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Abstract 
Motivation: X-ray crystallography was used to produce nearly 90% of protein structures. These efforts 
were supported by numerous sequence-based tools that accurately predict crystallizable proteins. 
However, protein structures vary widely in their quality, typically measured with resolution and R-free. 
This impacts the ability to use these structures for some applications including rational drug design and 
molecular docking and motivates development of methods that accurately predict structure quality.  
Results: We introduce XRRpred, the first predictor of the resolution and R-free values from protein 
sequences. XRRpred relies on original sequence profiles, hand-crafted features, empirically selected 
and parametrized regressors, and modern resampling techniques. Using an independent test dataset, 
we show that XRRpred provides accurate predictions of resolution and R-free. We demonstrate that 
XRRpred’s predictions correctly model relationship between the resolution and R-free and reproduce 
structure quality relations between structural classes of proteins. We also show that XRRpred signifi-
cantly outperforms indirect alternative ways to predict the structure quality that include predictors of 
crystallization propensity and an alignment-based approach. XRRpred is available as a convenient 
webserver that allows batch predictions and offers informative visualization of the results. 
Availability: http://biomine.cs.vcu.edu/servers/XRRPred/. 
Contact: lkurgan@vcu.edu 

 

1 Introduction  
Knowledge of protein structures is invaluable to decipher protein functions 
(Kim, et al., 2003; Zhang and Kim, 2003) and to address practical applica-
tions, such as the rational drug design (Grey and Thompson, 2010; Jazayeri, 
et al., 2015; Maveyraud and Mourey, 2020). X-ray crystallography is the 
main approach to determine protein structures (Ilari and Savino, 2008; 
Lieberman, et al., 2013). As of Nov 2020, it accounts for over 88% of struc-
tures in the Protein Data Bank (PDB) and 80% of structures that were added 
to PDB in 2020 (wwPDB consortium, 2019). One of the key challenges of 
the X-ray crystallography is its low success rate. Studies have shown that 
only between 2% and 10% of crystallization trials lead to protein structures 
i.e., diffraction-quality crystals (Jahandideh, et al., 2014; Kurgan and 
Mizianty, 2009; Terwilliger, et al., 2009; Zimmerman, et al., 2014). More-
over, the resulting structures offer varying levels of quality, which impacts 
the ability to use them for some of the applications. According to a recent 
survey, average X-ray crystallization costs are at about $150,000 per pro-
tein based on the reported $2 billion funding to produce 13,500 structures 
(Grabowski, et al., 2016). Inability to successfully crystallize protein tar-
gets accounts for over 60% of these relatively high protein structure pro-
duction costs (Jahandideh, et al., 2014; Slabinski, et al., 2007). Conse-
quently, target selection approaches that aim to identify proteins which are 
both relevant and likely to be solvable by X-ray crystallography were de-
veloped (Chandonia, et al., 2006; Marsden and Orengo, 2008; Robin, et al., 
2008). Effective target selection requires computational tools that accu-
rately predict whether diffraction-quality crystal structure can be produced 
from a given protein sequence (Gao, et al., 2018; Grabowski, et al., 2016; 
Rupp and Wang, 2004; Wang, et al., 2018). Recent surveys reveal that crys-
tallization predictors have improved over time to the point where they now 

provide very accurate results (Gao, et al., 2018; Wang, et al., 2018). For 
instance, recently released DeepCrystal, BCrystal and DCFCrystal methods 
provide predictions with AUC > 0.91 (Elbasir, et al., 2020; Elbasir, et al., 
2019; Zhu, et al., 2020).  

The crystal structures vary widely in terms of their quality, ranging from 
very low quality that delineates only an overall protein shape to high quality 
that provides accurate and precise positions of all atoms. The structure qual-
ity is typically described by resolution and R-values. Resolution can be un-
derstood as the smallest distance between atoms in the crystal which are 
seen as separate in the inferred structure (Dubach and Guskov, 2020). The 
resolutions of PDB structures range between ~0.5Å and several Å, with the 
lower values corresponding to better quality. Atomic resolution structures, 
which allow distinguishing individual atoms with little error in their place-
ments, have resolutions <1.2Å (Morris and Bricogne, 2003). Near-atomic 
structures for which backbone atoms can be located with high confidence 
but details of side-chains and their orientation can be inaccurate are defined 
by resolutions ranging between 1.2Å and 2Å. The medium, low and very 
low resolution structures are defined by the 2Å to 3Å, 3Å to 5 Å, and >5Å 
intervals, respectively (Dubach and Guskov, 2020). The R-values measure 
the degree of match between simulated models and experimentally ob-
served diffraction patterns. The typically used R-free values are computed 
from experimental data that is excluded from the calculation of the struc-
ture, reducing intrinsic bias associated with the R-values that are modelled 
and computed on the same data (Brunger, 1992; Kleywegt and Jones, 
1997). These out-of-sample values are considered as the most useful 
measures of the model-to-measured data agreement (Read, et al., 2011). 
The R-free values of PDB structures vary between 0.045 and 0.512, where 
lower values denote better matching. Although resolution and R-free are 



 

correlated, they convey complementary information about the structure. 
For instance, PDB structure of endothiapepsin (PDB ID: 5RDH) has reso-
lution = 0.85 coupled with R-free = 0.334, suggesting that this atomic res-
olution structure is in relatively poor agreement with the corresponding 
structural model. Importantly, certain applications require specific levels of 
structure quality. For instance, rational drug design (Fernández-Ballester, 
et al., 2011; Grey and Thompson, 2010; Jazayeri, et al., 2015) and molecu-
lar docking applied to predict protein-protein interactions (Movshovitz‐
Attias, et al., 2010; Park, et al., 2015) rely on the atomic resolution struc-
tures.  

While some applications require specific levels of structure quality, cur-
rently there are no tools that are able to directly predict whether a given 
protein sequence would produce structure with the desired quality. A cou-
ple indirect attempts were recently made to adapt results produced by the 
crystallization predictors to quantify the structure quality; however, they 
show low levels of predictive performance (Gao, et al., 2018; Wang, et al., 
2018). In other words, while the available tools accurately find whether a 
given sequence will produce diffraction-quality crystals, the resulting struc-
ture quality of the crystallizable proteins cannot be accurately predicted. 
The quality of the X-ray crystallography-solved structures depends on 
many factors including protocols used at different stages of structure deter-
mination pipelines and the intrinsic properties of the protein itself. While 
there are many crystallization protocols, they are quite similar and typically 
utilize a common set of suggested strategies (Graslund, et al., 2008). We 
argue that intrinsic properties of the protein sequence provide useful infor-
mation that at least partially determines the resulting structure quality. We 
demonstrate this based on a relation between one of the most basic se-
quence characteristics, its length, and quality of the corresponding struc-
tures using a large dataset of 128,017 PDB structures defined in Section 2.1 
(Suppl. Fig. S1). We observe a gradual decrease in structure quality (higher 
resolution and R-free values) as the chain length grows (denoted by darker 
shades). This relation is true for R-free (horizontal bar along x-axis in 
Suppl. Fig. S1), resolution (vertical bar along the y-axis) and when consid-
ering both quality values (area inside Suppl. Fig. S1), in spite of the fact 
that these structures were solved by different groups/centers using different 
crystallization protocols. The feasibility of using intrinsic sequence charac-
teristics to predict the structure quality is further supported by the success 
of the current crystallization predictors. These methods also rely solely on 
the sequence-derived characteristics to accurately determine whether these 
sequences could produce diffraction-quality crystals (Canaves, et al., 2004; 
Elbasir, et al., 2020; Elbasir, et al., 2019; Kurgan, et al., 2009; Mizianty and 
Kurgan, 2011; Wang, et al., 2016; Zhu, et al., 2020). 

Given the availability of the very accurate methods that identify crystal-
lizable sequences, we focus on solving the subsequent, equally challenging 
and important problem of predicting quality of the resulting structures. We 
introduce a new predictive tool, XRRpred (X-ray crystallography Resolu-
tion and R-free predictor), that: 
 predicts R-free and resolution values directly from protein sequence; 
 facilitates prediction for multi-chain proteins that are common in PDB; 
 relies on modern resampling and regression algorithms to offer accurate 

predictions that significantly outperform alternative approaches that can 
be used to indirectly predict structure quality; 

 is freely available as a webserver that conveniently performs computa-
tions on the server side. 

2 Methods 

2.1 Dataset 
We collect a large set of proteins with known structure quality to train, op-
timize and compare the predictive model (Table 1). Using PDB, we extract 
128,017 X-ray structures of proteins that have experimental values of 

resolution and R-free and which exclude structures where proteins are in 
complex with RNA, DNA and RNA/DNA hybrids. The exclusion of these 
complexes is driven by the fact that we rely on the protein sequence as the 
sole input and since the presence of these large ligands would inevitably 
affect the structure quality. Preliminary analysis of this datasets reveals that 
the size of the protein structures, which we quantify with the total length of 
their chains, has grown over the years (Suppl. Fig. S2A). This suggests that 
progressively larger protein structures are being solved. Interestingly, the 
ratio of resolution to the structure size (Suppl. Fig. S2B) and R-free to the 
structure size (Suppl. Fig. S2C) are relatively similar for a significant ma-
jority of these structures, i.e., for structures deposited after 2000. We hy-
pothesize that this could be explained by the increasing size of the solved 
structures. Thus, we do not limit the data to a specific timeframe to maxim-
ize the dataset size. Next, we utilize the PDB facilities to cluster these struc-
tures at the 30% sequence similarity and select one structure per cluster to 
evenly sample the sequence space. The corresponding query is: "Resolution 
is between 0.0 and 100.0 and XrayRefinementQuery: refine.ls_R_fac-
tor_obs.comparator=between refine.ls_R_factor_all.comparator=be-
tween refine.ls_R_factor_R_work.comparator=between refine.ls_R_fac-
tor_R_free.comparator=between refine.ls_R_factor_R_free.min=0 re-
fine.ls_R_factor_R_free.max=100 and Chain Type: there is a Protein chain 
but not any DNA or RNA or Hybrid and Representative Structures at 30% 
Sequence Identity". Finally, we remove peptides (chains with length <20 
residues) and sequences with non-standard amino acids among the returned 
results. The latter was motivated by the fact that tools that we use to produce 
predictive features from the input sequences and to implement alternative 
ways to generate the predictions (which we compare to) could not produce 
results for such sequences.  

We divide the remaining proteins into the training and test datasets. We 
assign 2,037 proteins deposited to PDB after January 1, 2018 into the test 
dataset; the 18,305 older depositions comprise the training dataset. This 
simulates a scenario where the information about older structures is used to 
build a model that predicts the quality of newer structures. These datasets 
are summarized in Table 1. The key relevant characteristics, such as the R-
free and resolution values, the sequence length and the number of chains 
per protein are similar between the training and test datasets, suggesting 
that our model should be similarly applicable for future structures. The da-
tasets are available at http://biomine.cs.vcu.edu/servers/XRRPred/. 

We use cross-validation of the training set to conceptualize, design, and 
optimize the predictive model. Subsequently, we comparatively test the op-
timized model on the set-aside (excluded from training) test dataset. Given 
the above clustering, proteins in the test dataset share low (<30%) sequence 
similarity to proteins in the training dataset. This ensures that they could 
not be accurately predicted using alignment/sequence similarity and is also 
in line with existing studies that develop crystallization predictors where 
the similarity is limited to a range between 25% and 40% (Elbasir, et al., 
2020; Elbasir, et al., 2019; Meng, et al., 2017; Wang, et al., 2018; Zhu, et 
al., 2020).  

Table 1. Summary of the training and test datasets. We report mean ±stdev values. 

Dataset characteristics Training dataset  Test dataset  

Resolution  1.96 ±0.52 1.95 ±0.57 

R-free 0.226 ±0.039 0.220 ±0.039 

Average chain length per protein 273 ±183 312 ±208 

Number of chains per protein 2 ±2 2 ±2 

Number of proteins 18,305 2,037 

2.2 Evaluation metrics 
We assess the quality of predictions of the real-valued resolution and R-
free generated by various models, including XRRpred, by comparing their 
outputs with the experimentally measured resolution and R-free values. We 
use common metrics for this evaluation including Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Pearson Correlation Coefficient 
(PCC), and Spearman Correlation Coefficient (SCC). We define these met-
rics in the Supplementary file. 



2.3 Resampling 
Our preliminary attempts to design and train an accurate predictor have re-
vealed a significant problem. While our predictions were correlated with 
the native values (e.g., we secured SCC = 0.38 for resolution), they were 
impractical since they covered a much narrower range than the native val-
ues. For instance, the standard deviation of the predictions was at around 
0.2 while the native resolution has the standard deviation at about 0.5. The 
underlying reason is the imbalance in the distribution of resolution and R-
free values across their range, with a larger number of objects (proteins) 
having close to average resolution and R-free values and much fewer pro-
teins having large and small values (i.e. these are long tailed distributions). 
Correspondingly, predictive models focus on the center of the distributions 
while disregarding the tails, leading to small standard deviations 
(Krawczyk, 2016). We mitigate this problem by balancing the training dis-
tributions using resampling. Note that we only resample the training data, 
and use the original/non-resampled test data. 

While there are many methods to resample imbalanced data for classifi-
cation (prediction of a categorical output variable), the literature concerning 
resampling for regression problems (prediction of real-valued output vari-
ables, which in our case are resolution and R-free) is relatively scarce 
(Krawczyk, 2016). We consider a comprehensive set of six resampling 
methods for regression. Our selection covers two main types of resampling: 
under-sampling (random undersampling RU (Branco, et al., 2019)) and 
over-sampling (SMOTE (Torgo, et al., 2013) and RBOR (Krawczyk, et al., 
2020)). Under-sampling balances the distribution by removing a subset of 
objects that have over-represented output values. Over-sampling methods 
introduce new synthetic objects with output values that are under-repre-
sented in the dataset (which in our case are located in the distribution tails). 
We also include variations of these three methods that are augmented with 
a noise reduction step: RU-ENN for the under-sampling (Fernández, et al., 
2018), and SMOTE-ENN (Branco and Torgo, 2019) and RBOR-C 
(Koziarski, et al., 2020) for the over-sampling. The noise reduction aims to 
minimize situations where similar objects that have very different output 
values are close to each other. These objects can be disruptive to the 
resampling procedure and may negatively affect the subsequent model 
training process. We briefly describe the six methods that we utilize (i.e., 
RU, RU-ENN, SMOTE, SMOTE-ENN, RBOR and RBOR-C) in the Sup-
plementary file. We perform resampling separately for the prediction of 
resolution and R-free. 

2.4 Predictive model 
XRRpred predicts resolution and R-free directly from the protein sequence 
in three steps (Fig. 1): 1) extraction of residue-level profiles (done for each 
chain from the input protein); 2) extraction of protein-level features from 
the profiles (done over the chain-level profiles); and 3) prediction of reso-
lution and R-free from the protein-level features using two dedicated re-
gression models. The result (output) are the predicted real-valued resolution 
and R-free for the whole protein structure. We detail the three steps in the 
subsequent subsections. 

2.4.1 Extraction of the residue-level profiles 
We extract the profiles directly from the input protein sequence(s). They 
cover residue-level information that is relevant to the prediction of structure 
quality. We calculate profiles for each chain separately. The profiles in-
clude intrinsic disorder predicted with IUPred (Dosztányi, et al., 2005), sol-
vent accessibility predicted with ASAquick (Faraggi, et al., 2014), and a 
selection of pertinent physicochemical and structural properties of amino 
acids, such as side chain characteristics, polarity, charge, size, hydrophobi-
city, flexibility, propensity for structured/disordered conformations and 
propensity for folding. We selected IUPred and ASAquick motivated by 
their speed and reasonably strong levels of predictive quality (Faraggi, et 
al., 2014; Walsh, et al., 2015). We note that the use of slower and more 
accurate predictors could lead to improvements in the predictions of struc-
ture quality as a trade-off for longer runtime. We consider intrinsic disorder 
because the presence of disorder is shown to negatively impact production 

of structures via X-ray crystallography (Hu, et al., 2018; Oldfield, et al., 
2013). We particularly focus on surface residues extracted using the puta-
tive solvent accessibility since they drive packing of proteins into crystals 
that affects structure quality (Seeliger and de Groot, 2007). Inclusion of this 
sequence-derived information improves the predictive quality of the pro-
tein-level features that we extract in the next step when compared to using 
solely the sequence. We provide further details in the Supplementary file. 

2.4.2 Extraction of the protein-level features 
We cannot directly use the sequences or the residue-level profiles as an 
input to the predictive models. This is because they have variable sizes that 
depend on the chain length and number of chains per protein while predic-
tors require a fixed-length input. Accordingly, we extract a set of hand-
crafted protein-level features from the profiles. The design of these features 
aims to capture key characteristics of the profiles that are related to the pre-
diction of the structure quality. We also extract features directly from the 
chain sequences. The extraction of features involves two steps. First, we 
compute a given feature at the chain-level. This step quantifies physico-
chemical and structural properties of a given chain, including disorder, fo-
cusing on putative surface residues. Second, we use the chain-level values 
to calculate the protein-level features. More specifically, we use the mini-
mum, maximum, and average operators to aggregate the chain-level fea-
tures for the same protein. Suppl. Table S2 details the calculation of these 
features. We extract a total of 324 features. 

 

Fig. 1. Block diagram of XRRpred’s prediction process. The dark gray boxes denote 
inputs and outputs. The white boxes with vertical bars mark calculations and white 
boxes without vertical bars show intermediate data. The light grey boxes delineate the 
profiles computed for the protein chains. 

2.4.3 Prediction of resolution and R-free 
We use machine learning models to predict the resolution and R-free from 
the feature-based representation of the input sequences. We train and opti-
mize the models exclusively on the training dataset. The optimization con-
siders three main aspects including selection and parametrization of ma-
chine learning algorithms, selection of relevant features, and selection of 
resampling methods. Therefore, we perform 3-dimensional grid search to 
select models that produce the highest SCC based on the 3-fold cross-vali-
dation on the training set. Next, we detail each of the three dimensions. 

We consider a comprehensive selection of seven regressors (algorithms 
that produce real-valued predictions) listed in Suppl. Table S3. We exclude 
deep network-based models since they require a much larger amount of the 
training data and would likely overfit our training dataset. This table lists 
hyperparameters and their values that we consider in the grid search. The 
parametrization involves two passes. In the first pass, we use the hyperpa-
rameter values shown in Suppl. Table S3 that uniformly sample the param-
eter space (exploration step). In the second pass, we fine-tune values around 
the values selected in the first pass (refinement step).  

Some of the considered 324 features could be mutually correlated and/or 
provide low-quality input for the prediction of resolution or R-free. While 
some of the considered regressors have an intrinsic ability to identify and 
utilize a suitable subset of the input features during training, other methods 
may suffer reduced predictive performance when correlated and poor-qual-
ity features are used. Therefore, we consider the following two scenarios: 
1) the entire feature set is used; and 2) a subset of empirically selected fea-
tures is used. The selection relies on a combination of the filter and wrapper 
feature selections. In the filter-based step, the features are sorted based on 



 

their SCC with the outcome (resolution or R-free) on the training dataset 
and we remove features with the low SCC values; this eliminates low-qual-
ity features. In the subsequent wrapper-based step, we identify a subset of 
remaining features based on forward selection using the sorted list of fea-
tures and linear regression in the cross-validation on the training set. Only 
the features that improve predictive performance are selected. This step 
eliminates mutually correlated features. This selection protocol has been 
used in several related studies (Hu, et al., 2019; Meng and Kurgan, 2018; 
Yan and Kurgan, 2017; Zhang and Kurgan, 2019). 

As discussed in Section 2.3, we perform resampling to ensure that the 
predictions cover the full range of the experimental resolution and R-free 
values. Thus, the grid search covers the use of the original unsampled da-
taset as well as the use of each of the considered six resampling methods. 

2.4.4 Optimization of the predictive models 
We perform the grid search-based optimization using the cross-validation 
on the training dataset separately for the prediction of resolution and R-free. 
We examine 4,172 setups (298 combinations of machine learning algo-
rithms and hyper-parameters, 2 feature sets: complete and selected, and 7 
resampling options). We search for a setup that results in the highest SCC 
value while providing predictions with a correct range of resolution and R-
free values (detailed in Section 2.3). The results are summarized in Suppl. 
Table S4. We compare the best results for each resampling method, includ-
ing also the results where original/non-resampled data is used, since inclu-
sion of resampling substantially impacts the predictive performance.   

Using the training data, the best configuration for the prediction of reso-
lution utilizes the Stochastic Gradient Descent (SGD) regressor (Bach and 
Moulines, 2011), all features, and the SMOTE resampling. For R-free, we 
secure the best results with the Elastic Net regression (Zou and Hastie, 
2005), using the empirically selected features and the SMOTE-ENN 
resampling. The selected hyperparameters for these two models are listed 
in Suppl. Table S4. Although we use these specific configurations to im-
plement XRRpred, both types of regressors produce relatively similar re-
sults. While the impact of the selection of the regressors is limited, we find 
that the use of resampling leads to substantial improvements. For both res-
olution and R-free, we secure the best results using the SMOTE-based 
resampling that oversamples the “rare” proteins (i.e. by introducing syn-
thetic samples with either low or high values of resolution/R-free) in the 
training dataset. The use of the undersampling techniques (RU and RU-
ENN) provides lower quality results compared to the SMOTE-based over-
sampling. This can be explained by the fact that undersampling removes 
the “over-represented” proteins (i.e., proteins with the common/mid-range 
values of resolution and R-free), therefore reducing the size of the training 
dataset. Moreover, the application of the original/non-resampled training 
dataset leads to low predictive performance, when we set the underlying 
model to produce the predictions that follow a similar range of values as 
the native resolution/R-free (see Table 1). This was our original motivation 
to introduce resampling. The results also show that feature selection is un-
necessary for some regressors, such as SGD and linear regression, which 
are capable of selecting features indirectly through the optimization of the 
coefficients. On the other hand, other regressors, such as the Elastic Net, 
decision tree regressor (Breiman, 1984) and passive aggressive regressor 
(Crammer, et al., 2006), benefit from the feature selection (Suppl. Table 
S4). Finally, Suppl. Table S4 reveals the best-performing configurations on 
the training set also produce the best result on the test dataset. We empha-
size that we evaluated these models on the test dataset only after the we 
finalized the selection of the configurations on the training dataset. This 
suggests that the use of the cross-validation has been indeed effective to 
optimize the predictive models. 

3 Results 

3.1 Comparative assessment 
We compare the results produced by XRRpred on the test dataset to a rep-
resentative set of alternative solutions. To the best of our knowledge, there 
are currently no other predictors of structure quality quantified with 

resolution and R-free. Thus, we define several indirect ways to make these 
predictions including a random predictor, a sequence alignment-based ap-
proach and an application of current predictors of the X-ray crystallization 
propensity. The latter is motivated by recent studies that attempt to use 
these predictions as a proxy for structure quality (Gao, et al., 2018; Wang, 
et al., 2018). We selected two recent and runtime-efficient (to process the 
entire test dataset) crystallization propensity predictors: fDETECT (Meng, 
et al., 2017; Mizianty, et al., 2014) and DeepCrystal (Elbasir, et al., 2019). 
They produce a numeric propensity score, for which higher value denotes 
higher likelihood to produce diffraction-quality crystals. This score is in-
versely correlated with the resolution and R-free. Therefore, we convert 
these predictions using the minmax normalization into the range of resolu-
tion and R-free values in the training dataset, such that the minimal (maxi-
mal) crystallization propensity is mapped to the highest (lowest) resolu-
tion/R-free value. Since resolution and R-free are different measures of 
structure quality we define two alternative indirect predictors based on 
these two scores. ALT1 uses the converted DeepCrystal scores as putative 
resolution and the converted fDETECT scores as putative R-free, while 
ALT2 utilizes the converted fDETECT scores as predicted resolution and 
the converted DeepCrystal scores as predicted R-free. The alignment-based 
predictor relies on the premise that proteins with similar sequences should 
share similar structure quality. To this end, we utilize BLAST (Altschul, et 
al., 1997) to compute the similarity between a given test protein and each 
protein in the training dataset and use the resolution and R-free from the 
most similar training protein as the prediction. Finally, the random predic-
tor produces a random number within the range of the experimental resolu-
tion and R-free values. This provides a baseline that corresponds to the low-
est possible predictive performance. We use statistical significance tests to 
assess whether the predictive performance of XRRpred is significantly dif-
ferent from the results provided by each of these reference predictors. This 
test essentially evaluates whether the differences would hold across differ-
ent test datasets. Thus, we compare results across 10 disjoint and equally-
sized subsets of the test proteins. We use the t-test if the measured metrics 
are normal (we assess normality with the Anderson-Darling test at p-value 
of 0.05) and the Wilcoxon rank-sum test otherwise. Table 2 compares the 
correlations (PCC and SCC), errors (MAE and MSE), and the distributions 
of the predicted scores (represented by the average and standard deviation 
of resolution/R-free) on the test dataset for XRRpred, ALT1 and ALT2 pre-
dictors, the alignment-based approach, the random baseline and the regres-
sors that we optimized in Section 2.4.4 without sampling. 

Table 2. Comparison of the predictive performance on the test dataset. The predic-
tors are sorted in the descending order based on the SCC scores, separately for the 
prediction of resolution and R-free. The stars denote that the difference for a given 
metric between XRRpred and a given other predictor is statistically significant (p-
value<0.05). Bold font highlights the best results. “Mean ±Std” denote the mean and 
standard deviation of the predicted values.  

  Method SCC PCC MAE MSE Mean±Std 

R
es

ol
ut

io
n 

XRRpred 0.43 0.46 0.44 0.33 1.97 ±0.54 

Best regressor  
without resampling 

0.22* 0.25* 0.60* 0.62* 2.00 ±0.70 

ALT1 0.22* 0.25* 1.39* 3.07* 3.05 ±1.39 

ALT2 0.16* 0.16* 2.55* 7.61* 4.47 ±1.07 

Random 0.04* 0.04* 1.88* 5.30* 3.50 ±1.63 

Similarity-based -0.02* -0.04* 0.60* 0.62* 1.96 ±0.52 

R
-f

re
e 

XRRpred 0.35 0.36 0.034 0.002 0.231 ±0.033 

Best regressor  
without resampling 

0.06* 0.05* 0.055* 0.006* 0.220 ±0.068 

ALT2 0.09* 0.10* 0.066* 0.007* 0.235 ±0.073 

ALT1 0.01* -0.02* 0.100* 0.013* 0.310 ±0.056 

Similarity-based -0.01* -0.02* 0.045* 0.003* 0.226 ±0.040 

Random -0.03* -0.02* 0.087* 0.011* 0.259 ±0.087 

 



XRRpred provides accurate predictions of resolution and R-free. Its pre-
dictions secure SCC = 0.43 and MAE = 0.44 for the prediction of resolu-
tion. This means that on average these putative resolutions are 0.44Å away 
from the actual values. This is a relatively small error considering that the 
range of the resolution values is about 7Å. Similarly, XRRpred obtains SCC 
= 0.35 and MAE = 0.034 for the prediction of R-free, when the range of R-
free values is about 0.47. The moderate values of correlations stem from 
the use of the protein sequence as the sole input, which indirectly limits the 
highest achievable predictive performance. Importantly, these predictions 
cover the correct range of the resolution and R-free values. To compare, the 
average and standard deviation of the XRRpred’s predictions of resolution 
are 1.97±0.54 (Table 2), while for the experimental resolutions they are 
1.95 ±0.57 (Table 1). Similarly, for R-free they are 0.231±0.033 (Table 2) 
for XRRpred and 0.220 ±0.039 (Table 1) for the experimental data.  

XRRpred strongly benefits from the SMOTE-based resampling. Com-
pared to the regressors that exclude resampling (Table 2), XRRpred pro-
vides statistically significant improvements for all metrics (p-value < 0.05). 
For the prediction of resolution SCC values drop from 0.43 to 0.22 and 
MAE increases from 0.44 to 0.60. Similarly, for the R-free SCC drops from 
0.35 to 0.06 and MAE worsens from 0.034 to 0.055. 

Compared to the crystallization propensity predictors (ALT1 and ALT2 
methods), XRRpred also secures statistically significant improvements 
across all metrics for the prediction of resolution and R-free (p-values < 
0.05). For instance, for resolution the SCC of the better ALT1 combination 
is 0.22 and for R-free the SCC of the better ALT2 combination is 0.09. This 
agrees with the results from recent studies that shows similarly low corre-
lations between the crystallization propensity and resolution (Gao, et al., 
2018; Wang, et al., 2018). Interestingly, our results reveal that while the 
putative crystallization propensities are modestly correlated with resolution 
(SCC for DeepCrystal is 0.22 vs. 0.16 for fDETECT) they are not correlated 
with the R-free values (SCC for DeepCrystal is 0.09 vs. 0.01 for 
fDETECT). This also underscores the fact that resolution and R-free are 
two different measures of structure quality. 

Both the alignment-based approach and the random baseline offer simi-
larly poor performance with SCC and PCC at around zero and large errors. 
While this is expected for the random predictor, the poor performance of 
the alignment stems from the fact that test proteins to share low, <30%, 
similarity to the training proteins. Such low levels of similarity render 
alignment-based predictions ineffective. However, XRRpred still secures 
accurate predictions in spite of this low levels of similarity. 

Finally, we study a potential impact of similarity between the proteins 
that were used to train IUPred and ASAquick methods, which we use to 
derive predictive inputs to XRRpred (Fig. 1), and the proteins from our test 
dataset. To accomplish that, we extract a subset of the test proteins that 
share low similarity with the IUPred and ASAquick training proteins. More 
specifically, we compute pairwise similarity of each chain from the test 
proteins to every training protein using BLAST and eliminate test proteins 
for which at least one chain had similarity ≥ 30%. Next, we retest XRRpred 
on the resulting set of 611 dissimilar test proteins. Our predictor secures 
MAE = 0.41 (vs. 0.44 using the complete test dataset), MSE: 0.27 (vs. 
0.33), PCC = 0.48 (vs. 0.46) and SCC = 0.42 (vs. 0.43) for the prediction 
of resolution. Similarly, it obtains MAE = 0.031 (vs. 0.034), MSE = 0.001 
(vs. 0.002), PCC = 0.32 (vs. 0.36) and SCC = 0.31 (vs. 0.35) for the predic-
tion of R-free. We observe that the results on the complete test dataset and 
its subset that shares low similarity to the training data of IUPred and 
ASAquick are similar. The lack of sensitivity to the similarity to these train-
ing proteins could be explained by the simple design of the IUPred and 
ASAquick models which do not use sequence alignment, thus reducing 
possibility of over-fitting training datasets  (Dosztányi, et al., 2005; 
Faraggi, et al., 2014). 

 

 

 

Fig. 2. Analysis of the experimental and putative structure quality values for clusters 
of structures of the same protein sequences. Panels a and b show the sizes of clusters 
and the corresponding range = max – min for the experimental values of resolution 
and R-free within clusters, respectively; each point is a cluster. Panels c and d show 
the distributions of the normalized absolute errors, which are defined as the absolute 
difference between predictions and the minimal experimental value in the cluster di-
vided by the range of native values in the cluster. The whiskers are the 5th and 95th 
percentiles. The middle bar in the box is the median and the cross mark is the mean. 
The annotations above the whiskers name methods for which the absolute errors are 
significantly different (p-value<0.05). Statistical test is defined in Section 3.1. 

3.2 XRRpred identifies favorable structure quality for 
proteins with multiple solved structures 

PDB offers multiple structures for some of the proteins. This may stem 
from a variety of reasons including solving structures under different crys-
tallization protocols, across different organisms, and/or in complex with 
different ligands. For example, there are well over 500 X-ray crystallog-
raphy structures of the lysozyme. We study the clusters of structures of 
identical proteins (i.e., proteins in a given cluster have the same number of 
chains and the same sequences) to investigate whether these structures dif-
fer in quality. We focus on the clusters with at least 10 structures to ensure 
that we can compute reliable statistics. Figures 2a and 2b show the range 
of resolution and R-free values against the corresponding cluster sizes. We 
find many clusters that include dozens and even hundreds of structures. 
Moreover, we observe that the quality of structures in these clusters varies. 
The majority of the clusters include proteins with structures for which res-
olutions differ by over 1Å and with R-frees that vary by over 0.08. These 
are substantial differences considering that the standard deviations of reso-
lution and R-free values in PDB are at about 0.55 and 0.04, respectively. 

Given these results, we investigate whether XRRpred and the other 
methods could produce predictions that fall within the range of the experi-
mental outcomes and that can be used to identify favorable (close to the 
best) structure quality for these proteins. We measure the absolute error 
between their predictions and the corresponding cluster minimums. Since 
different clusters have different ranges of resolution and R-free values, we 
normalize the error using the range. This results in the following metric: 

Normalized Absolute Error
|predicted value - cluster minimum value|

cluster max - cluster min
 

Figures 2c and 2d show that XRRpred secures low normalized absolute 
errors for the prediction of resolution and R-free. Nearly all of its errors are 
below 1, which means that XRRpred’s predictions do not exceed the range 
of values inside clusters. XRRpred also produces predictions that are closer 
to the cluster minimum than the cluster maximum for majority of clusters. 
This can be observed based on the median values shown in Figures 2c and 
2d. Furthermore, statistical analysis reveals that XRRpred’s errors are sta-
tistically significantly lower (p-value < 0.05) than the errors produced by 
the other solutions including the usage of the crystallization propensity 
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predictors (ALT1 and ALT2) and the random baseline. This observation is 
consistent with the result in Table 2. We note that both crystallization pro-
pensity predictors are statistically significantly better than the random base-
line (p-value < 0.05). Altogether, this analysis suggests that XRRpred out-
performs the other approaches since its predictions are within the range of 
the experimental resolution/R-free and provide useful clues to identify fa-
vorable structure quality for these protein clusters. 

 

 
Fig. 3. Distribution of experimental and putative structure quality values for the test 
proteins grouped into the structural classes defined in the CATH resource. Panels a 
and f compare the distribution of native resolution and R-free values across the four 
structural classes. Panels b and g compare the distribution of putative resolution and 
R-free values predicted by XRRpred. Panels c, d, h and i focus on the putative values 
produced by the crystallization propensity predictors (ALT1 and ALT2 methods). 
Panels e and j summarize results for the random baseline prediction. The whiskers 
give the 5 and 95 percentiles. The middle bar in the box is the median and the cross 
mark is the mean. The annotations above the whiskers list structural classes for which 
the differences in resolution or R-free values from the class corresponding to this box 
plot are significant from (p-value<0.05). Statistical test is defined in Section 3.1. 

3.3 XRRpred’s predictions reproduce structure quality 
relations across structural classes of proteins 

Protein structures are categorized into several classes that are typically de-
fined based on the overall arrangement and composition of the secondary 
structure elements. One commonly used classification of protein structures 
into classes is introduced in the CATH database (Orengo, et al., 2002; 
Sillitoe, et al., 2021). The top-level of this classification hierarchy relies on 
a relative composition of secondary structures and covers four major clas-
ses: mainly alpha (structures composed primarily of alpha-helices; denoted 
as the α class); mainly beta (primarily beta-sheets; denoted as the β class); 
alpha and beta (structures composed of alpha helices and beta-sheets; de-
noted as the αβ class); and few secondary structures (structures mostly de-
void of alpha helices and beta-sheets and composed primarily of coils; de-
noted as the c class). We categorize proteins from the test dataset using the 
CATH class assignment protocol (Michie, et al., 1996) with the secondary 
structures that we collect from PDB. Next, we investigate whether proteins 
from different structural classes differ in their structure quality measured 
with resolution and R-free (see Figures 3a and 3f). Our analysis reveals 
that structures of proteins from different structural classes are characterized 
by statistically significantly different resolution and R-free values. For in-
stance, structures in the β class have on average the best resolution and R-
free values, which are significantly better than the corresponding structure 
quality from the α and c classes (p-value<0.05). On the other end of the 
spectrum, structures in the c class have on average the worst quality that is 
significantly inferior to the quality of structures in the β and αβ classes (p-
value<0.05). Interestingly, these relations are consistent across both 
measures of the structure quality.  

Considering the above findings, we use the test dataset to study whether 
XRRpred and the other methods generate predictions of structure quality 
that reproduce these relationships across the structural classes. Figures 3b 
and 3g show that XRRpred correctly recapitulates these relationships. It 
generates similar distributions of the resolution and R-free values for each 
class when compared to the experimental structure quality distributions 
(Figures 3a and 3f). The putative structural quality output by XRRpred 
sorts the structural classes from the best quality β class, through αβ class, α 
class and finally to the worst quality c class. This is identical with the order 
of the structural classes based on the experimental data. Moreover, XRR-
pred reproduces nearly all significant differences that we observe using the 
experimental data, with the only exception of some of the results for the αβ 
class. These results are in plain contrast to the predictions from the crystal-
lization propensity predictors (both ALT1 and ALT2 methods) and the ran-
dom baseline (Figures 3c, 3d, 3e, 3h, 3i and 3j). These approaches do not 
replicate the correct range of values for any of the classes, mix-up the order 
of classes (except for ALT1 and ALT2 that correctly identify that the c class 
obtains the worst structure quality values) and are unable to properly quan-
tify the significance of these differences. To sum up, we demonstrate that 
XRRpred is the only currently available tool capable of reproducing the 
structure quality relations between the four structural classes of protein 
structures. 

3.4 XRRpred’s predictions reproduce relationship be-
tween resolution and R-free values 

While resolution and R-free are correlated, they represent complemen-
tary information about the structure quality (Read, et al., 2011). This is why 
XRRpred covers both measures. Fig. 4a visualizes and quantifies the rela-
tion between these two structure quality measures on the test dataset. The 
correlation between the experimental resolution and R-free values is 0.75.  

Using the test dataset, we examine whether XRRpred and the other indi-
rect predictors of structure quality can accurately model the relationship 
between the two structure quality measures. Fig. 4b shows that XRRpred’s 
predictions of resolution and R-free follow a similar pattern to the experi-
mental data and share a virtually identical 0.75 correlation. The ALT1 and 
ALT2 methods that rely on the crystallization propensity predictors pro-
duces a rather different relation (Figures 4c and 4d) and their outputs fea-
tures correlations of 0.56. Finally, as expected, the random baseline (Fig. 
4e) shows no discernable relations and no correlation. This analysis shows 
that XRRpred not only provides accurate predictions of resolution and R-
free but also shows that its predictions preserve the relationship between 
these two structure quality measures. This also supports the design of XRR-
pred that relies on two separately trained regressors, which in spite of that 
are able to provide consistent results across the test proteins. 

 
Fig. 4. Relationship between resolution and R-free values for the experimental and 
predicted data on the test dataset. Panel a shows the experimental data. Panels b, c, d 
and e show the predictions. The dark blue line is the linear regression line. The 
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corresponding PCC values between resolution and R-free values are given in the top 
left corner of each panel.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

Fig. 5. Case studies that demonstrate predictions from XRRpred for the ER-1 phero-
mone from Euplotes raikovi (PDB ID: 6E6O) and the BRCA1-A complex from Mus 
musculus (PDB ID: 6GVW). Panels a and c illustrate the resolution and R-free pre-
dictions for the BRCA1-A complex, respectively. Panels b and d focus on the predic-
tions of resolution and R-free for the ER-1 pheromone, respectively. Panel e shows 
the relationship between experimental resolution and one of the input features (fea-
ture-A that quantifies the sum of input chain lengths) for the test proteins; each point 
represents one protein. Panel f depicts the relationship between experimental R-free 
and another input features (feature-B: the maximum number of flexible residues 
within in a sliding window of size 20 across all chains) for the test proteins. The R-
free and resolution values predicted by XRRpred and the corresponding experimental 
(native) values for the two proteins are identified with the star (for prediction) and 
square (for native) markers in panels e (for resolution) and f (for R-free). We color-
code the two markers in green for the ER-1 pheromone and in red for the BRCA1-A 
complex. The dark blue line in panels e and f is the linear regression line. The PCC 
values between a given structure quality measure and the corresponding feature are 
given in the top right corner in these panels. 

3.5 Case studies 
We use two test proteins to explain the working of the XRRpred model and 
to illustrate how its results are presented to the end users. Our objective 
here is not to compare or evaluate the expected predictive performance but 
to explain how to interpret XRRpred’s predictions and how these predic-
tions are linked to the underlying input features. The examples cover two 
diverse cases, one that considers a poor-quality structure and the other that 
presents a good-quality structure. 

The relatively poor-quality structure of the BRCA1-A complex from 
Mus musculus (PDB ID:6GVW) has the low resolution of 3.75 Å and a 
modest-quality R-free of 0.259. Fig. 5a and 5c show that XRRpred predicts 
resolution of 3.746 and R-free of 0.337, which are relatively close to the 
experimental values. These figures also illustrate how the results produced 
by the XRRpred’s webserver are visualized. We divide the experimental 
resolution and the R-free values into five color-coded ranges: very good 
(dark green), good (light green), medium (yellow), poor (light red) and very 
poor (dark red) scores. This helps the end users in placing the predicted 
values into a proper context. The results produced by XRRpred, which are 
shown in the yellow callout box, include the predicted resolution/R-free, 
the corresponding range name, and the percentile with respect to the distri-
bution of the corresponding experimental values. For instance, the XRR-
pred’s prediction of resolution for the BRCA1-A complex (Fig. 5a) 

includes the 3.746 putative resolution which is identified as very poor and 
placed in the 99th percentile of the resolution values. 

We also explain how XRRpred arrived at this prediction. The scatter 
plots in Fig. 5e and 5f show the relations between two input features (fea-
ture-A: sum of input chain lengths; feature-B: max number of flexible res-
idues within in the sliding window of size 20 across all chains) and the 
experimental values of resolution and R-free for the test proteins. Feature-
A has a modest (0.29) correlation with resolution, which means that the 
resolution worsen as the size of the input protein gets larger. Feature-B has 
a low (0.15) correlation with R-free, which suggests that R-free worsens 
for proteins that have sequence regions with many highly flexible residues. 
Both of these features have relatively large values for the BRCA1-A com-
plex (see red star markers in Fig. 5e and 5f), and this in part leads the XRR-
pred’s regressors to predict relatively large values of resolution and R-free. 

The second case study concerns a good-quality structure of the ER-1 
pheromone from Euplotes raikovi (PDB ID: 6E6O). This structure has the 
atomic level resolution of 0.70 and a good R-free of 0.184. Fig. 5b and 5d 
reveal that XRRpred predicts resolution of 1.149 (in the very good range) 
and R-free of 0.181 (in the medium range) for this protein. These predic-
tions are in a good agreement with the experimental data. The predictions 
stem in part from the low values of feature-A (i.e., this is a small protein; 
see green star marker in Fig. 5e) and feature-B (i.e., this protein does not 
include regions with many flexible residues; see green star marker in Fig. 
5f). The regressors used by XRRpred utilize many such features together 
to provide accurate predictions of the structure quality. 

3.6 XRRpred webserver and standalone code 
We provide a webserver that implements the XRRpred predictor at 
http://biomine.cs.vcu.edu/servers/XRRPred/. Users provide the input pro-
tein sequences in the FASTA format where individual chains for a multi-
chain protein must share a common prefix in their identifiers. We provide 
explanation and examples of the input format on the webserver page. Users 
benefit from a batch processing of predictions. We allow up to 50 sequences 
in a single run. We offer an option to provide an email address where the 
notification of the completion of the prediction and the link to the results is 
sent after the webserver processes the user’s query. The processing of the 
predictions and the results are also available via the browser window. We 
process the user’s requests using a queue that serves multiple webservers 
from our lab and which ensures a proper load balancing between users. The 
entire prediction process is automated and done on the server side, freeing 
the end users from installing software and having access to computational 
hardware. We visualize the results, which include the predicted values of 
resolution and R-free, using the graphics shown in Figures 5a, 5b, 5c and 
5d. We explain these graphics in Section 3.5. We also provide the results 
in a parsable comma-separable csv file. 

The standalone source code for XRRpred is available at 
https://github.com/sinaghadermarzi/XRRpred-predictor, with a convenient 
docker version at https://github.com/sinaghadermarzi/XRRpred-docker. 

4 Summary 
X-ray crystallography is the main driver to solve protein structures 
(Grabowski, et al., 2016). However, these structures vary widely in their 
quality. The last decade has produced accurate tools that identify sequences 
that produce diffraction quality crystals and thus can be solved via the X-
ray crystallography (Elbasir, et al., 2020; Elbasir, et al., 2019; Gao, et al., 
2018; Wang, et al., 2018; Zhu, et al., 2020). This calls for the development 
of tools that predict the quality of structures for the crystallizable proteins.  

We introduce the first predictor of the protein structure quality, XRR-
pred, which targets prediction of the two key structure quality measures: 
resolution and R-free. XRRpred relies on original sequence profiles, hand-
crafted features, and an extensive design process that utilizes modern 
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resampling. Empirical tests on an independent (low similarity to the train-
ing data) test set show that XRRpred provides accurate predictions for res-
olution and R-free. We find that the inclusion of resampling provides sta-
tistically significant improvements while the other design considerations 
(feature and regressor selection) provide modest benefits. We show that 
XRRpred’s predictions correctly model correlation between resolution and 
R-free, reproduce structure quality relations between structural classes of 
proteins, and suggest favorable structure quality for the commonly found 
clusters of different structures for identical protein sequences. Tests reveal 
that XRRpred significantly outperforms alternative indirect ways to predict 
the structure quality, such as predictors of crystallization propensity and 
alignment. XRRpred server at http://biomine.cs.vcu.edu/servers/XRRPred/ 
processes user’s requests on the server side, allows batch predictions, offers 
informative visualization of the results, and provides links to the standalone 
software. 

As a potential future direction, one can consider using other inputs, be-
yond the sequence. These could include details concerning experimental 
parameters of the crystallization protocol, hardware used, and taxonomy. 
While inclusion of these data would likely result in an improved predictive 
performance, it would also constrain applications to the scenarios where 
information about these factors is available and where these factors are cov-
ered in the training dataset. XRRpred uses sequence as the sole input, which 
means that it can be applied to any protein for which sequence is known, 
even if it would be solved using hardware or protocols that were not explic-
itly included in the training dataset. Another option is to consider other 
types of methods used to solve protein structures, such as nuclear magnetic 
resonance (NMR) and cryogenic electron microscopy (cryo-EM). While 
these methods are much less popular than X-ray crystallography, this can 
change in the future. In particular, recent and rapid developments in the 
cryo-EM technology (Callaway, 2020; Garcia-Nafria and Tate, 2020) posi-
tion this technology as a likely target for our future development efforts. 
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