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Summary

Intrinsically disordered regions (IDRs) are estimated to be highly abundant in nature. While only several
thousand proteins are annotated with experimentally derived IDRs, computational methods can be used
to predict IDRs for the millions of currently uncharacterized protein chains. Several dozen disorder
predictors were developed over the last few decades. While some of these methods provide accurate
predictions, unavoidably they also make some mistakes. Consequently, one of the challenges facing
users of these methods is how to decide which predictions can be trusted and which are likely incorrect.
This practical problem can be solved using quality assessment (QA) scores that predict correctness of the
underlying (disorder) predictions at a residue level. We motivate and describe a first-of-its-kind toolbox
of QA methods, QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions), which
provides the scores for a diverse set of ten disorder predictors. QUARTER is available to the end users as
a free and convenient webserver at http://biomine.cs.vcu.edu/servers/QUARTER/. We briefly describe
the predictive architecture of QUARTER and provide detailed instructions on how to use the webserver.
We also explain how to interpret results produced by QUARTER with the help of a case study.
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1 Introduction

Intrinsically disordered regions (IDRs) in protein sequences lack stable tertiary structure under
physiological conditions and instead they form dynamic conformational ensembles [1-4]. Several large-
scale computational estimates reveal that proteins with IDRs are highly abundant in nature [5-10] and
that these regions are functionally important [11-31]. The disordered nature of these regions is encoded
in their sequences; IDRs often feature high net charge and low hydrophobicity, when compared to
structured protein regions. IDRs are typically depleted in aromatic residues, large hydrophobic amino
acids, and valine [32]. These marked differences between the sequences of IDRs and structured regions
have motivated the development of accurate computational tools for the prediction of disorder.

Over 50 disorder predictors have already been developed. A near complete list of these methods can be
assembled from several recent surveys and comparative studies [33-36,2,37-39]. Arguably the most
popular methods (sorted by the number of Google Scholar citations as of Feb 21, 2019) include DisEMBL
[40] (1115 citations), IUPred [41] (1561 citations), DISOPRED [42] (617 citations), VSL2 [43] (588
citations), PrDOS [44] (402 citations), ESpritz [45] (195 citations), MFDp [46] (131 citations), and SPINE-D
[47] (117 citations). Several recent comparative analyses show that some disorder predictors offer high
predictive quality. For instance, the disorder assessment in the CASP10 experiment (the latest CASP that
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has assessed these predictions) reveals that the top three methods achieve areas under the ROC curves
(AUCs) equal 0.907 (PrDOS), 0.897 (DISOPRED3), and 0.890 (MFDp) [48].
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Figure 1. Prediction of intrinsic disorder and the associated quality assessment (QA) scores for the PsaF protein (UniProt ID:
P12355). The top panel of the figure shows the putative propensities for disorder (black line) and the binary predictions track,
i.e., disordered (in red) vs. ordered (in blue) residues, which were generated by the VSL2B method. The bottom panel of the
figure shows the corresponding QA scores (black line) produced with the QUARTER method. Green shading denotes regions
where the predictions are assumed to be correct according to the putative propensities for disorder (at the top) and according
to the QA scores (at the bottom).

Disorder predictors generate two types of outputs for each amino acid in the input protein sequence: a
real-value propensity for disordered conformation and/or a binary category (disordered vs. ordered).
High values of propensity suggest that the corresponding residues are likely disordered while low values
suggest that they are ordered. The binary category is usually generated using a predictor-specific
threshold, where residues with propensities greater than the threshold are predicted as disordered
while the remaining residues are predicted as ordered. Figure 1 shows an example prediction from the
VSL2B method [43] for the PsaF protein from spinach (UniProt ID: P12355). This relatively obscure
example is used to illustrate prediction for a protein with disorder status that is most likely unknown to
the reader. The black line in the top panel of Figure 1 represents the real-value propensities, the dotted
horizontal line denotes the threshold, and the color-coded horizontal track right below shows binary
predictions (red for disordered residues vs. blue for ordered) generated by VSL2B. After computing the
predictions, it is left to the user to decide whether and which of these predictions can be trusted.
Assuming all predictions are correct would be unreasonable since none of the predictors is or should be
expected to be 100% accurate. The VSL2B predictor was previously benchmarked to have 81.6%
accuracy [43], which means that on average 18.4% of its lowest quality predictions should be discarded.
The residues with presumably the lowest predictive quality are those with propensities closest to the
binary prediction threshold, i.e., residues with higher propensities (lower propensities) are more likely to
be correctly predicted as disordered (ordered). The green shading of the VSL2B predictions in Figure 1
shows the location of the corresponding set of 81.6% correctly predicted residues. This correct/green
part of the prediction suggests that the PsaF protein has IDRs at both termini, a long IDR in the middle of
the chain (positions 83 to 117), and a short IDR at positions 187 to 194. The remaining short putative IDR
at positions 124 to 130 is likely inaccurately predicted. There are at least two problems with this
interpretation of predictions. First, the 81.6% accuracy was measured on a benchmark dataset and it
does not imply that this level of accuracy applies to each individual prediction. In fact, results for
individual proteins vary widely, from highly accurate predictions to cases where majority of predictions
are wrong. Second, the propensity scores are not guaranteed to be accurate indicators of the quality of
predictions, as shown in a recent investigation that considered a collection of 10 representative disorder
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predictors [49]. This study has revealed that for 9 out of 10 of these methods (the exception being
VSL2B) the propensity scores provide useful information to select accurate predictions only for the
natively ordered residues, while being virtually unusable for the natively disordered residues.
Altogether, we argue that selection of the subset of accurate predictions is a challenging task which is
influenced by the choice of a particular predictor and a particular protein sequence.

One solution to this problem is to generate quality assessment (QA) scores together with the disorder
predictions. QA scores quantify correctness (confidence) of the disorder predictions at a residue level to
reveal which predictions are more likely to be correct. Correctly predicted native disordered and
structured residues should have high values of the QA scores, while residues that are incorrectly
predicted should have low QA scores. The QA score predictions must be optimized for specific predictors
of disorder since these methods use different types of disorder annotations, were designed using
different training datasets and use different predictive architectures [35,36,2,37]. While prediction of
QA scores has been pursued for over a decade for predictions of protein structure [50-54], so far only
one method, called QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions), was
developed to generate these scores for predictions of intrinsic disorder [55]. The bottom panel of Figure
1 shows QUARTER’s QA scores for VSL2B’s predictions. The black line shows the QA scores and the green
shading corresponds to the regions where VSL2B’s predictions are likely correct. They reveal that the N-
terminus is intrinsically disordered while the region between positions 153 and 224 is ordered. The QA
scores also suggest that the central part of this protein where the QA scores are low (positions 50 to130)
is likely incorrectly predicted.

QUARTER was empirically shown to provide accurate and individually optimized QA scores for ten
popular disorder predictors [55]. Empirical tests on a large test dataset show that QUARTER’s QA scores
are accurate and significantly better than the propensity scores generated by the disorder predictors,
particularly for the native disordered residues [55]. Consequently, these QA scores avoid the two pitfalls
of disorder propensities: (1) they are tailored to individual proteins and (2) they work equally well for
both native disordered and native ordered residues. We note that at the end of this chapter, QA scores
and disorder propensities are compared in the context of native annotations of disorder for the PsaF
protein from Figure 1. Overall, QUARTER’s QA scores provide a useful context for the underlying
disorder predictions, guiding the user towards a subset of high quality predictions that are calibrated for
specific protein sequences and predictors.

This chapter describes the predictive architecture of the QUARTER tool, explains how to use QUERTER’s
webserver and clarifies how to interpret results produced by this webserver. It concludes with a case
study that focuses on the PsaF protein.

2 Materials

2.1 Disorder Predictors Supported by QUARTER

QUARTER supports ten disorder predictors that include three version of the ESpritz method that were
designed to predict disorder annotated using X-ray crystallography (Espritzx.ray), NMR (Espritzymgr), and
the DisProt database (Espritzpiserot) [56]; two versions of IUPred that predict short (IUPredshort) and long
(IUPrediong) disordered regions [57]; two versions of the DisEMBL method that predict disordered
regions defined as hot loops (DiSEMBLyotioops) and based on remark 465 from Protein Data Bank
(DiSEMBLyemarkass) [58], GlobPlot [59], RONN [60], and VSL2B [43]. The selection of the ten predictors was
motivated by several factors: 1) they are sufficiently computationally efficient to perform genome-scale
predictions, i.e., their runtime is under 1 min for an average size protein sequence; 2) they are
incorporated into the two popular databases of predicted disorder: MobiDB [61-63] and D?P? [64]; 3)
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they provide relatively accurate disorder predictions [65,66]; and they are freely accessible online, see
Table 1.

Table 1. Availability for the ten disorder predictors that are supported by the QUARTER method.

Disorder predictor URL

DiSEMBLHotLoops

DiSEMBLremarkass http://dis.embl.de/

GlobPlot

EspritzDisprot

Espritzyvr http://protein.bio.unipd.it/espritz/

Espritzx.ray

:BE:::;T" https://iupred2a.elte.hu/

RONN https://www.strubi.ox.ac.uk/RONN

VSL2B http://www.dabi.temple.edu/disprot/predictorVSL2.php
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Figure 2. Architecture of the QUARTER method.

2.2 Architecture of the QUARTER Method
QUARTER uses a three-step procedure to generate QA scores for each of the ten considered disorder
predictors. The three steps correspond to the following three architectural layers (Figure 2):

1.

Layer 1: Sequence profile. The first layer uses the input protein sequence to produce sequence
profile that includes sequence-derived information useful for the QA prediction. The profile
integrates the disorder predictions, amino acid type (AA type) encoded in binary, and several
selected physicochemical properties of residues including putative solvent accessibility,
hydrophobicity, flexibility, net charge, propensity for disorder and sequence complexity (see Note
1).

Layer 2: Feature encoding. The second layer converts the sequence profile into a fixed number of
custom-designed numerical features that combine information across multiple elements of the
profile and across multiple residues. Three types of sliding windows are used to encode profile
information across residues (Fig. 1): window of 3 adjacent residues (in blue); window of 13
neighboring residues (in red); and window of background residues (in green). QUARTER is optimized
for specific disorder predictors by empirically selecting a set of features that maximizes predictive
performance for the resulting putative QA scores on a training dataset (see Note 2).
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3. Layer 3: Predictive model. The third layer inputs the disorder predictor-specific features into a
logistic regression model that outputs the QA scores. The use of this model type is motivated by
several factors. First, logistic regression generates real values in [0, 1] interval that intuitively
correspond to the QA scores. Second, this model is computationally efficient which consequently
speeds up generation of the QA score. Third, the logistic regression-based models have been used
to make numerous related types of predictions including predictions of disorder [10,67], disordered
protein and nucleic acids binding [68], disordered linkers [69], protease cleavage sites [70] and
phosphorylation sites [71].

QUARTER - QUality Assessment for pRotein inTrinsic disordEr pRedictions

Help | Materials | References | Acknowledgments | Disclaimer | Biomine

The server generates quality assessment for protein intrinsic disorder predictions.

Please follow the four steps below to make assessment:
1. Select a disorder predictor for the quality assessment

VvsL2B b 4

2. Provide protein sequence(s) and disorder prediction(s)

QUARTER accepts up to 1000 proteins. Please enter FASTA formatted protein sequences and CSV formatted
disorder predictions generated by the selected predictor above. (see Help section for details of input format).

>P12355 -
MSFTIPTNLYKPLATKPKHLSSSSFAPRSKIVCQQENDQQQPKKLELAKVGANAAAALALSSVLLSSWSVAPDAAMADIA
GLTPCKESKQFAKREKQALKKLQASLKLYADDSAPALAIKATMEKTKKRFDNYGKYGLLCGSDGLPHLIVSGDQRHWGEFI
TPGILFLYIAGWIGWVGRSYLIAIRDEKKPTQKEIIDVPLASSLLFRGFSWPVAAYRELLNGELVDNNF
0.8384,0.827126,0.811488,0.783025,0.759263,0.72869,0.71112,0.678705,0.694812,0.722328,0.752042,0.7810
26,0.798948,0.812822,0.816754,0.824599,0.829315,0.830438,0.831219,0.829448,0.831069,0.832087,0.826803,
0.814701,0.797412,0.785708,0.774476,0.752949,0.736741,0.704247,0.701748,0.729179,0.697954,0.737526,0.
757238,0.78395,0.79025,0.789423,0.795087,0.795271,0.792279,0.782833,0.77303,0.757316,0.736587,0.71682
9,0.692352,0.665273,0.617963,0.609999,0.594187,0.550513,0.510746,0.496552,0.459298,0.482211,0.474612,0
.461539,0.468391,0.465767,0.430617,0.436186,0.456025,0.456502,0.453548,0.465435,0.471776,0.47151,0.46
A1QQ N 4AR3NA N A745A7 N 4772057 N ARRAK N 45A241 N AR4ANAK N 444078 N 44R23A N ARRRAA N 417NR1 N 41415

Example 1 Example 2 | Clear inputs

3. Provide your email address (required)

Please enter your email address in the following text area. A link to results of assessment will be sent to your
email address once they are ready. The results will be also available in the browser window.

youremail@email.com
4. Predict
Click the Run button to launch the quality assessment prediction.

Run QUARTER

Figure 3. Submission page for the QUARTER webserver. The webpage is setup to make predictions of the QA scores for the
VSL2B’s disorder predictor and the PsaF protein.

3 Methods

3.1 Running the QUARTER Webserver

The QUARTER predictor is available to the end users as a convenient and free webserver at
http://biomine.cs.vcu.edu/servers/QUARTER/. The webserver calculates the QA scores for the ten
popular disorder predictors listed in Table 1. The computations are done on the server side and the user
only needs a modern web browser (Internet Explorer, Firefox, Opera, or Chrome) and internet
connection to make predictions. After arriving at the QUARTER webserver page, four easy steps are
required to request the prediction of the disorder QA scores (Figure 3):

1. Select a disorder predictor using a pre-set drop box. The QA scores will be computed for the
selected predictor (see Note 3).
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2. Insert the FASTA-formatted protein sequence(s) and disorder propensities for the selected
disorder predictor into the white text box. If your input has more than one protein then these
proteins should be placed in consecutive lines (see Notes 4 and 5). Figure 2 shows an example
input for the PsaF protein (see Note 6).

3. Enter your email address. This is the address where a unique web links to the results will be sent
(see Note 7).

4. Click “Run QUARTER”. This submits the sequences to the webserver for the prediction of the QA
scores.

Once the job is submitted, the browser is redirected to the QUARTER processing page that provides
information about the current position of this submission in the biomine server queue (see Notes 8 and
9). This page is automatically updated to indicate when the prediction reaches the top of the queue and
when it is being processed (see Note 10). The webpage automatically redirects to the page with the
results when the prediction is completed. This page includes a direct link to the result, which is the same
link that is communicated to the user-provided email. The email with the link to the results is sent even
in the event when the processing or results page is closed or when the web browser is shut down in the
middle of the prediction process.

QUARTER results page

Results for QUA R webserver.

Use this link to download the results as a CSV file: r

Format of results
Prediction for each protein is given in four lines:

© Line 1: >protein name
© Line 2: protein sequence (uppercase letters for high quality correct predictions, and lowercase letters for remaining
quality assessment predictions)

© Line 3: propensities of intrinsic disorder provided by user

o Line 4: quality assessment scores

The high quality correct predictions are established based on a threshold that selects the top quartile of the high
quality assessment scores in the test dataset. The thresholds are specific to a given disorder predictor.

Visit biomine lab web page

Figure 4. Webpage that summarizes results obtained from the QUARTER webserver.

3.2 Results generated by the QUARTER Webserver

Figure 4 shows the webpage that summarizes the results generated by the QUARTER webserver. The QA
score results can be downloaded by clicking “Download CSV file with the results” link. The same link is
sent to the user’s email address. The link leads to a text file that provides the predicted QA scores for
each submitted sequence using four lines (see Note 11):

Protein name that corresponds to the annotation header from the FASTA-formatted input.
The input sequence where the residues predicted as correct predictions are capitalized.
Comma delimited disorder prediction scores.

Comma delimited predicted disorder QA scores.

PwnNpRE

The residues identified in the second line of the output text file as correctly predicted are annotated by
processing the predicted QA scores using a threshold. The residues with high values of the QA scores
that are above the threshold are assumed to be correctly predicted. The value of the threshold is set to
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balance the fraction of the residues that are predicted to be correct disorder predictions and the
corresponding false positive rate, i.e., fraction of residues that are incorrectly predicted by a given
disorder predictor but identified by QUARTER as correct predictions. Figure 5 shows this relation for the
10 predictors that are included in the QUARTER webserver. As expected, the false positive rate increases
as the coverage by the correct predictions goes up. The best coverage is secured for the Espritzy.ray
predictor while the worst is for the GlobPlot predictor. The threshold values for the ten disorder
predictors are selected to result in a low, 10%, false positive rate. Figure 5 demonstrates that this rate
corresponds to the coverage that ranges between 22% (for GlobPlot) and 58% (for Espritzx.ray). Precise,
numerical values of thresholds for several selected false positive rates are shown in Table 2. These
values are useful for the users who would like to process the predicted QA scores to annotate the
correct predictions at different levels of false positive rates and the corresponding coverage values. For
instance, a user who would like to annotate correct predictions at the 1% false positive rate for the
VSL2B predictor should use threshold = 0.960.

Lo T
0.8 1 — VSL2B
‘ JRONN
— [UPredshort
o 0.6 1 — IUPrediong
e — GlobPlot
% — Espritzx - pay
Y 0.4+ Espritzymr
— Espritzpisprot
; DiSEMBLyotLoops
0.2 1 ‘ — DiSEMBLemarkase
Y Y07 <0 S RS VU S R

0.00 0.05 0.10 0.1 0.20 0.25 0.30
fpr

Figure 5. Relation between false positive rate (fpr) and coverage (fraction of residues predicted as correct predictions) for the
quality assessment (QA) scores generated with the QUARTER method. These data were computed using the benchmark dataset

from [55]. Each color-coded curve corresponds to the QA scores generated for a different disorder predictor.

Table 2. Threshold values that should be used to attain specific false positive rates for the prediction of QA scores for the ten
disorder predictors covered by the QUARTER webserver.

False positive rates

Predictors 0.01 0.02 0.03 0.04 0.05 0.1 0.15 0.2 0.25 0.3

VSL2B 0.960 0.946 0933 0921 00911 0.865 0.829 0.797 0.77 0.745
RONN 0.887 0.863 0.845 0.83 0817 0.771 0.739 0.715 0.696 0.679
IUPredshort 0929 092 0913 0907 0901 0.875 085 0.824 0.797 0.771
IUPrediong 0.89 0879 0.871 0.865 0.859 0.831 0.806 0.782 0.759 0.738
GlobPlot 0.785 0.766 0.753 0.744 0.736 0.708 0.689 0.674 0.662 0.651
Espritzx.ray 0.838 0.826 0.819 0.813 0.808 0.783 0.753 0.725 0.701 0.682
Espritzamr 0.872 0.86 0.853 0.846 0.841 0.819 0.797 0.774 0.749 0.724
Espritzpisprot 0.691 0.659 0.644 0.633 0.624 0.593 0.568 0.544 0.519 0.494
DisEMBLuotioops | 0.868 0.832 0.806 0.786 0.769 0.713 0.679 0.656 0.639 0.625
DisEMBLremarkass | 0.934 0.924 0915 0.908 0.901 0.873 0.848 0.824 0.8 0.777




Quality assessment for disorder prediction

The notification that is sent to the end user-provided email address is shown in Figure 6. It provides
direct links to the webpage from Figure 4 and to the text file with the results. This email can be used to
access results at a later time (see Note 12).

Predictions for QUARTER job id: 20190203022026 are ready.

Upon the usage the users are requested to use the following citation(s):

Hu G, Wu Z, Oldfield C, Wang C, Kurgan LA. Quality assessment for the putative intrinsic disorder in proteins. Submitted

You can find the results for this job at: http://biomine.cs.vcu.edu/webresults/ QUARTER/20190203022026/results.html

The CSYV file can be found here: http://biomine.cs.vcu.edu/webresults/ QUARTER/20190203022026/results.csv

The webserver can be found here: http:/biomine.cs.vcu.edu/servers/ QUARTER/

Thank you for using our webserver,
Biomine group

Figure 6. Notification email generated by the QUARTER webserver.
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Figure 7. Quality assessment (QA) of the disorder predictions for the PsaF protein (UniProt ID: P12355). The top of the figure
shows the putative propensities for disorder (black line) and the binary predictions track, i.e., disordered (in red) vs. ordered (in
blue) residues, which were produced by the VSL2B method. The “native” annotation track visualizes the native annotation of
intrinsic disorder collected from DisProt (DisProt ID: DP00990), where red and blue denote disordered and structured regions.
The green regions in the “correct predictions” line indicate regions of agreement between native and predicted disorder. The
bottom of the figure shows the QA scores (black line) computed by the QUARTER method. Green shading denotes regions
where the predictions are assumed to be correct according to the putative propensities for disorder (at the top) and according
to the QA scores (at the bottom).

4 Case Study

The PsaF protein is a component of the Photosystem | (PSI) complex. It facilitates electron transfer to
the PSI from electron donors — plastocyanin and cytochrome cs [72] — where absence of PsaF from PSI
drastically reduces electron transfer [73]. PsaF’s mechanism of action is through direct interaction with
electron donors through a N-terminal region, which is helically amphipathic [74]. This interaction region
falls within a larger IDR at the N-terminus (Fig. 7, middle panel, “native” annotation track), as
determined from the structure of the PSI complex [75]. Molecular recognition is a common function for
IDRs [4]. Frequently, as is the case for PsaF, short recognition regions are located within longer IDRs;
these short regions have been called molecular recognition features [76-78] and are predicted to be
common in nature [79,80]. The N-terminal interaction region of PsaF recruits electron donors and/or
activates them for electron transfer.
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Figure 7 illustrates the QA predictions from the QUARTER webserver and compares them to the putative
disorder propensities for the PsaF protein in the context of the native annotation of the disorder.
Intrinsic disorder predictions by VSL2B [43] for PsaF identify several potential IDRs throughout the
protein (Fig. 7, middle panel, “predicted” track). These predicted IDRs correspond to prediction scores
(Fig. 7, top panel, black line) greater than 0.5, and prediction scores less than 0.5 correspond to the
predictions of order. As discussed in the introduction, 81.6% of residues in PsaF are assumed to be
predicted correctly by VSL2B, where the most likely correct predictions correspond to the most extreme
putative disorder propensities generated by VSL2B. In the case of the 231 residues long PsaF protein,
this approach identifies 188 confidently predicted residues (Fig. 7, top panel, green shaded regions).
However, comparing predicted ordered and disordered regions with known ordered and disordered
regions shows that only 152 residues are predicted correctly (Fig. 7, middle panel, “correct” predictions
track). Confident VSL2B predictions overlap with these correct predictions, but incorrectly predicted
disordered regions in the middle and C-terminus of PsaF are spuriously indicated to be confident
predictions.

QUARTER predicted QA scores for the VSL2B predictions of the PsaF protein (Fig. 7, bottom panel, black
line) contrast with putative disorder propensity-based assessment. Adjusted to the false positive rate of
10% at a threshold of a quality score of 0.865 (Table 2), gives 74 residues predicted to be classified
correctly by VSL2B for PsaF (Fig. 7, bottom panel, green shaded regions). These residues include the
known disordered region at the N-terminus, as well as the C-terminal portion of the ordered region. All
of these 74 residues are in fact correctly predicted by VSL2B. Conversely, incorrectly predicted IDRs,
including a large IDR in the center of the sequence and two smaller regions at the C-terminus, are not
predicted to be correctly identified by VSL2B. Overall, this example demonstrates effectiveness of
QUARTER in finding high quality predictions that are calibrated for a specific protein and a specific
disorder predictor.

5 Notes

1. The putative solvent accessibility is predicted with the ASAquick method [81]. The sequence
complexity is computed using the SEG algorithm [82]. The hydrophobicity is estimated using the
Kyte and Doolittle index [83]. The flexibility, which is expressed with the B-factors, is computed
by the method described in [84]. Lastly, propensity for intrinsic disorder is estimated using the
TOPIDP scale [32].

2. The training and test datasets that were used to optimize and benchmark the QUARTER
method, respectively, are available on the “Materials” section of the webpage of the QUARTER
webserver at http://biomine.cs.vcu.edu/servers/QUARTER/.

3. Links to the websites of the ten disorder predictors that are covered by QUARTER are given in
the “Help” section of the QUARTER webserver page. This is useful to collect their prediction that
must be entered in the second step of the prediction process.

4. The webserver accepts up to 1,000 protein sequences for a single run. Information for each
input protein must be placed in three consecutive lines: line 1) protein identifier and/or name;
line 2) protein sequence using one-letter amino acid encoding; and line 3) comma-separated
disorder predictions.

5. The inputs must satisfy several requirements. First, the protein sequence must not contain any
spaces or incorrect characters, i.e., only letters that denote amino acids are allowed. Second,
the sequences must be longer than 20 residues. This is required by the ASAquick method [81]
that is run in the background to collect putative solvent accessibility. Third, the number of
putative disorder propensities must be equal to the number of residues in the input protein
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10.
11.

12.

chain. The webserver returns a descriptive error message in case if any of these requirements
are not met.

The three buttons underneath the input box provide two correctly formatted sample inputs, one
for the Espritz-DisProt predictor and another for the VSL2B predictor, and ability to clear the
input box.

The users are required to provide an email address where notification of completed prediction
and a private URL to the results are sent. The email is required since this is the most reliable way
to inform the user how to locate the results. While the results also appear in the browser
window, closing this window or shutting down the web browser would effectively prevent the
users from having access to the results.

The biomine server services several other predictors including (in alphabetical order)
CONNECTOR [85], CRYSTALP2 [86], Cypred [87], DFLpred [69], DisCon [88], disCoP [89],
DisoRDPbind [90,68], DMRpred [91], DRNApred [92], fDETECT [93,94], fMoRFpred [80],
hybridNAP [95], ILbind [96], MFDp [97], MFDp2 [98,99], MoRFpred [78,100], NsitePred [101],
PPCpred [102], RAPID [103], SSCon [104] and SLIDER [10].

The biomine webserver utilizes the first-come-first-serve queue. However, the number of
concurrent submissions across all predictors listed in note 10 that are coming from the same
source is limited to three. Users that submit too many times receive a message that informs
them to resubmit after one of their pending submissions is completed. This limit intends to
equalize access to the webserver across different users.

Prediction of a single protein by the QUARTER webserver takes less than 1 second.

A sample text file with the results produced by the QUARTER webserver for a user’s query that
includes one protein follows:

>P12355
MSfTiPtnlykPLATKPKHLSSsSfaprskiveqgendqqqpkklelakvganaaaalalssvllsswsvapdaamadiagltpckeskgfakrekgalkklgaslklyaddsapalaikat
mektkkrfdnygkygllcgsdglphlivsgDQRHWGEFITPGILFLYIAGWIGWVGRSYLIAirdekkptgkeiilDVPLASSLLFRGFSWPVAAYRELLnGelvdnnf
0.838,0.827,0.811,0.783,0.759,0.729,0.711,0.679,0.695,0.722,0.752,0.781,0.799,0.813,0.817,0.825,0.829,0.830,0.831,0.829,0.831,0.
832,0.827,0.815,0.797,0.786,0.774,0.753,0.737,0.704,0.702,0.729,0.698,0.738,0.757,0.784,0.790,0.789,0.795,0.795,0.792,0.783,0.7
73,0.757,0.737,0.717,0.692,0.665,0.618,0.610,0.594,0.551,0.511,0.497,0.459,0.482,0.475,0.462,0.468,0.466,0.431,0.436,0.456,0.45
7,0.454,0.465,0.472,0.472,0.466,0.468,0.475,0.472,0.466,0.456,0.454,0.444,0.448,0.456,0.417,0.414,0.456,0.486,0.508,0.558,0.593,
0.621,0.647,0.675,0.695,0.703,0.720,0.735,0.743,0.758,0.771,0.775,0.778,0.784,0.793,0.784,0.786,0.769,0.733,0.707,0.705,0.6 70,0.
657,0.640,0.630,0.637,0.628,0.625,0.616,0.591,0.561,0.552,0.512,0.495,0.478,0.474,0.480,0.493,0.502,0.506,0.514,0.539,0.598,0.5
77,0.556,0.510,0.442,0.381,0.324,0.268,0.232,0.225,0.210,0.206,0.227,0.237,0.239,0.260,0.265,0.256,0.259,0.282,0.299,0.299,0.31
1,0.333,0.342,0.314,0.301,0.277,0.254,0.231,0.212,0.195,0.169,0.131,0.090,0.063,0.049,0.036,0.024,0.019,0.016,0.010,0.009,0.010,
0.011,0.012,0.016,0.018,0.022,0.027,0.032,0.034,0.041,0.048,0.055,0.077,0.124,0.193,0.291,0.402,0.499,0.581,0.632,0.652,0.646,0.
626,0.566,0.479,0.390,0.312,0.231,0.180,0.155,0.135,0.114,0.104,0.114,0.117,0.120,0.123,0.124,0.117,0.114,0.110,0.102,0.096,0.0
82,0.082,0.083,0.090,0.104,0.115,0.136,0.161,0.202,0.224,0.277,0.354,0.450,0.542,0.664,0.765,0.810,0.851,0.872
0.888,0.895,0.851,0.872,0.856,0.872,0.857,0.852,0.848,0.862,0.844,0.872,0.888,0.889,0.895,0.903,0.901,0.891,0.894,0.899,0.877,0.
866,0.851,0.869,0.859,0.857,0.850,0.834,0.832,0.830,0.832,0.834,0.814,0.815,0.808,0.802,0.792,0.793,0.788,0.786,0.793,0.802,0.8
09,0.801,0.767,0.772,0.754,0.743,0.740,0.712,0.664,0.631,0.618,0.599,0.562,0.546,0.560,0.552,0.520,0.526,0.519,0.551,0.539,0.52
3,0.547,0.522,0.541,0.559,0.590,0.584,0.618,0.645,0.666,0.672,0.632,0.639,0.618,0.596,0.608,0.617,0.601,0.585,0.626,0.598,0.605,
0.614,0.633,0.649,0.676,0.714,0.733,0.774,0.779,0.795,0.811,0.797,0.793,0.812,0.813,0.794,0.801,0.795,0.787,0.798,0.777,0.788,0.
756,0.713,0.696,0.703,0.652,0.652,0.658,0.659,0.653,0.605,0.570,0.523,0.523,0.546,0.546,0.598,0.554,0.547,0.554,0.542,0.565,0.5
49,0.608,0.668,0.708,0.737,0.762,0.771,0.763,0.784,0.810,0.818,0.823,0.823,0.853,0.839,0.829,0.821,0.807,0.807,0.807,0.808,0.80
6,0.805,0.842,0.854,0.873,0.870,0.892,0.897,0.896,0.910,0.931,0.941,0.953,0.960,0.968,0.969,0.973,0.975,0.979,0.981,0.980,0.984,
0.984,0.981,0.981,0.980,0.982,0.979,0.975,0.970,0.970,0.957,0.942,0.926,0.908,0.889,0.857,0.839,0.806,0.742,0.717,0.696,0.683,0.
709,0.759,0.797,0.818,0.828,0.844,0.876,0.888,0.907,0.914,0.934,0.937,0.932,0.929,0.925,0.935,0.936,0.942,0.943,0.950,0.955,0.9
57,0.955,0.950,0.949,0.946,0.933,0.919,0.886,0.878,0.870,0.859,0.876,0.848,0.814,0.784,0.856,0.828,0.826,0.828

The predictions are kept on the webserver for the period of at least three months. They can be
accessed via the direct link send in the return email.
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