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Abstract 
The chapter discusses challenges facing researchers performing Data Mining projects on 
real data and illustrates them using multi-layer Data Mining system for analysis of cystic 
fibrosis (CF) data. The goal of the cystic fibrosis project was to discover new information 
that may advance knowledge about CF. In spite of the complexity of the data and very 
high number of missing values our system, called MetaSqueezer, generated interesting 
results. They included finding some relationships that were already known to the CF 
experts, and which validated correctness of the approach.  In addition, the system 
generated new and clinically important knowledge about the disease. The project was 
carried out using a Data Mining and Knowledge Discovery process model. The model 
guided our efforts, starting from problem specification, data preparation, Data Mining, 
evaluation of the results, to deployment of the discovered knowledge. Using the model 
resulted in significant reduction of development time.  
Keywords: Data Mining, Knowledge Discovery, Meta Mining, Cystic Fibrosis, 
MetaSqueezer. 

Introduction 
Many Data Mining (DM) projects require extensive preprocessing and iterating between 
the steps of the knowledge discovery process to find new useful information. The reason 
for these efforts can be attributed to high complexity of the mined data. Many areas, 
especially medicine, are ripe for DM efforts to extract useful information that can help 
improve processes and procedures. However, considerable effort is required for design 
and implementation of procedures for data preparation, and collaborations between 
researchers and practitioners from several disciplines. The field of DM needs to adjust to 
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those demands by providing a comprehensive range of services from understanding of the 
problem domain and data, through DM, to utilization of the discovered knowledge [13].  
 
This chapter describes an application of our DM system, called MetaSqueezer,  for 
analysis of clinical data describing patients with cystic fibrosis (CF).  In the project we 
used a Data Mining and Knowledge Discovery (DMKD) process model [10] [13]. 
The chapter is organized as follows. First, we describe the overall goals and the DMKD 
process. Next, the DM methods used in the project are introduced and explained. In what 
follows we describe the project goals and the approach taken to generate useful 
knowledge from CF data. We finish with discussion of the results, and conclude with 
discussion of current DM challenges. 

Background and Related Work 

Introduction 

Medical applications often aim at describing patterns of disease development and 
prediction of therapeutic effectiveness. In this work we address the former. The main goal 
was to discover new information that may advance knowledge about the disease and 
possibly a better treatment. The difficulty of the project was compounded by two factors: 

1. High number of missing values and erroneous information, and complex structure of 
the data 

2. Highly iterative manner in which the final results were achieved, which was caused 
by the necessity to reevaluate and improve data preparation and DM tasks. 

In addition, since the CF data is temporal in nature it needed specific learning tools. As 
we shall see, in spite of the problems, the obtained results can enhance understanding of 
the disease. The results include knowledge already known by the CF experts, which was 
used to validate correctness of our methods, and the new knowledge. The new finding 
was evaluated as medically important by the domain experts, and will be utilized to better 
understand the pathophysiology of the disease. 

Data Mining and Knowledge Discovery Process Model 

The purpose of a DMKD model is to help plan, work through, and reduce the overall 
costs of a DM project, by prescribing procedures needed to be performed in each of the 
steps. The DMKD process model describes a range of steps from problem specification to 
interpretation and use of the results (the discovered knowledge). One of the main issues 
of the project was ability to structure the process in a formal way that helps dealing with 
highly iterative nature of the project. Several researchers described a series of steps that 
constitute the DMKD process, which range from few steps to more refined models like 
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the nine-step model proposed by Fayyad et al. [25]. In this project we use the six-step 
DMKD process model [10] [11] [13] described below.   
The six-step DMKD process is described as follows: 
1. Understanding the problem domain. In this step the project is defined, including 

definition of objectives, and learning domain specific terminology and methods. A 
high-level description of the problem is analyzed, including the requirements and 
restrictions. The project goals are translated into DMKD goals and the project plan is 
prepared, which includes selection of suitable DM tools. 

2. Understanding the data. This step includes collection of the data, and decision 
regarding which data will be used (including its format and size). Next, initial data 
exploration is performed to verify usefulness of the data with respect to the goals 
identified in step 1. 

3. Preparation of the data. In this step, the data is chosen that will be used as input for 
DM tools in step 4. New data records are formed that meet specific input 
requirements of the given DM tools. The step may involve sampling and cleaning the 
data, assigning classes to data examples, etc. The cleaned data can be further 
processed by feature selection and extraction algorithms, by derivation of new 
attributes, e.g. by discretization, and by summarization. 

4. Data mining. This step applies DM tools to discover new information from the data 
prepared in step 3. After the training and testing procedures are designed, the data 
model is constructed using one of the chosen DM tools, and the generated data model 
is verified by using the testing procedures. DM tools include many types of 
algorithms, such as inductive ML, rough and fuzzy sets, Bayesian methods, neural 
networks, clustering, association rules, support vector machines, etc. 

5. Evaluation of the discovered knowledge. The goal of this step is to understand and 
interpret the results, check whether the new information is novel and interesting, and 
check their impact on the project goals. Approved models are retained. 

6. Using the discovered knowledge. This step consists of planning where and how the 
discovered knowledge will be used. 

The above described process model is visualized in Figure 1 [13]. 
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Figure 1. The six-step DMKD process model. 

The iterative and interactive aspects of the process are shown in Figure 1 using dashed 
arrows. Since any changes and decisions made in one of the steps can result in changes in 
later steps the feedback loops are necessary. The loops shown in Figure 1 are by no 
means exhaustive. 
 
The above and the Fayyad’s models are compared in Table 1. Both models follow similar 
sequence of steps. The Fayyad’s model provides a more detailed procedure, but performs 
steps concerning choosing a DM task and algorithm late in the process. The Cios’s model 
performs this operation before data preprocessing, which results in data that is properly 
prepared for the DM step [13]. In case of the Fayyad’s model one might have to repeat 
some of the earlier steps via unnecessary feedback loops to change data preparation 
methods used in steps 2, 3 and 4. Other advantages of the Cios’s model are that it is based 
on an industrial tool-independent DMKD process model called CRISP-DM [53], and it 
provides specific guidelines concerning possible feedback loops, rather than just 
discussing their presence [13]. This helps to properly plan and improve efficiency of 
carrying out a data mining project. The model was successfully used on several medical 
problems such as development of a computerized system for diagnoses of SPECT bull’s 
eye images [10], cardiac SPECT images [50] [34], and analysis of patients with vascular 
disease [42]. 
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Table 1. Comparison of 6-step and 9-step DMKD models. 

 

Methods 

Introduction 

Analysis of the CF data was done by DM system that uses supervised inductive Machine 
Learning (ML) combined with Meta Mining (MM) concept. ML is concerned with 
generation of data models from input numerical or nominal data. The models are usually 
inferred using induction process that searches for regularities among the data. Supervised 
learning is concerned with generation of a data model that represents relationship 
between independent attributes and a designated dependent attribute (class). Therefore, 
supervised inductive ML algorithms generate models that map independent attributes to 
the class attribute. The model generated by a supervised ML algorithm often takes form 
of production rules. The production rules have “IF (conditions) THEN (classi)“ format, 
where conditions involve one, or conjunction of several, logical expressions between 
independent attributes describing the data and their values, and classi is one of the of the 
values of the class attribute. Supervised inductive ML algorithms that generate 
production rules can be divided into three types: decision tree algorithms, rule algorithms, 
and their hybrids [9]. Example decision trees algorithms are CART [5], C4.5 [47], and T1 
[30]; rule algorithms are the AQ family of algorithms [43] [32], FOIL [46], IREP [26], 
RISE [23], RIPPER [17], SLIPPER [18], and LAD [4], and hybrid algorithms are CN2 
[16], and CLIP family of algorithms [12] [14]. Other types of models generated by 
inductive ML algorithms are also possible, for instance those generated by ML 
algorithms based on probability theory, statistics, and other mathematical models [44]. 

6 step DMKD process 9 step DMKD process 

1. Understanding the domain 1. Understanding application domain, identifying the 
DMKD goals 

2. Understanding the data 2. Creating target data set 

3. Data cleaning and preprocessing 

4. Data reduction and projection 

5. Matching goal to particular data mining method 

3. Preparation of the data 

6. Exploratory analysis, model and hypothesis selection 

4. Data mining 7. Data mining 

5. Evaluation of the discovered knowledge 8. Interpreting mined patterns 

6. Using the discovered knowledge 9. Consolidating discovered knowledge 
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Examples of the latter include probabilistic algorithms like Naïve Bayes [41] and Support 
Vector Machines [19]. 
The main advantages of rules, or trees, are their simplicity and easiness of interpretation. 
In addition rules are modular, i.e. a single rule can be understood without reference to 
other rules [29]. These features are especially valuable in situations where a decision 
maker, say in medicine, needs to understand and validate the generated model. 
 
Meta Mining is a novel concept, or framework, for higher order mining that generates 
meta-models (meta-rules) from the already generated data models, which usually are in 
the form of the rules (and in this framework the rules are called meta-data) [49] [51]. 
Inference of data models that use MM concept is a two step procedure. In case of using 
supervised inductive ML algorithms the first step generates productions rules from input 
data, while in the second step the generated rules constitute inputs to a ML algorithm 
(possibly the same) to generate the meta-rules. The simplest form of a meta-rule is a 
production rule, but other formats, such as temporal rules, are also possible. The DM 
system used in this project generates both meta-data and meta-rules as production rules. 

The MetaSqueezer System 

The analysis of the data was done using DM system called MetaSqueezer that generates 
data models, in terms of production rules, in three steps [37] [39]: 
• Preprocessing. 

The data is repaired, validated, discretized, and transformed into the form suitable for 
further processing, i.e. a single relational table where a separate column holds an 
attribute that is used to divide the data into subsets, and class labels are generated for 
each data record. 

• Data Mining 
Production rules are generated from data for each of the defined subsets using 
DataSqueezer algorithm [36] [37], which is explained in the next section. For every 
set of rules a rule table, that stores the generated production rules, is created. 

• Meta Mining 
MM generates meta-rules from rule tables. After concatenation of all rule tables into a 
single table, the meta-rules (in the form of production rules) are generated by the 
DataSqueezer algorithm. They describe the most important patterns associated with 
the classes over the entire dataset. The meta-rules and rules generated in the DM step 
are used to compute attribute and selector importance tables, which are defined later. 

The architecture of the MetaSqueezer system is shown in Figure 2. 
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Figure 2. Architecture of the MetaSqueezer system. 

The DataSqueezer Algorithm 

DataSqueezer is the core algorithm used to generate meta-data during the DM step and 
the meta-rules during the MM step [36] [37]; it is a rule algorithm. Let us denote the 
input data by D, which consists of S examples. The sets of positive examples, DP, and 
negative examples, DN, must be disjoint, non-empty, and fully cover D. The positive 
examples are those describing the class for which we currently generate rules, while 
negative examples are the remaining examples. Examples are described by a set of K 
attribute-value pairs: ]#[1 jj

K
j vae =∧= , where aj denotes jth attribute with value vj ∈ dj 

(domain of values of jth attribute), # is a relation (=, <, ≈, ≤, etc.), and K is the number of 
attributes. DataSqueezer uses equality as a relation. An example, e, consists of set of 
selectors sj = [aj = vj]. The DataSqueezer algorithm generates production rules in the form 
of IF (s1 and … and sm) THEN class = classi, where si = [aj = vj] is a single selector, and 
m is the number of selectors in the rule. Figure 3 shows pseudo-code for DataSqueezer.  
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Figure 3. Pseudo-code for the DataSqueezer algorithm. 
 
DP and DN store positive and negative examples in tables, where rows represent examples 
and columns represent attributes. POS denotes table of positive examples and NPOS 
denotes the number of positive examples, while the table and the number of negative 
examples are denoted NEG and NNEG, respectively. Positive examples from the POS 
table are described by the set of values: posi[j] where j=1,…,K, is the column number, 
and i is the example number (row number in the POS table). The negative examples are 
described similarly by a set of negi[j] values. The DataSqueezer algorithm also uses 
tables that store intermediate results (GPOS for POS table, and GNEG for NEG table), 
which have K columns. Gposi[j] denotes a cell of the GPOS where i is a row number and j 
is a column number, and similarly gnegi[j] in a cell for the GNEG. The GPOS table stores 
reduced subset of the data from POS, and similarly GNEG for the data from NEG. The 
meaning of this reduction is explained later. 
 
DataSqueezer generates production rules using inductive learning hypothesis that states 
that any hypothesis found to approximate the target function well (defined by a class 
attribute), over a sufficiently large set of training examples, will also approximate well 
the target function over other unobserved examples [44]. Based on this assumption in  
step 1 the algorithm first performs data reduction, which generalizes information stored in 
the input dataset, via prototypical concept learning, similar to the Mitchell’s Find S 
algorithm [44]. The algorithm starts with the most specific hypotheses that cover 
individual examples, and iteratively uses generalization operator that sequentially 

Given: POS, NEG, K (number of attributes), S (number of examples) 
Step1. 
1.1 Initialize GPOS = []; i=1; j=1; k=1; tmp = pos1; 
1.2.1 for k = 1 to K     // for all attributes 
1.2.2    if (posj[k] ≠ tmp[k] or posj[k] = ‘∗’) 
1.2.3       then tmp[k] = ‘∗’;     // ‘∗’ denotes missing value 
1.2.4 if (number of non missing values in tmp ≥ 2) 
1.2.5       then gposi = tmp; gposi[K+1] ++; 
1.2.6    else i ++; tmp =  posj; 
1.3 set j++; and until j ≤ NPOS go to 1.2.1 
1.4 Initialize GNEG = []; i=1; j=1; k=1; tmp = neg1; 
1.5.1 for k = 1 to K     // for all attributes 
1.5.2    if (negj[k] ≠ tmp[k] or negj[k] = ‘∗’) 
1.5.3       then tmp[k] = ‘∗’;     // ‘∗’ denotes missing value 
1.5.4 if (number of non missing values in tmp ≥ 2) 
1.5.5       then gnegi = tmp; gnegi[K+1] ++; 
1.5.6    else i ++; tmp =  negj; 
1.6 set j++; and until j ≤NNEG go to 1.5.1 
Step2. 
2.1 Initialize RULES = []; i=1;    // where rulesi denotes ith rule stored in RULES 
2.2 create LIST = list of all columns in GPOS  
2.3 within every column of GPOS that is on LIST, for every non missing value a from selected column k compute sum, 

sak, of values of gposi[K+1] for every row i, in which a appears (multiply every sak, by the number of values the 
attribute k has) 

2.4 select maximal sak, remove k from LIST, add “k = a” selector to rulesi 
2.5.1 if rulesi does not describe any rows in GNEG 
2.5.2       then remove all rows described by rulesi from GPOS, i=i+1; 
2.5.3          if GPOS is not empty go to 2.2, else terminate 
2.5.4    else go to 2.3 
Output: RULES describing POS 
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compares current hypothesis with an example from input data and removes all attribute 
values that are not identical (between them). 
In step 2 the algorithm generates rules by performing greedy hill-climbing search on the 
reduced data. A rule is generated starting with an empty rule, and adding selectors until 
the termination criterion fires. The max depth of the search is equal to the number of 
attributes. The examples covered by the generated rule are then removed, and the process 
is repeated. 
The DataSqueezer algorithm generates production rules that involve no more than one 
selector per attribute, which allows for storing rules in a table that has identical structure 
to the original data table. The table is used as input to the same algorithm, which allows 
using the algorithm in a MM setting. The algorithms can also handle data with large 
number of missing values by simply using all available information while ignoring the 
missing values. The data reduction procedure of the algorithm sorts out all missing 
values. Every present value for every example is used to infer the rules. The algorithm 
has linear complexity, shown both theoretically and experimentally, with respect to the 
number of input examples [37]. 
 

Main Features of the MetaSqueezer System 

The MetaSqueezer uses the DataSqueezer algorithm and a MM concept to generate 
production rules. First, the data is divided into subsets and production rules are generated 
for each of them by the DataSqueezer. Next, the rules are converted into the same format 
as the input data, concatenated into a single set, and fed back to the DataSqueezer to 
generate meta-rules.  
The main benefits of the MetaSqueezer system are compactness of the generated meta-
rules and low computational cost [37] [39]. While many other ML and DM algorithms 
generate rules directly from input data, the MetaSqueezer system generates meta-rules 
from previously generated meta-data. This results in significantly smaller number of  
selectors used. Low computational cost of the MetaSqueezer system is the result of its 
linear complexity, which is determined by complexity of the DataSqueezer algorithm, 
and is linear with respect to the number of examples [37] [39]. Because of the division of 
the data at the DM step, the system can be used to analyze ordered data. One example is 
temporal data that can be divided into subsets corresponding to time intervals. CF data is 
a good example of such data since it describes patients over a period of time, with 
patients being at different stages of the disease.  
One of the specific features of the MetaSqueezer system is ability to generate an 
alternative representation of the meta-rules, which we call the attribute and selector 
ranking tables. The tables describe a degree of association of particular attributes and 
attribute-value pairs with the target class in an easy to comprehend manner. The tables 
are generated from rules [14] [37]. The construction of a table is based on computing 
goodness of each attribute and attribute-value pair using rules generated by the 
MetaSqueezer system, or the DataSqueezer algorithm. The goodness values are computed 
in three steps: 
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• Each rule consists of multiple selectors (attribute-value pairs) and has assigned 
goodness value equal to the percentage of data that describes the same class as the 
rule, and is described by the rule. 

• Each selector is assigned a goodness value equal to the goodness of the rule it comes 
from. Goodness of the same selectors from different rules are summed, and then 
scaled to the (0,100) range. 

• For each attribute, the sum of scaled goodness for all its selectors is computed and 
divided by the number of attribute values to obtain goodness value of the attribute. 

The goodness values for each attribute and attribute-value pair are grouped into three 
intervals: zero that stands for no association; zero to fifty that denotes an association; and 
over fifty that denotes strong association between a given attribute and attribute-value 
pair, and the class value. The associations are visualized in a table, where rows 
correspond to attributes and attribute-value pairs, and columns to classes. An example is 
shown later in the chapter. Development of the tables resulted in significantly simplified 
analysis and interpretation of the results. 

Discretization 

The MetaSqueezer system, like many other inductive ML algorithms, handles only 
discrete data. This is the result of applying the data reduction procedure, which performs 
well only with attributes that have low number of values. Therefore for data that contains 
continuous attributes it uses a front-end supervised discretization algorithm.  
Discretization is a process of dividing a continuous attribute into a finite set of intervals 
to generate an attribute with small number of distinct values, by associating discrete 
numerical value with each of the generated intervals. A supervised discretization 
algorithm uses the class values assigned to input examples to achieve possibly best 
correlation between the discrete intervals and target classes, and therefore to minimize the 
information loss associated with discretization.  
The MetaSqueezer algorithm uses F-CAIM (Fast Class Attribute Interdependency 
Maximization) algorithm to perform discretization [38] [40]. We briefly describe the 
algorithm next. We assume that each value of a continuous attribute can be classified into 
only one of the n, non-overlapping, discrete intervals, and can describe one of S classes. 
The class values and the discretization intervals of attribute F are treated as two random 
variables defining a two-dimensional frequency matrix (called quanta matrix) that is 
shown in Table 2, where  qir is the total number of continuous values belonging to the ith 
class that are within interval (dr-1, dr], Mi+ is the total number of values belonging to the 
ith  class, and M+r is the total number of values of attribute F that are within the interval 
(dr-1, dr], for i=1,2…,S and, r= 1,2, …, n 
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Table 2. 2-D quanta matrix. 
 

Interval 
Class 

[d0, d1] … (dr-1, dr] … (dn-1, dn] 
Class Total 

C1 

: 

Ci 

: 

CS 

q11 

: 

qi1 

: 

qS1 

…

…

…

…

…

q1r 

: 

qir 

: 

qSr 

…

…

…

…

…

q1n 

: 

qin 

: 

qSn 

M1+ 

: 

Mi+ 

: 

MS+ 

Interval Total M+1 … M+r … M+n M 

 
The F-CAIM algorithm uses Class-Attribute Interdependency Maximization (CAIM) 
criterion to measure the dependency (correlation) between the classes C and the discrete 
intervals D, for a given continuous attribute F, and its quanta matrix, which is defined as: 

n
MFDCCAIM

n

r r

r∑
= += 1

2max

)|,(  

where: r iterates through all intervals, i.e. r=1,2,...,n, maxr is the maximum value 
among all qir values (maximum value within the rth column of the quanta matrix), 
i=1,2,...,S, M+r is the total number of continuous values of attribute F that are 
within the interval (dr-1, dr]. 

In general, the optimal discretization, in terms of minimal information loss, can be found 
by searching over the space of all possible discretization schemas to find the one with the 
highest value of the CAIM criterion. Since such search is highly combinatorial the F-
CAIM algorithm uses a greedy approach, which searches for the approximate optimal 
value of the CAIM criterion by finding locally maximum values of the criterion. 
Although this approach does not guarantee finding the global maximum, it is  
computationally inexpensive and well-approximates the optimal discretization scheme 
[38] [40]. The algorithm consists of two steps. First, it initializes candidate interval 
boundaries, which define all possible boundaries of discrete intervals, and the initial 
discrete interval. Next, it performs consecutive additions of a new boundary that results in 
the locally highest value of the CAIM criterion. More specifically, the algorithm starts 
with a single interval that covers all possible values of a continuous attribute. It initializes 
candidate boundary points with minimum, maximum and all the midpoints of all the 
adjacent values, but only for the values that describe different classes. The algorithm 
computes the CAIM criterion values for all possible division points (with replacement), 
and chooses the division boundary that gives the highest value. It stops adding new 
boundary points when the best CAIM value for a current discretization schema is smaller 
then the highest CAIM value achieved so far.  
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The algorithm was recently compared with six other state of the art discretization 
algorithms [38], including two unsupervised algorithms: equal-width, and equal 
frequency [8], and four supervised algorithms: Patterson-Niblett [45], Information 
Entropy Maximization [24], Maximum Entropy [55] and CADD [7]. The comparison 
showed that the F-CAIM algorithm generates discretization schemes with, on average, 
the lowest number of intervals and the highest dependence between classes and discrete 
intervals, outperforming other discretization algorithms. The execution time of the F-
CAIM algorithm is, on average, shorter than the execution time of all considered 
supervised discretization algorithms, while still being comparable to the time of the two 
fastest supervised discretization algorithms. The analysis of performance of the F-CAIM 
algorithm also showed that the small number of intervals that the algorithm generates 
helps to reduce the size of the data, and improves accuracy and the number of rules that 
are generated by subsequently used ML algorithms [38] [40]. 

Significance 

After extensive literature search we found only one other application of inductive ML 
techniques to analysis of temporal medical data. A system that discovers limited temporal 
relations using Bayesian networks and C4.5 algorithm [47] was used to find relations 
between consecutive records, without generalizing temporal rules for the entire period of 
time [31].  Although the MetaSqueezer system does not discover any temporal 
relationships, it can be used to derive non- temporal patterns, in terms of production rules. 
The rules describe the data across time, but using meta-data that describes data within 
particular data subsets that represent temporal intervals. 

Applications of Inductive Machine Learning in Medicine  

Inductive ML techniques found a number of applications in analysis of medical data. 
They range from automated diagnostic systems to prognosis. Since it is virtually 
impossible to list all applications, below we describe only a few representative examples.  
They include diagnosis and prognosis of breast cancer [52] [54], prognosis of the survival 
in hepatitis [33], prognosis of traumatic brain injuries [1], and diagnosis of cardiac 
SPECT images [35]. Most recently inductive ML has found its use in bioinformatics 
(analysis of genetic data [3], analysis of mass spectrometry data [56] [2] [27]). An  
overview of applications of ML in medicine is given in [34] 

The Cystic Fibrosis Project 

Understanding the Problem Domain 

CF is a genetic disease affecting approximately 30,000 children and adults in the United 
States [20]. One in 31 Americans and one in 28 Caucasians carry the defective gene 
causing CF, which translates into more than 10 million carriers in the United States. 
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Carriers do not exhibit the symptoms, and thus they do not know about their risk for 
transmitting the disease to their offspring. An individual must inherit a defective copy of 
the CF gene from each parent to be affected. Statistically, when two carriers conceive a 
child, there is a 25 percent chance that the child will have CF, a 50 percent chance that 
the child will be a carrier, and a 25 percent chance that the child will be a non-carrier. 
CF is caused by at least 1000 different genetic mutations in the Cystic Fibrosis 
Transmembrane Conductance Regulator (CFTR) gene. The delta F508 mutation accounts 
for approximately 70% of the mutations making it the most common CF mutation [22] 
[21]. 
CF is a deadly disease that affects multiple systems, including the respiratory system, 
digestive system, endocrine system, and reproductive system. The symptoms are variable 
and may include high chloride and sodium (salt) concentration in the sweat, lung disease 
(persistent coughing, wheezing or pneumonia), excessive appetite but poor weight gain, 
and bulky stools. The vast majority of CF related mortality is caused by the progressive 
lung disease, caused by a vicious cycle of infection and inflammation.  Thus, lungs 
function tests are recognized as very good indicators of the stage of the disease. CF is 
diagnosed usually by the sweat test, which measures amount of salt in the sweat. A high 
chloride level indicates that a person has CF. The treatment of CF depends upon multiple 
factors like stage of the disease and which organs are involved. In case of the most 
severely affected organ, the lungs, the disease is treated usually by chest physical therapy, 
and antibiotics, which are used to treat lung infections [20]. The CF data is temporal in 
nature. It describes several hundreds of CF patients. For each patient multiple visits are 
recorded. Most of the patients are monitored from the time of diagnosis throughout 
childhood, and are currently being followed, while some patients died during the follow-
up period. For each visit multiple attributes describing demographical information, 
various lab results, and diagnostic information are recorded. The data describes different 
relationships depending on the stage of the disease. Thus, any investigation that uses such 
data must be able to separate the data into subsets, corresponding to particular stages of 
the disease. 
Before the project was started, the CF experts were requested to provide only the 
necessary minimum background knowledge. This was done to assure that the research 
would not be biased toward finding solutions that would confirm accuracy of the system 
based on the domain knowledge. The project goals defined by clinicians were: 
1. GOAL 1 is to discover patterns (important factors) that influence the pace of 

development of CF. Although CF affects multiple systems, the pulmonary system is 
the best indicator of progression of the disease. For some patients the disease 
progresses very fast while for others its progress is relatively slow. There are some 
known factors that are related to the pace of the disease but still much is unknown. 
The first goal was to discover factors that are related to different, predefined based on 
historical data, paces of disease development. 

2. GOAL 2 is to discover important factors that are related to particular kinds of CF. CF 
is a genetic disease, and different distinct genotypes related to it are described. The 
goal was to find factors that are related to different, predefined genotypes, of CF.  

In the next step we redefined the above two goals into DM goals: 
1. GOAL 1. It can be defined as a supervised inductive learning task. Class attribute 

must be defined, which will group the data into subsets corresponding to patients who 
exhibit different paces of disease development. Since the data is temporal in nature, 
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additional attribute is used to divide the data according to time. The attribute will 
describe the stage of the disease based on the status of a pulmonary function test. 

2. GOAL 2. Again, it can be defined as a supervised inductive learning task. Thus, a 
class attribute that describes patients in terms of the particular type of CF must be 
defined. Next, the data must be divided in a temporal manner by using attribute(s) 
describing patient’s lung function.  

After analyzing both goals, the MetaSqueezer system was chosen as the appropriate DM 
tool. There are three main factors that influenced the choice of the system: 
• It generates small number of very simple rules. The project required physicians to be 

able to analyze and comprehend the rules, and the results to be displayed in an easy to 
understand tabular form. 

• It can handle large quantities of missing values. CF data contains large quantities of 
missing information. The DataSqueezer algorithm, a core inductive ML algorithm 
used within the system, was proven to generate accurate results in presence of 
significant amount of missing information. [37] [39]. 

• It can handle temporal data. CF data is temporal in nature. The DM step of the 
MetaSqueezer system accepts multiple training data subsets, which represent 
temporally organized subsets of the CF original data. 

Understanding the Data 

The data was collected at the CF Center based at the University of Colorado Health 
Sciences Center and the Children’s Hospital in Denver starting in 1982. It includes 
demographical information about patients, clinical information including a variety of lab 
tests, and diagnoses. The data was collected on 856 patients. The data was stored using 
seven relational tables. To comply with the HIPPA requirements, all identification 
information was removed from the data before it was used in the project. The resulting 
data holds only relevant clinical information.  There are several complicating issues with 
the CF data. First, as expected, it contains significant amount of missing information. For 
example, three tables contain more than half of missing information. Second, it can be 
also expected that since the data was inserted manually by the physicians, it will contain 
also substantial amount of incorrect records. Also, the tables contain different attributes: 
numerical, textual, and binary, which need to be handled by the learning algorithm. The 
tables also possibly include large quantities of irrelevant information, which may be 
removed before the learning process is executed.  

The attributes used to define classes for both goals and to divide the data into temporal 
intervals are described below: 

• FEV1% (Forced Expiratory Volume in One Second % Predicted) attribute describes 
the amount of air that can be forced out in one second after taking a deep breath. The 
volume that an individual patient can blow out in one second is compared to a normal 
population and the percent of predicted based on the patients age, sex, and height is 
reported as the FEV1%.  In CF, the test result indicates the stage of the disease better 
than timestamp information, such as patient’s age or visit date, because different 
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patients are diagnosed and start treatment at different ages. The FEV1% is used as the 
attribute to define temporal intervals for both goals. It is also used to define the class 
attribute for the first goal.  

• Genotype 1 and Genotype 2 attributes describe genetic mutations, and are used to 
distinguish different levels in severity in CF. Since the second mining goal is to find 
important factors that are related to particular kinds of CF, combination of the two 
attributes will be used to provide class labels for the goal. 

In summary, the data was assumed to hold all information necessary to carry out the 
project. More specifically, several attributes that may be used to derive classes and 
temporal subsets for both learning goals were identified.  

Preparation of the Data 

Before the CF data could be used to generate rules it needed to be preprocessed. This 
usually involves removing or correcting noise and missing values, sampling and 
reorganizing the data, assigning classes to examples, identifying temporal intervals, etc. 
The cleaned data is later discretized. As with most of DM projects it is expected that this 
step consumes most of any project’s time since data preparation greatly affects the 
outcome of the entire project [6] [13]. 

At the first step, manual data checking and cleaning were performed. As expected, the CF 
data contained significant amount of errors and inconsistencies. Problems connected with 
physician’s interpretation that is written in an unstructured free-text English (text fields in 
the database), which is very difficult to standardize and thus difficult to mine [15], were 
encountered.  For instance, the values of the FEV1% attribute should be in the range [0; 
200], but some records had bigger values. Another problem is presence of null attributes, 
which have null values for all tuples (rows) and thus should be deleted. Almost all tables 
in the CF data contained attributes that were null. 

Two main manual operations were performed to clean the CF data. First, the consistency 
of attributes was corrected by merging together their corresponding values. This 
operation is caused by inconsistent format of data, e.g. Yes, Y, yes were entered as 
corresponding to the same value and were corrected. Next, erroneous values of attributes 
were identified and removed. After the data was cleaned, it was converted into a single 
relational table. In order to merge the seven tables several join operations were 
performed. The tables were merged in pairs, where results of one join operation were 
merged with the next table. The condition of the join operations were designed and 
consulted with clinicians to ensure proper handling of medical information. 

The next data preparation step consisted of removing attributes that are irrelevant to the 
planned goals. After consultation with the physicians attributes that were found either 
irrelevant from the medical point of view or containing too much noise or missing 
information were removed. 
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Class Attributes 

There are two class attributes, one per each goal. The first attribute describes pace of CF 
development, which is used to define classes for goal 1. The attribute was derived based 
on “visdate1” and “FEV1%” attributes using procedure that was designed with 
cooperation with clinicians. The first goal was defined as the 4-class supervised inductive 
learning task, with the following classes: FastDegrad (for fast degrading patients), 
SlowDegrad (for slowly degrading patients), NoChange (for patients with no change in 
lung functions), and Improv (for patients for whom there was improvement). The second 
class attribute describes different types of CF and is used to define classes for goal 2. The 
attribute was derived based on “Genotype 1” and “Genotype 2” attributes using 
procedure that was designed with cooperation with clinicians. Three kinds of CF were 
defined: 1) both Genotype 1 and Genotype 2 are F508, 2) Genotype 1 is F508 or 
Genotype 2 is F508, with the other genotype being not F508, 3) both Genotype 1 and 
Genotype 2 are not F508 [37]. 

Time-Defining Attribute 

The time-defining attribute, used to divide the data into subsets for the DM step of the 
MetaSqueezer system, was derived from the FEV1% attribute. There were 5 discrete 
values of the attribute generated, which means that the input data was divided into 5  
coherent subsets depending on the value of the FEV1% attribute, i.e. <40%, 40-60%, 60-
80%, 80-100% and >100% [37]. 

Discretization 

After deriving class and time-defining attributes the data was discretized. First, each 
attribute was manually evaluated to belong to one of three categories 

• Discrete. An attribute was defined as discrete if it had a small number of values, up to 
about 20 distinct values. The discrete attributes were left unchanged. 

• Continuous, for manual discretization. An attribute was defined as continuous for 
manual discretization is it had large number of distinct vales, and its values had a well 
known specific meaning with respect to CF.  These attributes were discretized 
manually by clinicians to accommodate for medical meaning of their values, e.g. 
certain test values may be usually associated with specific medical conditions. 

• Continuous, for automated discretization. Attributes that are characterized by large 
number of distinct values, with no known medical relationship of their values and CF 
were considered continuous for automated discretization. Those attributes were 
discretized by the supervised discretization algorithm F-CAIM. Each attribute was 
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discretized separately for each goal, since discretization process uses class labels. 
Over 50% of continuous attributes fell into this category. 

Training Data 

The objective for goal 1 was to discover factors related to different pace of development 
of CF.  In short, the training set was derived from the original data by first removing 
noise and inconsistencies, merging the seven tables, removing irrelevant attributes, 
defining class and time-defining attributes, and finally discretizing the continuous 
attributes. Two more steps were performed to generate final version of the training set: 1) 
examples that include incomplete critical information, in terms of class or temporal 
information, were removed; 2) examples that had too many missing values were 
removed. During the join, if a tuple from one table was not matched with a tuple from 
another table it was padded with missing values. If an example was not matched during 
several subsequent joins, and it contained many missing values, then it was treated as an 
outlier and removed.  

The objective for goal 2 was to discover factors related to different types of CF. The 
training set for goal 2 was derived in the same way as the training set for the goal 1, with 
a different class attribute.  Summary information about training data sets is shown in 
Table 3. 

Table 3.  Summary of training sets for the CF project. 

 

set size # classes # attrib. test data % missing 
values 

% inconsistent 
examples 

# subsets 

CF1 5448 4 160 10CV 56.6 0 5 

CF2 6022 3 160 10CV 56.2 0 5 

The step of data preparation was highly iterative. The above description only describes 
the final outcome, which was derived after several iterations.  

Data Mining 

The DM task for both training sets was very difficult. The datasets are characterized by a 
very large number of missing values and at the same time these missing values are 
distributed over a majority of attributes. For both datasets, all examples contain some 
missing values, and the total number of missing information is larger than the amount of 
complete information. Therefore, both datasets include sparse data, which is very difficult 
to handle while using ML algorithms. It can be expected that the data is very specific, i.e. 
there may be very little common patterns between different patients, and thus generated 
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rules may be long. The first factor was overcome by application of the MetaSqueezer 
system, which is proven to be missing values resistant. The second factor was overcome 
by development of an alternative knowledge representation. Production rules, generated 
by the MetaSqueezer, were transformed into tables, called rule and selector ranking 
tables, as described above. 

Experimental Results 

Both training sets were used as input to the MetaSqueezer system, which generated a set 
of production rules. Next, the rules were evaluated by performing two tests for each of 
the defined goals: 

• The first test takes the training set and performs 10 fold cross validation with the 
same setting as for the second test. The results show verification test results, running 
time, and the number of rules and selectors for each of the runs, and their mean 
values. The results of this test have shown simplicity, accuracy, efficiency, and 
flexibility of the system, but could not be used by the clinicians since ten different 
rule sets were generated.  Instead, this test is used to validate results generated for the 
second test, using the same system settings. Tables 4 and 5 shows results on the 
training set for goals 1 and 2, respectively.  

• The second test generates a set of rules from the entire training data set. The rules are 
used to generate the attribute and selector ranking tables, and tested on the same 
training set. The results report accuracy on the training data, number of generated 
rules and selectors. These results are analyzed by clinicians. The summary of results 
for the second test is shown in Tables 6 for both goals. The table also compares the 
results with the results obtained during the 10 CV tests. 

The results report accuracy, sensitivity and specificity, which are defined below. The 
verification test, which is frequently used in evaluating medical diagnostic procedures, 
gives much better and specific information about goodness of the generated rules, as 
compared with just reporting accuracy results [15]. The verification test consists of these 
three evaluation criteria: 

%100%100
FNTP

TP
positivehypothesis

TPysensitivit
+

==  

%100%100
TNFP

TN
negativehypothesis

TNyspecificit
+

==  

%100%100
FNFPTNTP

TNTP
total

TNTPaccuracy
+++

+
=

+
=  

where: positive hypotheses concerns rules for currently evaluated class; negative 
hypotheses the remaining rules; TP (true positive) is a number of correct positive 
classifications; TN (true negative) is a number of correct negative classifications; FP 
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(false positive) is a number of incorrect positive classifications; and FN (false negative) is 
a number of incorrect negative classifications. 

The results also report mean values for each criterion, averaged over all classes. The 
sensitivity measures how many of the examples classified by the rules as belonging to the 
currently evaluated class, truly belong to this class. The specificity measures how many 
of the examples classified by the rules as not belonging to the currently evaluated class, 
truly did not belong to it. They enable evaluation of how the rules perform on the part of 
the data they should describe, i.e. for the class they are intended to describe, versus their 
performance on the remaining part of the data. Only the results with high values for all 
three measures can assure high confidence in the generated rules. 

Table 4.  10 fold cross validation results for goal 1. 

 
Trial 1 2 3 4 5 6 7 8 9 10 StDev Mean 

Accuracy 57.8 58.2 65.1 60.6 59.1 59.1 66.8 60.4 61.7 61.5 2.94 61.0 

Specificity 88.9 89.3 90.2 88.8 90 89.6 91.2 90.5 91 89.8 0.8 89.9 

Sensitivity 57 59.2 60.1 63.3 60.7 52.6 63.4 58.4 59 56.6 3.22 59.0 

Time [ms] 8663 8501 8169 8537 8428 8794 8663 8360 8413 9010 239 1m 25s 53ms 

# Rules 452 448 428 494 493 345 470 435 356 434 50.5 436 

# Selector 4437 4320 4125 4710 4720 3393 4603 4213 3460 4196 467 4.22E+03 

The results for the first goal show that the system generates accurate rules. Two factors 
need to be considered to evaluate accuracy of the system. First, the data contain only 
about 44% of complete information. Second, the default hypothesis, where the most 
frequent class is selected, for that training data set has 34.2% accuracy. Therefore, the 
accuracy of 61% for 10 CV tests for rules generated by the MetaSqueezer system is 
satisfactory. The rules achieve high and comparable values for all tests: sensitivity, 
specificity and accuracy, which show their high quality. The simplicity of results 
generated by the system is also high. The system generates only 436 rules for a sparse 
input data containing almost 6000 examples described by 160 attributes. Considering the 
input data, the average number of selectors per rule, which is 9.7, is low. The system 
generates the rules in about 86 seconds, which is a very good result considering the size 
of the training set. 
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Table 5.  10 fold cross validation results for goal 2. 

 
Trial 1 2 3 4 5 6 7 8 9 10 StDev Mean 

Accuracy 57.4 54.1 69.8 41.3 53.6 51.1 73.8 71 69.3 73.1 11.3 61.4 

Specificity 88.6 86.7 89.8 88.3 85.5 91.2 92.2 88.7 89 90.1 1.97 89 

Sensitivity 71 67.5 66.4 54.6 64.1 57.4 73.8 73.2 68 76.9 7.11 67.3 

Time [ms] 16918 16289 17865 15709 16626 15720 17550 17232 17765 17577 811 2m 49s 25ms

# Rules 498 490 804 215 502 204 791 770 758 749 233 578 

# Selector 5211 5073 8387 2238 5240 2039 8307 8093 7916 7648 2.44E+3 6.02E+3 

The results for the second goal also show that the system generates accurate rules. We 
note that the data contain only about 44% of complete information, and the default 
hypothesis for that training set has 46.0% accuracy. The reported accuracy is 61%. All 
values of the verification test are comparably high. The system generated 578 rules. The 
average number of selectors per rule, which is 10.4, is low. In general, results achieved 
by the MetaSqueezer for the training data describing goal 2 are comparable, in terms of 
quality, to the results achieved for goal 1. 

Table 6.  Summary of test results for goal 1 and 2. 

 
Goal Test type accuracy # rules # selectors 

Using training set 67.6 498 4838 Goal 1 

10 CV, mean values 61.0 436 4220 

Using training set 77.2 790 4809 Goal 2 

10 CV, mean values 61.4 578 6020 

The summary results for both goals show that the MetaSqueezer generates slightly more 
accurate rules when using the entire training set as input. This shows that the results 
presented to clinicians were not overfitted.  

Evaluation of the Discovered Knowledge 

The DM step generated two sets of rules, one for each of the defined goals. The rules 
were transformed into the rule and selector tables, which were presented to CF experts. 
The tables were analyzed by them using the following 4 grade scale: 
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• 1+ was assigned for trivial, not useful results. By default such mark was simply 
omitted from being displayed on the table. The associations described by that 
mark are considered not useful from the medical perspective. 

• 2+ was assigned for results that are of little interest. The associations described by 
that mark are considered of marginal value from the medical perspective. 

• 3+ was assigned for interesting, but already known results. The associations 
described by that mark are considered interesting, but were already discovered by 
other researchers. Such results are used to provide validation of the results 
generated by the system. 

• 4+ was assigned for very interesting, and unknown results. The associations 
described by that mark are of the highest value, since they show very important 
finding which are not yet confirmed or reported in the professional literature. 
Such findings, if found, are the basis for evaluating the entire project as 
successful. 

The evaluation was performed by our CF expert.  The analysis of the results was 
performed manually based on the attribute and selector ranking tables. The tables and the 
evaluation of the findings for goals 1 and 2 are shown, using marks, in Tables 7 and 8, 
respectively. The tables show only attributes that are assigned marks 2+, 3+, and 4+ [37].  

Table 7.  Evaluation of results for goal 1. 

 
CLASS 

FASTDEGRAD 
CLASS 

IMPROV  
CLASS 

NOCHANGE  
CLASS 

SLOWDEGRAD 
ATRIBUTE VALUE MARK

TI
1

TI
2

TI
3

TI
4

TI
5

TI
1

TI
2

TI
3

TI
4

TI
5

TI
1

TI
2

TI
3

TI
4 

TI
5 

TI
1 

TI
2 

TI
3 

TI
4

TI
5

 CFtypes (cf)  Type4 2+                     

 race (dem)  Black 3+                     
 group (dem)  C 3+/4+                     
 group (dem)  NBS 3+/4+                     
 group (dem)  MI 3+/4+                     
 group (dem)  FN 3+/4+                     
 motage (dem)  [22.50,48.50) 3+                     
 motage (dem)  [19.50,22.50) 3+                     
 mecil (dem)  TreatedSurgically 2+                     
 sweatelectr1 (dia)  [24.50,46.00) 4+                     
 sweatelectr2 (dia)  [-11.00,95.50) 3+                     
 tobraresistent? (cul)  Suscept. 2+                     
 na (mic)  [129.00,143.00) 2+                     
 prot (mic)  [-1.95,7.95) 2+                     
 vita (mic)  [0.44,748.00) 2+                     
 wbc (hem)  [4.05,18.00) 2+                     
 hct (hem)  [27.40,45.50) 2+                     
 mch (hem)  [24.90,91.40) 2+                
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 mchc (hem)  [30.40,35.80) 2+                     
 rdw (hem)  [-0.85,15.40) 2+                     
 HAZ (per)  [-2.91,-1.87) 3+                     
 age@diagnosis (dia)  025till2 3+                

 

     

The results generated by the MetaSqueezer system for goal 1 are divided into two parts: 

• confirmatory results marked by 3+ describe relationships that were known previously, 
but give confidence in the correctness of the performed analysis: 

o black race and improvement of the disease; the finding suggests that the 
patients who are black may have less severe disease, possibly less severe CF 
mutations or other genetic modifiers, 

o C group and degradation of the disease for small values of FEV1%; the finding 
suggests that patients who are conventionally diagnosed may have a faster 
decline in FEV1 during advanced stages of the disease 

o NBS groups and improvement of the disease; the finding suggests that the 
benefits of newborn screening may result in stable or improving lung function 
in childhood, which may be the result of closer follow-up in early childhood, 

o MI and FN groups and improvement of the disease for small values of 
FEV1%; the finding suggests that presence of meconium ileus at birth and 
presenting as a false negative on the newborn screen are associated with the 
improvement in FEV1% for low values of FEV1%, 

o  [22.50,48.50) values of motage and improvement or stable state of the 
disease; the finding suggests that children of mothers over the age of 22 years 
tend to have stable lung function, 

o [19.50,22.50) values of motage and degradation of the disease for medium 
values of FEV1%; the finding suggests that children with moderate lung 
disease who have young mothers (between 19.5 and 22.5 years) tend to have a 
greater decline in lung function, 

o [-11.00,95.50) values of sweatelectr2 and improvement of the disease; the 
finding suggests that children with lower sweat chloride values (<95.5) may 
have less severe lung disease, 

o [-2.91,-1.87) values of HAZ and degradation of the disease for small values of 
FEV1%; this finding suggests that children with height stunting and severe 
disease may have a rapid decline in FEV1, 

o 025till2 values of age@diagnosis and degradation of the disease; the finding 
suggests that children who were diagnosed after the initial newborn period 
may have a more rapid decline in pulmonary function, 
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• new findings marked by 4+ describe findings that may be significant medically: 

o [24.50,46.00) value of sweatelectr1 and the improvement of the disease; the 
finding suggests that there is a possible significance of sweat electrolytes. 

The results show not only that the mining system generated accurate results for goal 1, 
based on 10 confirmatory findings, but also that the system discovered one significant 
finding that concerns sweat electrolytes levels. 

Table 8.  Evaluation of results for goal 2. 

 
CLASS TYPE1 CLASS TYPE2 CLASS TYPE4  

ATRIBUTE VALUE MARK
TI
1

TI
2

TI
3

TI
4

TI
5

TI
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TI
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TI
3

TI
4

TI
5

TI
1 

TI
2 

TI
3 

TI
4 

TI
5 

 CFpace (cf)  Improv 3+                
 group (dem)  C 2+                
 group (dem)  NBS 2+                
 irt1 (dia)  [391.00,759.00) 3+                

The results generated by the MetaSqueezer system for goal 2 include only several 
confirmatory findings: 

• improvement of the disease and Type 4 CF; the finding suggests that Children 
with 2 non-F508 mutations may have mild lung disease, 

• [391.00,759.00) values of irt1 and Type 1 CF for medium values of FEV1%; the 
finding suggests that children with high IRT values at birth have moderate lung 
disease. 

The results show that the system generated accurate results for goal 2, based on 2 
confirmatory findings. No new and significant findings were discovered.  

Using the Discovered Knowledge 

The six-step DMKD process has proven to be very practical. The iterative process used 
for generation of results significantly improved the results generated by the 
MetaSqueezer system. The system generated two kinds of results: 12 confirmatory 
findings that prove the correctness of our DM effort, and most importantly one significant 
new finding that shows that the system is capable of generation of useful results. 

The outcome of the project was evaluated to be very successful by the CF experts. The 
new finding discovered for goal 1 was classified as possibly medically significant, and 
may help to bring new clinical insight into this deadly disease. The discovered 
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information currently undergoes detailed medical scrutiny before it can find a possible 
clinical application. 

Refining the Project 

The steps described above were performed in a highly iterative manner, a common 
practice in all DMKD projects. Below we provide the summary of iterations, including 
description of changes and reasons for them. Since the beginning of the project the CF 
data was identified as very challenging for reasons, such as very large amount of missing 
information, incorrect records, and the complex structure of the CF data.  The project was 
performed slowly, with several iterations, and careful revisions of the intermediary 
results. Several formal meetings with CF experts were held to evaluate the progress and 
direct the research in addition to many informal meetings and discussions.  The results of 
the meetings are summarized in Table 9, which shows all major iterations during the CF 
project. 

Table 9. Summary of the refinements performed during the analysis of the CF data. 

 
current DMKD 
step 

returned to reasons for 
modifications 

summary of modifications 

Data Mining Preparation 
of the Data 

incomplete and 
difficult to 
evaluate results 

modification of the join operation, hand-coded 
discretization of several attributes, removal of several 
irrelevant attributes, redesign of the “CF pace” attribute, 
new format of displaying the results 

Evaluation of 
the Discovered 
Knowledge 

Understandi
ng of the 
Data 

unsatisfactory 
results 

New data table, describing weight and height percentiles 
was added, modification of the join operation to 
accommodate for the new table, hand-coded 
discretization of several attributes that were discretized 
automatically, deletion of examples with high number of 
missing values, removal of several irrelevant attributes 

Evaluation of 
the Discovered 
Knowledge 

Data Mining invalidated 
results 

10 fold cross validation test procedures, improvement in 
the new format of displaying the results, removed minor 
data inconsistencies 

The shown iterations represent only the major modifications performed during the 
project. They were done at different steps of the DMKD process and resulted in the 
refinement of the process by returning, modifying, and repeating some of the previously 
performed steps. The redesign was guided by both medical and the DM experts. The 
main reason for the refinements was unsatisfactory quality of initial results. The 
modifications resulted in improving quality of the training sets and quality of the 
representation of the results. It is important to note that all of the performed refinements 
resulted in substantial and gradual improvement of the final results. 
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Summary 
The chapter describes results of mining in cystic fibrosis data, which is used as a case 
study to illustrate major issues facing data mining researchers. 
Very often selection of a proper DM tool can significantly help in achieving a successful 
outcome of the DMKD project. As an example the MetaSqueezer system helped to solve 
issues like dealing with large number of missing data and generation of easily 
understandable format of the results. Mining in CF data was used to illustrate key issues 
facing researchers and practitioners of DM: 

• Extensive preprocessing. One of the important characteristics of the DMKD 
process is the relative amount of time spent to complete each of the steps. One of 
the most expensive steps is the data preparation, or preprocessing, step. The 
estimates for the length of this step vary from 60% [6], 30-60%, [13], and 30% 
[28], depending on the application domain and the status of the existing original 
data. The reasons for extensive preprocessing time include: large amount of 
erroneous data, redundancy and inconsistency of the data, and lack of all the 
necessary data to achieve success [48]. 

• Iterative nature of DMKD projects. The majority of DMKD projects are 
performed in a highly iterative manner, where the final results are achieved after 
performing a number of feedback loops, leading to reevaluation, redesign, and 
repeated execution of some of the earlier steps. It is important to recognize this 
necessity ahead of time, and to use a DMKD process model that can properly 
accommodate for the feedback mechanism.  

• Interdisciplinary nature of DMKD projects. Main portion of the DMKD 
project concerns performing analysis of data that spans multiple domains. This 
directly leads to necessity of close collaboration between people from different 
disciplines, e.g. medical and DM. Currently even more multidisciplinary projects 
are initiated because of the increased complexity of the data and a general trend to 
use integrated data sources. 

Being aware of the above described issues before one starts a DM project helps to reduce 
costs and shorten time to generation of meaningful results.  
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