20% 5.43 

 40% 5.52 

10 20% 5.63 

 40% 5.08 

20 20% 7.27 

 40% 1.93 

 
Since the critical t-value at 95% confidence equals 2.26, the 
results show that the differences are statistically significant, 
i.e., the DD-NHL method provides statistically significantly 
lower error rate, for 5 out of 6 different setups. The 
difference is not statistically significant only for the largest 
map with the high desitiy. 

B. Real-life Data 
Tables IV and V show the results for the first experiment. 

We note that the NHL method was used to generate the 
desired model, and therefore all the error measures are equal 
0 in this case.    

 
TABLE IV 

IN-SAMPLE ERROR RESULTS FOR THE FIRST EXPERIMENT WITH REAL 
MODEL 

  NHL DD-NHL 

SIZE DENSITY IN-SAMPLE ACC IN-SAMPLE ACC 

5 20.6% 0 100 0.087 100 

 

TABLE V 
OUR-OF-SAMPLE ERROR RESULTS FOR THE FIRST EXPERIMENT WITH REAL 

MODEL 

  NHL DD-NHL 

SIZE DENSITY OUT-OF-
SAMPLE ACC OUT-OF-

SAMPLE ACC 

5 20.6% 0 100 0.091 100 

 
 C1 C2 C3 C4 C5 

C1 0.00 0.40 0.48 -0.76 0.07 

C2 -0.31 0.00 0.07 0.08 0.63 

C3 -0.17 0.07 0.00 0.07 0.07 

C4 0.07 0.08 0.07 0.00 0.35 

C5 0.35 0.08 0.07 0.08 0.00  

 C1 C2 C3 C4 C5 

C1 0.00 0.34 0.47 -0.87 0.21

C2 -0.22 0.00 0.03 0.05 0.36

C3 -0.18 0.03 0.00 0.03 0.03

C4 0.00 0.04 0.03 0.00 0.18

C5 0.50 -0.03 0.04 -0.02 0.00 
Fig. 4.  NHL vs. DD-NHL models for the first experiment 

 
The DD-NHL learning performed by starting from the 

initial matrix generated by experts (Figure 2) resulted in 
better learning quality when compared to results on 
synthetic data. This is because the initial map was similar to 
the desired map. Figure 4 illustrates connection matrices of 
the models found by NHL and DD-NHL. Bolded are values 
that differ by more that 0.25 between the two solutions. 
The two models are very similar and differ by more than 
0.25 just for one weight. On average, the difference is 7%.   

Tables V and VI report experimental results for the 
second experiment. Similarly to the experiments for 
synthetic data, 10 independent experiments were carried 
out and the average values are shown in the tables. 

 
TABLE VI 

IN-SAMPLE ERROR RESULTS FOR THE SECOND EXPERIMENT WITH REAL 
MODEL 

  NHL DD-NHL 

SIZE DENSITY IN-SAMPLE ACC IN-SAMPLE ACC 

5 20.6% 0.158 
(0.009) 60 0.135 

(0.011) 100 

 
TABLE VII 

OUR-OF-SAMPLE ERROR RESULTS FOR THE SECOND EXPERIMENT WITH 
REAL MODEL 

  NHL DD-NHL 

SIZE DENSITY OUT-OF-
SAMPLE ACC OUT-OF-

SAMPLE ACC 

5 20.6% 0.160 
(0.010) 70 0.137 

(0.012) 100 

 
The tests show that DD-NHL produces FCMs that are 

14% better (they reduce the corresponding error rates by 
(0.158-0.135)/0.158=14.6% for in-sample and (0.160-
0.137)/0.160=14.4%) when compared with maps generated 
by NHL algorithm for both in-sample and out-of-sample 
measures. The ACC criterion show that the DD-NHL 
method is capable to find models that fulfill the learning 
objectives (restrictions imposed on DOCs), whereas the 
NHL approach satisfies the objectives in 60-70% of 



 
 

 

experiments. Similarly to results from Table III, the 
statistical analysis of the results was performed. The paired 
t-test value between NHL and DD-NHL was equal to 5.72, 
which means that the difference is statistically significant at 
95% confidence. 

VI. CONCLUSIONS 
In this paper, a novel method for automated learning of 

FCMs from data, named DD-NHL, is introduced and 
experimented with. The proposed method applies a non-
linear Hebbian principle and available data to generate FCM 
models. The main idea behind the DD-NHL method was to 
use historical data to improve learning quality. When 
compared to NHL method for learning FCMs, in DD-NHL 
the stopping criterion was modified to achieve models that 
fulfill the initial requirements on certain, predefined 
concepts called Desired Output Concepts (DOCs). 

Experimental results for both synthetic and real-life data 
show that DD-NHL is capable of forming better quality 
FCMs when compared with the constructs resulting from the 
NHL algorithm. Results for synthetic data are on average 
9% better for DD-NHL for the out-of-sample tests. Both 
methods produce slightly worse solutions for larger maps 
with both errors growing linearly. Experiments with real-life 
data show that DD-NHL method provides satisfactory 
solutions when started from a matrix that is predefined by 
the expert and close to the desired solution. Comparative 
analysis shows the advantages of using DD-NHL over NHL 
method, in terms of both lower in-sample and out-of-sample 
errors as well as better ability to satisfy the conditions set on 
DOCs; the results are consistent with these obtained for 
synthetic data. 

To sum up, the proposed DD-NHL algorithm learns better 
models than the generic NHL method. However, this 
improved quality requires the availability of historical data. 
In contrast, NHL algorithm does not require historical data, 
but it relies on expert-derived initial map and a set of 
conditions on DOCs. 
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