

Abstract— Fuzzy Cognitive Maps (FCMs) are a convenient
tool for modeling of dynamic systems by means of concepts
connected by cause-effect relationships. The FCM models can
be developed either manually (by the experts) or using an
automated learning method (from data). Some of the methods
from the latter group, including recently proposed Nonlinear
Hebbian Learning (NHL) algorithm, use Hebbian law and a set
of conditions imposed on output concepts. In this paper, we
propose a novel approach named data-driven NHL (DD-NHL)
that extends NHL method by using historical data of the input
concepts to provide improved quality of the learned FCMs.
DD-NHL is tested on both synthetic and real-life data, and the
experiments show that if historical data are available, then the
proposed method produces better FCM models when
compared with those formed by the generic NHL method.

I. INTRODUCTION

uzzy Cognitive Maps (FCMs), introduced by Kosko
[1] in 1986, are a convienient conceptual and computing

machinery for modeling and simulation of dynamic systems.
They represent knowledge in a symbolic manner and relate
states, variables, events, outputs and inputs using a cause
and effect approach. When compared to other techniques,
FCMs exhibit a number of highly appealing properties. In
particular, knowledge representation becomes easy and
intuitive. One can easily model feedback relationships and
capture hidden dependencies between the concepts. [2].
Applications of FCMs are in various areas including
engineering [3], [4], medicine [5], political science [6],
economics [7], earth and environmental sciences [8], etc.

There are two main groups of approaches to develop
Fuzzy Cognitive Maps: (1) manual methods carried out by
expert(s) who have knowledge of both FCMs and the
domain of application, and (2) automated or semi-automated
methods, which use learning algorithms to establish models
from historical data (simulations of concept values). The
methods from the latter group exhibit numerous advantages
over the manual methods, such as independence of the
domain of application which may lead to the development of
unbiased models [9]. One of the paradigms used to automate
development of FCMs stems from the Hebbian law. The
first attempt to learn FCMs using this approach was

This work was supported in part by the Alberta Ingenuity, and by the

Natural Sciences & Engineering Research Council of Canada (NSERC)
W. Stach, L. Kurgan, and W. Pedrycz are with the Department of

Electrical and Computer Engineering, University of Alberta, Edmonton,
Canada (e-mail: {wstach, lkurgan, pedrycz}@ece.ualberta.ca)

proposed by Dickerson and Kosko in 1994, and was referred
to as Differential Hebbian Learning (DHL) [10]. This
method was further extended into Nonlinear Hebbian
Learning (NHL) [11]. The NHL algorithm learns FCMs
from initial expert-derived FCM model and a set of
conditions imposed on output concepts. The algorithm does
not use historical data and requires an expert to develop an
initial map. To this end, we propose a novel extension to
NHL method, called data-driven NHL (DD-NHL) which
uses historical data to improve the quality of learned FCM
models when compared with generic NHL method. It is also
worth emphasizing that the proposed method does not rely
on some initial, expert-derived FCM model.

The study is organized as follows. Section II presents
background information on Fuzzy Cognitive Maps and
motivation of this research. In Section III our algorithm,
DD-NHL, is introduced. Section IV and Section V describe
experiments that have been performed and elaborate on the
results, whereas Section VI summarizes this paper.

II. BACKGROUND AND MOTIVATION

A. Fuzzy Cognitive Maps
FCMs define a given dynamic system by means of

concepts associated by mutual cause-effect relations. Each
relation is described by a number from interval [-1, 1],
which corresponds to its strength. Positive values reflect
promoting effect, whereas negative values correspond to
inhibiting effect. The value of –1 represents full negative, +1
full positive and 0 denotes neutral relation. Other values
correspond to different intermediate levels of causal effect.
FCMs are conveniently expressed in the form of graphs. In a
graph, the nodes correspond to states, and arrows associated
with numbers correspond to relations. The graph
representation is equivalent to a square matrix, called
connection matrix, which stores all weight values of edges
between corresponding concepts.

Figure 1 shows an example a process control problem
[11], which is modeled by the FCM shown in Figure 2.

Data-Driven Nonlinear Hebbian Learning Method for Fuzzy
Cognitive Maps

Wojciech Stach, Lukasz Kurgan, and Witold Pedrycz

F

Fig. 1. Simple process control problem

Valve 1 and valve 2 provide two different liquids into the

tank. The liquids are mixed and a chemical reaction takes
place. The control objective is to maintain the desired level
of liquid and its specific gravity. Valve 3 is used to drain
liquid from the tank.

Three experts have developed the initial FCM model for
this system [11]. It consists of five concepts that are defined
as follows:
C1 – the amount of the liquid in the tank
C2 – the state of Valve 1
C3 – the state of Valve 2
C4 – the state of Valve 3
C5 – the specific gravity of the liquid into the tank

 C1 C2 C3 C4 C5
C1 0 -0.4 -0.25 0 0.3
C2 0.36 0 0 0 0
C3 0.45 0 0 0 0
C4 -0.9 0 0 0 0
C5 0 0.6 0 0.3 0

Fig. 2. Example of an FCM graph along with its connection matrix

In FCMs, each concept has a value that reflects the degree

to which the concept is active in the system at a particular
iteration (discrete time moment). This value, called
activation level, is a floating-point number between 0
(inactive) and 1 (active). For the above example, activation
level of each valve determines degree to which it is open.
The value of 0 means that a given valve is closed, value of 1
means that it is fully opened, and other values represent
partially opened valve. Similarly, values of the two
remaining concepts correspond to different amount of the
liquid and its gravity.

Once an FCM has been formed and initial values of all
concepts were determined as initial state of the entire
system, the model can be simulated. Simulation boils down
to calculating future values of concepts at discrete time
points based on equation (1), which takes into account the
activation levels at the previous iteration and the connection
matrix

{ }

+=+∈∀ ∑

=

)()()1(,,...,1
1

tCetCftCNj
N

i
iijjj

 (1)

where: Cj(t) – activation level of concept jth
 at iteration t

 eij – strength of relation from concept Ci to concept Cj

 f – transformation function
The transformation function is used to maintain the values

of the weighted sum within a certain range. The
normalization hinders quantitative analysis, but, at the same
time, it allows to compare activation levels of different
concepts.

A snapshot of activation levels of all nodes at a particular
iteration defines the system state. It can be conveniently
represented by a state vector, which consists of the nodes’
activation values. Initial state vector refers to the system
state at the first iteration. Successive states are calculated by
iterative application of the formula (1).

Figure 3 shows a sample simulation result of the model
from Figure 2 started from initial state vector suggested in
[11], i.e. 0.3] 0.717, 0.612, 0.708, 0.4,[)0(=C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

Iteration number

Va
lu

e
of

 n
od

e

C1 C2 C3 C4 C5

Fig. 3. Sample FCM simulation result

The values of all concepts stabilize after a few iteration

steps, and they correspond to a stable state of the system.
Particularly interesting are values of concepts C1 and C5
since they represent target variables in this system.

B. Development of Fuzzy Cognitive Maps from Data
Differential Hebbian Learning (DHL) [10] is an

automated method for learning FCMs, in particular learning
the connection matrices, which is based on the law which
correlates changes of causal concepts.

deij = −eij + dCidCj (2)
where deij is the change of weight between concept ith and

jth eij is the current value of this weight, and dCi, dCj are
changes in concepts ith and jth values, respectively.

The learning process iteratively updates values of all
weights from the FCM graph until the desired structure
(connection matrix) is found. Nevertheless, the results of
experiments performed with this learning method were
inconclusive. As a result, several other learning approaches
based on the Hebbian principle have been proposed. One of
them, the Nonlinear Hebbian Learning algorithm (NHL) that
was recently introduced by Papageorgiou and colleagues
[11], [2] is used in this paper. This method adjusts the
weights based on initial experts’ knowledge, i.e. initial
sketch of the map, and additional information on the

modeled system expressed by restrictions imposed on some
concepts, to derive the connection matrix. Therefore, the
main application of NHL method is to fine-tune the initial
model.

The NHL algorithm is based on the nonlinear Hebbian-
type learning rule that was introduced for Artificial Neural
Networks [12], [13]. More precisely, it uses Oja learning
rule originally introduced to learn weights of neurons.
Adapted to Fuzzy Cognitive Maps, the rule is expressed as
follows

())1()sgn()1()(−−+−= keCeCCkeke ijjijijijij η (3)
where: Ci, Cj are the current activation values of the

concept ith and jth calculated for each iteration according to
the formula (1), eij(k) is the weight value of the relation
between concept ith and jth at the iteration k, and η is the
learning coefficient.

Hebbian learning principle assumes that the update of the
weight eij is proportional to the product of the Ci and Cj
concepts activations. However, this may lead to infinite
growth of the weight value. The key idea behind the Oja
learning rule is to avoid this effect by using forgetting term,
which is subtracted from the right hand side. In this
particular method, the forgetting term is proportional not
only to the value of the weight, but also to the square of the
value of the target concept (for eij Cj is the target concept).

NHL method assumes that all the concepts are
synchronously triggered at each iteration and that they
synchronously change their values. The learning algorithm
takes the initial FCM and initial values of all concepts and
iteratively updates the model until the desired map is found.

This method has two termination conditions. The first one
utilizes information on desired values of some concepts,
which come from expert knowledge or problem
specification. These concepts are called Desired Output
Concepts (DOCs) and they usually have predefined range of
desired values. Depending on the particular problem,
learning may terminate when all the desired concepts reach
the desired activation levels or when they are close enough
to these levels. For the example shown in Figure 2, concepts
C1 and C5 have been determined as DOCs. The second
condition takes into consideration the variation of the
subsequent values of the DOCs and is held if all of them
changes less than predefined very small constant e. When
the variation of the DOCs is smaller than e it is pointless for
the algorithm to continue the learning process.

C. Motivation
The NHL algorithm learns FCMs from initial expert

knowledge and a set of conditions imposed on Desired
Output Concepts. It does not exploit any additional
information that could improve learning and generate more
accurate models. We note that historical data that describe
given system (a simulation of concept values) are often
available. Since the NHL algorithm does not take advantage
of these data to improve the learning, in this paper we

propose a novel extension to NHL method that utilizes the
historical data to develop models of better quality than the
models learned using the generic NHL.

The two main objectives of the study can be outlined as
follows:

• to propose a novel approach to learn FCMs from data
based on NHL algorithm, which is called data-driven
nonlinear Hebbian Learning method (DD-NHL)

• to test the proposed method by comparing the quality
of learned maps obtained from DD-NHL to the maps
obtained from the generic NHL.

III. DATA-DRIVEN NONLINEAR HEBBIAN LEARNING
METHOD

The generic Nonlinear Hebbian Algorithm (NHL) for
learning Fuzzy Cognitive Maps consists of seven steps [2],
[11]

NHL Algorithm

STEP 1. Given: values of concepts C(0) and initial
connection matrix E(0), and restrictions imposed on
desired values of DOCs in the form of inequalities

MAX
jj

MIN
j CCC ≤≤

STEP 2. For each iteration step k
STEP 3. Update the weights according to equation (3)
STEP 4. Calculate C(k) for each concept according to (1)
STEP 5. Evaluate termination conditions using C(k) from

STEP 4, E(k), and E(k-1).
STEP 6. Until both termination conditions are met, go to

STEP 2
STEP 7. Return the final connection matrix WFINAL

The two conditions from STEP 6 can be expressed as
follows
CONDITION 1 (minimizing the cost function F)
STEP 1. Calculate cost function for each

∑ −=
jDOC

jj TkCF
2

)(where Tj is the mean target value

of the concept Cj, i.e.
2

MIN
j

MAX
j

j
CC

T
−

=

The objective of the training process is to determine the set
of weights that minimize function F.

CONDITION 2 (terminate algorithm after a limited
number of steps)
STEP 1. Calculate the maximum difference emax between

eij(k) and eij(k-1)
STEP 2. If the absolute value of emax is less than ε return

TRUE, otherwise return FALSE

Now, let us assume that historical data are available for

the given system. They form a matrix D, where dij
corresponds to the value of ith concept at the jth time point. In

other words, values of the concepts are expressed as time-
series. The size of D is KxN where K is the number of
available data points and N is the number of concepts in the
modeled system. For instance, the data shown in Figure 3
would form a matrix D of size 10x5.

Data-driven Nonlinear Hebbian Algorithm (DD-NHL)
utilizes available historical data in STEP 4, which is
modified to the following form:

STEP 4. Assign C(k) with the next row of matrix D

Thus, the matrix update is carried out based on the

available data, which are used at each iteration step of the
algorithm. In case all data are points exploited and the
termination conditions are not satisfied, we start using the
same data points again (first row of matrix D).

Basically, DD-NHL still uses the Oja learning rule, but
instead generating data used for learning only from the
current model, it takes advantage of data available for a
given system. DD-NHL still needs the initial connection
matrix but instead of expert-generated map, it can use a
randomly generated initial map.

Since the problem of learning in this case is to obtain an
FCM model, which if started from a given initial state vector
converges to a state that fulfills certain conditions we also
updated the first termination condition. After each iteration
of weight update (learning), current FCM is simulated from
the initial state vector until a stable state is reached. Then,
the values of DOCs from this state are compared with the
desired values of DOCs. This procedure guarantees that if
the solution is found, it would meet all the learning
requirements. Therefore, the Condition 1 is now expressed
in the following way:

CONDITION 1 (checking conditions imposed on DOCs)
STEP 1. Simulate the current FCM defined by E(k)

starting from the initial condition C(0) until a fixed
state is reached

STEP 2. For each Cj that has been defined as DOCj check
whether the fixed value Cj(n) meet the restriction

MAX
jj

MIN
j CnCC ≤≤)(

STEP 3. If there is at least one Cj that does not meet the
restriction from STEP 2, return FALSE

STEP 4. Otherwise, return TRUE

IV. EVALUATION
In this paper, we used both synthetic and real-life data to

evaluate the DD-NHL algorithm. The goal of the
experiments is to compare quality of the solutions found by
NHL algorithm with DD-NHL method.

A. Data Sets

1) Synthetic data
The synthetic data used in experiments were obtained by

generating random FCMs along with random initial vectors.
Three groups of data have been prepared with maps that

consist of 5, 10, and 20 concepts, respectively. As noted in
[14], in practice FCMs are usually relatively small, and
typically involve 5–10 nodes. Additionally, for each group
we generated two subsets with different map densities
(defined as the ratio of the non-zero weights to the total
number of weights) equal to 20% and 40%, respectively.
Again, our choice is motivated by the results of analysis
presented in [14], which reveals that the typical density of
FCMs is in the range of 20–30%. Consequently, for the
experiments we formed six different setups. In addition, ten
independent maps were generated for each setup to assure
statistical validity of the results.

2) Real-life data
For real-life experiments we chose an FCM model for a

process control problem that was introduced in [11] and
already shown in Figure 1 and 2. The model has 5 concepts
and the density of the map is 32%. We decided to use a real
FCM model rather than raw data since the NHL method
requires an initial connection matrix as an input. This way
we could investigate the impact of providing the true or a
randomized matrix as the input.

B. Experiments

1) Synthetic data
For each setup, we took the generated models and initial

vectors and performed simulation until convergence was
reached. Then, we arbitrary chose 40% of concepts to be
DOCs (this value was selected to be consistent with the real-
life model reported in [11]). It corresponds to 2, 4, and 8
DOCs for maps that include of 5, 10, and 20 nodes,
respectively. For the selected concepts the desired range of
values were established as ±0.1 of the stable value. It means
that if a given concept Ci stabilized after the simulation at
the activation level of a, minCi and maxCi has been
calculated as a-0.1, and a+0.1, respectively. These values
were used as the first termination criterion in both NHL and
DD-NHL methods. The second criterion e was set to 0.02 as
suggested in [11].

The learning procedure for both NHL and DD-NHL was
carried out as follows. Firstly, we randomly generated initial
map. Next, we performed learning using both NHL and DD-
NHL. Additionally, if the termination criteria could not be
met after 10000 iterations, the procedure was restarted with
a new initial map.

2) Real-life data
The model of a process control system from [11] was

used to perform two groups of experiments:
1. In the first one, we took the initial model proposed by

experts (Figure 2) and performed learning with NHL
method. The map that has been established met all the
restrictions defined in [11], i.e. 70.0168.0 ≤≤ N
and 80.0574.0 ≤≤ N , and, therefore, was considered as
the desired model of this system for the remaining
experiments. Next, we generated data by simulating this

model, and performed learning using DD-NHL method.
2. In the second group of experiments, we randomly chose

initial matrix and carried out learning using both NHL
and DD-NHL using the same procedure as for single
experiment with synthetic data.

C. Evaluation Criteria
We considered three evaluation measures to assess the

performance of the proposed method. They are consistent
with the FCM evaluation criteria proposed in [14] and they
have been used with experiments on both synthetic and real-
life data:
• in-sample error – difference between the available data,

and data generated by simulating the learned model from
the same initial vector. The criterion is defined as a
normalized average error between corresponding concept
values at each iteration between the two state vector
sequences.

 ∑∑
−

= =

−
⋅−

=
1

1 1
)(ˆ)(

)1(
1_

K

t

N

n
nn tCtC

NK
initialerror (4)

 where)(tCn is the value of a node n at iteration t in the
input data,)(ˆ tCn

is the value of a node n at iteration t
from simulation of the learned model, K is the input data
length, and N is the number of concepts.

• out-of-sample error – evaluation of the generalization
capabilities of the learned FCM. To compute this
criterion, both the desired and learned models are
simulated from ten randomly chosen initial state vectors.
Subsequently, the value of the measure error_initial is
computed for each of the simulations to compare state
vector sequences generated by these models, and an
average of these values is computed.

 ∑∑∑
=

−

= =

−
⋅−⋅

=
P

p

K

t

N

n

p
n

p
n tCtC

NKP
behaviorerror

1

1

1 1
)(ˆ)(

)1(
1_ (5)

 where)(tC p
n

is the value of a node n at iteration t for data
generated by desired model started from pth initial state
vector,)(ˆ tC p

n is the value of a node n at iteration t for
data generated by learned model started from pth initial
state vector, K is the input data length, N is the number of
concepts, and P is the number of random initial state
vector.

• final-state accuracy – evaluation of meeting the
restrictions on DOCs. The model is simulated from the
initial condition until fixed state is reached, and then the
following formula is used

%100⋅=
i

i

DOC
DOCACC (6)

where iDOC is the number of DOCs that meet the
restrictions after simulating corresponding model from
the initial vector, and DOCi is the total number of DOCs.
This measure is calculated for both in-sample and out-of-
sample experiments.

TABLE I

IN-SAMPLE ERROR RESULTS FOR SYNTHETIC DATA

 NHL DD-NHL

SIZE DENSITY IN-SAMPLE ACC IN-SAMPLE ACC

5 20% 0.153
(0.015) 70 0.129

(0.013) 100

 40% 0.149
(0.014) 80 0.129

(0.008) 100

10 20% 0.182
(0.017) 60 0.176

(0.015) 100

 40% 0.193
(0.009) 70 0.180

(0.016) 100

20 20% 0.213
(0.015) 80 0.180

(0.018) 100

 40% 0.210
(0.015) 60 0.207

(0.014) 100

TABLE II

OUT-OF-SAMPLE ERROR RESULTS FOR SYNTHETIC DATA

 NHL DD-NHL

SIZE DENSITY OUT-OF-
SAMPLE ACC OUT-OF-

SAMPLE ACC

5 20% 0.152
(0.007) 70 0.129

(0.011) 100

 40% 0.149
(0.011) 80 0.129

(0.015) 100

10 20% 0.182
(0.014) 60 0.175

(0.010) 100

 40% 0.193
(0.016) 70 0.180

(0.011) 100

20 20% 0.213
(0.014) 80 0.180

(0.014) 100

 40% 0.210
(0.017) 60 0.207

(0.016) 100

V. RESULTS

A. Synthetic Data
Table I and Table II summarize the experimental results

for the synthetic data. Reported values have been calculated
as averages obtained from 10 independent experiments (with
different models) for each setup. The rows correspond to
different experimental setups in terms of maps’ sizes (5, 10,
and 20) and densities (20% and 40%), and the value in each
cell expresses the average value of a corresponding
criterion. For in-sample and out-of-sample errors the
average values are followed by standard deviations (in
brackets) across all ten runs.

Experimental results show that the data-driven approach is

on average better when it comes to the in-sample errors, i.e.,
average errors equal 0.183 for NHL vs. 0.167 for data-
driven NHL. This is because we use historical data for
learning data-driven NHL, whereas the generic NHL
algorithm takes into consideration only the final state.
However, more important are results included in Table II, as
they determine how well a given model captures
(generalizes) the knowledge of the target domain. This is
because out-of-sample experiments are performed on

previously unseen data. They show that DD-NHL
consistently, over different map sizes and densities,
produces better FCM models when compared with NHL.
 The quality of learning decreases slightly with the
increase the map size for both methods. The out-of-sample
errors are 40% worse for 20 nodes maps when compared
with errors for 5 nodes in case of NHL, and 49% worse in
case of DD-NHL. Also, we note that the map density does
not have significant influence on the learning process.
 Taking into consideration the last criterion, i.e. final-state
accuracy, the advantage of using DD-NHL method becomes
evident. The solutions found by NHL method do not meet
the learning objective in 20-40% of experiments. Our
method is guaranteed to meet the conditions for DOCs for
the in-sample experiments. However, it turns out that the
DOC conditions were also satisfied in all out-of-sample
experiments performed with DD-NHL method.

Table III covers the results of statistical analysis of the
differences between the results produced by the NHL and
DD-NHL We performed paired t-test at 95% confidence
between the corresponding pairs of 10 experiments
performed with NHL and DD-NHL methods.

TABLE III
OUT-OF-SAMPLE STATISTICAL RESULTS COMPARISON THROUGH PAIR T-

TESTS

 NHL vs. DD-NHL

SIZE DENSITY T-VALUE

5 20% 5.43

 40% 5.52

10 20% 5.63

 40% 5.08

20 20% 7.27

 40% 1.93

Since the critical t-value at 95% confidence equals 2.26, the
results show that the differences are statistically significant,
i.e., the DD-NHL method provides statistically significantly
lower error rate, for 5 out of 6 different setups. The
difference is not statistically significant only for the largest
map with the high desitiy.

B. Real-life Data
Tables IV and V show the results for the first experiment.

We note that the NHL method was used to generate the
desired model, and therefore all the error measures are equal
0 in this case.

TABLE IV

IN-SAMPLE ERROR RESULTS FOR THE FIRST EXPERIMENT WITH REAL
MODEL

 NHL DD-NHL

SIZE DENSITY IN-SAMPLE ACC IN-SAMPLE ACC

5 20.6% 0 100 0.087 100

TABLE V
OUR-OF-SAMPLE ERROR RESULTS FOR THE FIRST EXPERIMENT WITH REAL

MODEL

 NHL DD-NHL

SIZE DENSITY OUT-OF-
SAMPLE ACC OUT-OF-

SAMPLE ACC

5 20.6% 0 100 0.091 100

 C1 C2 C3 C4 C5

C1 0.00 0.40 0.48 -0.76 0.07

C2 -0.31 0.00 0.07 0.08 0.63

C3 -0.17 0.07 0.00 0.07 0.07

C4 0.07 0.08 0.07 0.00 0.35

C5 0.35 0.08 0.07 0.08 0.00

 C1 C2 C3 C4 C5

C1 0.00 0.34 0.47 -0.87 0.21

C2 -0.22 0.00 0.03 0.05 0.36

C3 -0.18 0.03 0.00 0.03 0.03

C4 0.00 0.04 0.03 0.00 0.18

C5 0.50 -0.03 0.04 -0.02 0.00
Fig. 4. NHL vs. DD-NHL models for the first experiment

The DD-NHL learning performed by starting from the

initial matrix generated by experts (Figure 2) resulted in
better learning quality when compared to results on
synthetic data. This is because the initial map was similar to
the desired map. Figure 4 illustrates connection matrices of
the models found by NHL and DD-NHL. Bolded are values
that differ by more that 0.25 between the two solutions.
The two models are very similar and differ by more than
0.25 just for one weight. On average, the difference is 7%.

Tables V and VI report experimental results for the
second experiment. Similarly to the experiments for
synthetic data, 10 independent experiments were carried
out and the average values are shown in the tables.

TABLE VI

IN-SAMPLE ERROR RESULTS FOR THE SECOND EXPERIMENT WITH REAL
MODEL

 NHL DD-NHL

SIZE DENSITY IN-SAMPLE ACC IN-SAMPLE ACC

5 20.6% 0.158
(0.009) 60 0.135

(0.011) 100

TABLE VII

OUR-OF-SAMPLE ERROR RESULTS FOR THE SECOND EXPERIMENT WITH
REAL MODEL

 NHL DD-NHL

SIZE DENSITY OUT-OF-
SAMPLE ACC OUT-OF-

SAMPLE ACC

5 20.6% 0.160
(0.010) 70 0.137

(0.012) 100

The tests show that DD-NHL produces FCMs that are

14% better (they reduce the corresponding error rates by
(0.158-0.135)/0.158=14.6% for in-sample and (0.160-
0.137)/0.160=14.4%) when compared with maps generated
by NHL algorithm for both in-sample and out-of-sample
measures. The ACC criterion show that the DD-NHL
method is capable to find models that fulfill the learning
objectives (restrictions imposed on DOCs), whereas the
NHL approach satisfies the objectives in 60-70% of

experiments. Similarly to results from Table III, the
statistical analysis of the results was performed. The paired
t-test value between NHL and DD-NHL was equal to 5.72,
which means that the difference is statistically significant at
95% confidence.

VI. CONCLUSIONS
In this paper, a novel method for automated learning of

FCMs from data, named DD-NHL, is introduced and
experimented with. The proposed method applies a non-
linear Hebbian principle and available data to generate FCM
models. The main idea behind the DD-NHL method was to
use historical data to improve learning quality. When
compared to NHL method for learning FCMs, in DD-NHL
the stopping criterion was modified to achieve models that
fulfill the initial requirements on certain, predefined
concepts called Desired Output Concepts (DOCs).

Experimental results for both synthetic and real-life data
show that DD-NHL is capable of forming better quality
FCMs when compared with the constructs resulting from the
NHL algorithm. Results for synthetic data are on average
9% better for DD-NHL for the out-of-sample tests. Both
methods produce slightly worse solutions for larger maps
with both errors growing linearly. Experiments with real-life
data show that DD-NHL method provides satisfactory
solutions when started from a matrix that is predefined by
the expert and close to the desired solution. Comparative
analysis shows the advantages of using DD-NHL over NHL
method, in terms of both lower in-sample and out-of-sample
errors as well as better ability to satisfy the conditions set on
DOCs; the results are consistent with these obtained for
synthetic data.

To sum up, the proposed DD-NHL algorithm learns better
models than the generic NHL method. However, this
improved quality requires the availability of historical data.
In contrast, NHL algorithm does not require historical data,
but it relies on expert-derived initial map and a set of
conditions on DOCs.

REFERENCES
[1] B. Kosko, “Fuzzy cognitive maps”, International Journal of Man-

Machine Studies, vol. 24, pp. 65-75, 1986
[2] E. I. Papageorgiou, C. Stylios, P. P. Groumpos, “Unsupervised

learning techniques for fine-tuning fuzzy cognitive map causal links”,
International Journal of Human-Computer Studies, vol. 64, pp. 727-
743, 2006

[3] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Parallel fuzzy
cognitive maps as a tool for modeling software development project,”
North American Fuzzy Information Processing Society Conference
(NAFIPS’04), pp. 28–33, 2004

[4] M. A. Styblinski, and B. D. Meyer, “Signal flow graphs versus fuzzy
cognitive maps in application to qualitative circuit analysis,”
International Journal of Man–Machine Studies, vol. 35, pp. 175–186,
1991

[5] P. R. Innocent, and R. I. John, “Computer aided fuzzy medical
diagnosis,” Information Sciences, vol. 162, no. 2, pp. 81–104, 2004

[6] M. Khan, and M. Quaddus, “Group decision support using fuzzy
cognitive maps for causal reasoning,” Group Decision and
Negotiation Journal, vol. 13, no. 5, pp. 463–480, 2004

[7] D. Kardaras, and G. Mentzas, “Using fuzzy cognitive maps to model
and analyse business performance assessment,” in Advances in
Industrial Engineering Applications and Practice II, J. Chen, and A.
Mital, (Eds), pp. 63–68, 1997

[8] R. Giordano, G. Passarella, V. F. Uricchio, and M. Vurro, “Fuzzy
cognitive maps for issue identification in a water resources conflict
resolution system,” Physics and Chemistry of the Earth, vol. 30, no.
6–7 (Special Issue), pp. 463–469, 2005

[9] W. Stach, L. A. Kurgan, and W. Pedrycz, “A survey of fuzzy
cognitive map learning methods,” In: P. Grzegorzewski, M.
Krawczak, and S. Zadrozny, (Eds.), Issues in Soft Computing: Theory
and Applications, Exit, pp. 71–84, 2005

[10] J. A., Dickerson, and B. Kosko, “Virtual worlds as fuzzy cognitive
maps”, Presence, vol. 3, no. 2, pp. 173-189, 1994

[11] E. I. Papageorgiou, C. D. Stylios, and P. P. Groumpos, “Fuzzy
cognitive map learning based on nonlinear Hebbian rule,” In: T. D.
Gedeon, and L. C. C. Fung, (Eds.), Lecture Notes in Artificial
Intelligence, Springer–Verlag, vol. 2903, pp. 254–266, 2003.

[12] E. Oja, “Neural networks, principal components and subspaces”,
International Journal of Neural Systems, vol. 1, pp. 61-68, 1989

[13] E. Oja, H. Ogawa, J. Wangviwattana , “Learning in nonlinear
constrained Hebbian networks”, In: Kohonen T., et al. (Eds.),
Artificial Neural Networks, North-Holland, pp. 385-390, 1991

[14] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Genetic learning
of fuzzy cognitive maps,” Fuzzy Sets and Systems, vol. 153, no. 3, pp.
371–401, 2005

