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1. Introduction 
 
 
The chapter describes inductive machine learning methods for generating 
hypotheses about given training data. It focuses on hybrid algorithms that generate 
hypotheses in the form of production if… then… rules, which constitute the 
model of the data. 
 
Machine learning (ML) can be defined as the ability of a computer program to 
improve its own performance, based on the past experience, by generation of a 
new data structure that is different from an old one, like production rules from 
input numerical or nominal data. The advantage of machine learning is that the 
generated description, in the form of rules or decision trees, is explicit. The rules 
can be analyzed, learned from, or modified by the user. Because of this machine 
learning is a preferred data mining method, in particular in situations where a 
decision maker needs to understand and validate the generated model. As such 
machine learning is often used as the key step in the knowledge discovery process 
(Cios et al., 2000).  Here are a few reasons why there is a big interest in machine 
learning (Cios et al., 1998):  
 
• We observe exponential growth of the amount of data and information due to 

the fast proliferation of the Internet, digital database systems, and information 
systems. Thus, automation of the processing of that huge data, which can be 
done via ML, becomes a crucial task. 

• It can provide techniques for analysis, processing, granulation, and extraction 
of the data. 



 

  
 
 

• In some areas machine learning can be used to generate “expert” rules from 
available data, especially in medical and industrial domains, where there may 
be no experts available to analyze the data.   

• It helps in understanding human cognitive processes and enables further 
development of better machine-human learning strategies, while taking into 
account the accumulated knowledge, analogical reasoning, theory formation, 
etc. 

• Production rules can be easily “fuzzyfied”, they can also help in a neural 
network design and deciphering the knowledge stored in the network’s 
weights and connections, to mention just two other important data mining 
tools. 

 
A machine learning process consists of two phases. The learning phase, in which 
the system analyzes the data and generates the rules by finding some similarities 
among the data, and the validation phase, in which the generated rules must be 
verified by computing some performance evaluation function on new set of data. 
 
Machine learning algorithms can be categorized in several ways. Most 
importantly they are divided into supervised and unsupervised algorithms. They 
can use inductive vs. deductive types of learning, incremental vs. non-incremental 
learning modes, etc.  
 
In supervised learning the user is a teacher who provides examples labeled with 
class values. In case where there is no a priori knowledge of classes, supervised 
learning can be still applied if the data has a natural cluster structure. Then, a 
clustering algorithm has to be run first to reveal these natural groupings. 
  
The training data set consists of M training data pairs (examples): 
 

S = {(xi, cj) | i = 1,...,M; j = 1,...,C}. 
 
where: xi –  n-dimensional pattern vector, whose components are called features, 

cj –  known class. 
 

The algorithm’s role is to search the space of possible hypotheses to discover the 
best estimate of the mapping function f, such that c = f(x). For the search to be 
successful the assumption has to be made that the features represent only 
properties of the examples but not the relationships between the examples. A 
machine learning algorithm generates hypotheses by finding common features and 
their values for examples representing each class. Then, the generated hypotheses 
are applied to the new examples to predict their class membership.  
 
In unsupervised learning the system learns the classes on its own. This type of 
learning learns the classification by searching trough common properties of the 
data. An example of unsupervised learning is conceptual clustering (Michalski, 



 

  
 
 

1980; Fisher and Langley, 1986; Fisher, 1987), which is quite different from 
classical clustering. Conceptual clustering consists of two tasks: clustering itself, 
where the clusters in a given data set are found, and characterization where, for 
each found cluster, a concept description is generated. Conceptual clustering can 
be thought of as a hybrid of unsupervised (clustering) and supervised 
(characterization) learning. In theory, it is possible to transform a supervised 
machine learning algorithm into an unsupervised one  (Langley, 1996) by running 
the supervised algorithm as many times as there are features describing the 
examples, each time with a different feature playing the role of the class attribute.  
 
Two basic techniques for inferring the information from data are deduction and 
induction. Deduction infers information that is a logical consequence of the 
information in the database. The deduction technique can be used if the data 
describing some domain is proven to be correct. Induction infers generalized 
information, or knowledge, by searching for regularities among the data. 
Inductive learning produces results that are always correct for the data but only 
plausible outside of the data. Learning by induction is a search for a correct 
hypothesis/rule, or a set of them, which is guided by the given examples. Majority 
of the machine learning algorithms are inductive.  
 
Incremental learning is performed by providing the learning examples to an 
algorithm one at a time, while in non-incremental learning all of the learning 
examples are provided to an algorithm simultaneously. 
 
1.1. Machine learning issues 
 
One of the main issues in machine learning is the presence of noise in the data. 
The noise can be present in the features, that constitute an example, and/or in the 
class descriptions, like false examples. Only some of the machine learning 
algorithms are noise-tolerant, which means that they can generate the rules that 
are not overfitted, i.e, they do not cover noisy examples. 
 
Another issue is the generalization and specialization factor of the generated rules. 
A general rule covers more examples, and thus might perform better on unseen 
data then a more specific rule. An example is covered by a rule when it satisfies 
all conditions of the if part of the rule.  
 
In cases where the number of the generated hypotheses is excessively large an 
algorithm has to choose a subset of them (Cios et al., 1998) by means of : 
 
• heuristics, like Occam’s razor  (choosing the shortest rule is best)     
• minimum description length principle (a generalization of the Occam’s razor 

heuristic)  
• background knowledge about the domain 
• reasoning from first principles (like laws of physics, mathematical theorems)  



 

  
 
 

• decisions made by the user, based on his/her knowledge of the problem. 
 
There is also an issue of the size and dimensionality of the data. Only a few 
algorithms can deal with big and highly dimensional data. We are still dealing 
with some variation of the classic artificial intelligence problem of systems that 
work for several examples but are not really scalable (Schank, 1991). Among the 
algorithms that seem to overcome the problem is the CLIP4 algorithm (Cios and 
Kurgan, 2001). 
 
1.2. Generation of Hypotheses 
 
In the machine learning world one works with data that represent information. 
The definition of an information system is given below: 

 
>=< fVQSIS ,,,  

 
where : 
 
    S – a finite set of examples, },...,,{ 21 MeeeS = , M – the number of examples 
    Q – a finite set of features, },...,,{ 21 nFFFQ = , n - number of features 
    jFVV ∪=  – a set of feature values    jFV  – the domain of feature QFj ∈  

    jFi Vv ∈  – a value of feature jF  

    VQSf →×= – an information function, that satisfies: 

jFii VFef ∈),( for every Sei ∈  and QFj ∈  

 
Note: S is often called the learning set, which is a subset of the entire universe, 
defined as a Cartesian product of feature domains jFV (j=1,2…n). 

 
As an example let us define a patient whose condition is described by two 
features: F1=temperature and F2=blood pressure. Feature F1 can take on three 
values: low (<36°C), normal (<36°C, 37°C>), and high (>37°C), while feature F2 
can take on values: low (< 90/170), normal (<90/70, 130/90>), and high 
(>130/90). Thus, the feature domains are: 
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A possible hypothesis, using the above information about the patient, can read: for 
any patient with normal temperature and normal blood pressure make a decision, 
or in the rule form: 

 



 

  
 
 

IF F1= normal AND F2= normal THEN decision 
To come up with such a rule we need a learning data set. The learning examples 
are then analyzed by a machine learning algorithm to generate production rules. 
One has to remember that learning examples do not cover the entire universe of 
possible examples. Thus, the generated rules need to be general enough to 
describe these unseen examples. In the next step, the data are divided into two 
parts: positive examples (examples that describe the concept), and negative 
examples (counterexamples).  
 
Let us assume that we have the training data as shown in Table 1. 

 
Table 1. Example training data 

 
Patient No F1 (Temperature) F2 (Blood pressure) Decision 

1 Normal Low Go home 
2 Normal Normal Go home 
3 Low Normal Go home 
4 High High Treatment 

 
Thus, for our information system: 
 
 }4,3,2,1{=S , M=4 

 },{ 21 FFQ = , n=2 
 
Positive examples describe the situation when patient is sent home (patients 
1,2and 3). By visual analysis of this data the following rules can be generated: 
 

IF F1=normal AND F2=low THEN go home 
IF F1= normal AND F2= normal THEN go home 
IF F1=low AND F2= normal THEN go home 

 
or 
 

IF F1= normal THEN go home 
IF F2= normal THEN go home 
 

The first three rules are more specific because they cover one example each, they 
overfitt the data, and thus might produce poor results on test data. The last two 
rules are more general, because they can cover more examples while still not 
covering the fourth patient.   
 
The goal of learning algorithms described in this chapter is to generate a set of 
rules (hypotheses) that best describe the learning data. After learning, the rules are 
tested using another set of unseen validation examples. If the rules fail to correctly 



 

  
 
 

classify majority of the validation examples the learning should be repeated using 
procedures described in Appendix 3 (on Overfitting). 
 
The common feature of all machine learning algorithms is their ability to almost 
perfectly classify the training examples. However, the true value of the rules 
generated by any algorithm can be evaluated only by testing them on new data. It 
is also important to establish balance between generalization and specialization to 
generate the best possible set of rules. 
 
The rule can be generalized or specialized by the following operations (Cios et al, 
1998): 
 
• Replacing constants with variables (more general rule can be generated by 

replacing constants in rules that have the same outcome by a variable, and 
merging them into one rule), for instance two rules: 

 
IF F1=normal AND F2=low THEN go home 
IF F1= normal AND F2= normal THEN go home 
 

         can be replaced by a more general rule: 
 
IF F1=normal THEN go home 
 

• Using disjuncts for rule generalization and conjuncts for rule specialization 
 
• Moving up in a hierarchy for generalization. If there is a known hierarchy in 

a given problem domain, the generalization can be performed by replacing 
the conditions involving the knowledge of the lower level by the common 
conditions involving the knowledge of the upper level 

 
• Chunking. This mechanism is based on the premise that given the goal, every 

problem encountered on the way to this goal can be treated as a sub-goal.  
 
This chapter first briefly describes rule and decision tree algorithms and then 
concentrates on hybrid algorithms, its main topic. The rule algorithms are 
represented by the family of AQ algorithms (Michalski et al., 1986), and decision 
tree algorithms by ID algorithms (Quinlan, 1993). Hybrid algorithms combine the 
best features of the two approaches: they are represented in the chapter by the 
CN2 algorithm (Clark and Niblett, 1989) and the CLIP family of algorithms. 
 
1.3. Rule Algorithms 
 
They will be described by using AQ15 algorithm (Michalski et al., 1986). There 
were several improvements (Kaufman and Michalski, 1999) introduced in 
subsequent versions of AQ algorithm, but the main idea can still be described 



 

  
 
 

using the AQ15 algorithm. AQ algorithm uses variable-value logic calculus (VL1) 
(Michalski, 1974). Below some basic definitions of VL1 are defined: 
 
Selector - it is relational statement of the form:  )?( ii vF   

where:  ? –  any relational operator like = or ≠, 

iv – a values of attribute iF  

e.g. (F1≠low) 
 
Complex (L) – a logical product of selectors: )?( ii vFL ∩=   

e.g. ((F1≠low) AND (F2=high OR low)) 
 
Cover (C) – a disjunction of complexes: iLC ∩=    

e.g. ((F1≠low) AND (F2=high OR low)) OR (F1≠low) 
 
Operations, which can be performed in VL1, are defined below: 
 
Generation of a star )|( ii EeG  and generation of a cover )|( 21 EEG , where 

ii Ee ∈ and 1E and 2E are two sets such that SEE =∪ 21  
 
Star is defined as: ijEeeeGEeG jjjiii ≠∈∀∩= ,),|()|( , so this is a 

conjunction of all G(ei|ej). Each G(ei|ej) value is obtained by comparing the 
features from ei and ej examples, skipping those which are the same, forbidding ei 
from taking on the same values as ej, and combining all generated selectors using 
disjunction., e.g.: 
 
 e1={normal, low}, e4={high, high} 
 G(e1|e4) = (F1≠high)OR(F2≠high) 
 
Cover is defined as: ijEeEeEEEG iijiji ≠∈∀∩= ,),|()|( , so this is a 

conjunction of all evaluated stars. 
 
To evaluate "goodness" of given cover the sparseness function is used; a number, 
defined as the total number of examples, which can be potentially covered by 
given cover minus the number of examples, which are actually covered by the 
cover. If value of sparseness is smaller then the cover is more compact. The cover 
with the smallest sparseness value is chosen, in agreement with the minimum 
description length principle 
 
 
 
The pseudo-code for the AQ15 algorithm (Michalski, 1986) follows: 



 

  
 
 

 
Given: positive and negative example training sets. 
Part 1. While partial cover does not cover all positive examples do: 
1. Select an uncovered positive example (a seed) 
2. Generate a star, that determine maximally general complexes covering the 

seed and no negative examples 
3. Select the best complex from the star, according to the user-defined criteria 
4. Add the complex to the partial cover 
Part 2. While partial star covers negative examples do: 
1. Select a covered negative example 
2. Generate a partial star (all maximally general complexes) that covers the seed 

and excludes the negative example 
3. Generate a new partial star by intersecting the current partial star with the 

partial star generated so far 
4. Trim the partial star if the number of disjoint complexes exceeds the 

predefined threshold, called maxstar (to avoid exhaustive search for covers 
which can grow out of control) 

Result: Rules covering all positive examples and no negative examples. 
 
The AQ15 algorithm performs a top-down search through all positive examples 
and generates a decision rule for each class in turn. At each step it starts with 
selecting one positive example (the seed) and generates all complexes (a star) that 
covers the seed, but does not cover any negative example. Then by using user-
defined criteria (sparseness function and length of complexes) it selects the best 
complex from the star. Then this complex is added to the current (partial) cover.  
 
Part 1 of the AQ15 algorithm can be rewritten in an easier to implement form, 
namely generation of cover involves these three steps: 
 
For each positive example 1Eei ∈ (E1 is a set of positive examples): 
1. Find )|( ji eeG for each 2Ee j ∈ , where E2 is a negative set of examples 

2. Find a star )|( 2EeG i , as a conjunction of all )|( ji eeG  from step 1. If 

there is more than one )|( ji eeG  (after conversion into disjunctive form) 

select the best one according to smallest sparseness 
3. Find a cover )|( 21 EEG  of all positive examples against all negative 

examples, as a disjunction of all stars from step 2. The final cover covers all 
positive examples and no negative examples 

 
In part 2 of the AQ15 algorithm the partition between positive and negative 
examples, that initially do intersect, needs to be achieved. The goal is to come up 
with the information function (IF) that results in the partition of the learning data. 
 



 

  
 
 

Having two disjoint sets of examples E01 and E02 we perform the following 
operations in step 2 of the AQ15 algorithm: 
 
1. Generate information functions: IF1 and IF2 using these sets to generate 

subsets E1 and E2 which are covered by these information functions 
2. If sets E1 and E2 do not intersect we have the partition - STOP, otherwise we 

calculate differences between sets E1 and E2 and the intersecting sets 
211 EEEE p ∩−= and 212 EEEEn ∩−= , generate corresponding to En and 

Ep information functions IFp and IFn. 
3. For all examples ei from the intersection we create sets 

ip eE ∪ and in eE ∪ and generate information functions IFpi and IFni for them 
4. Check if (IFp, IFni) and (IFn, IFpi) create partitions of S: 

• If yes, choose better partition using sparseness, chosen pair becomes new 
sets E1 and E2, go back to step 1 taking next example from the 
intersection 

• If not, go to step 2 and check another example from intersection. 
 
Information function represents rule (hypothesis) that covers positive examples. 
This algorithm does not guarantee that all examples will be assigned into one of 
the two subsets if partition is not achieved.  
 
The example how to generate rules using rule algorithms is given below, using the 
data from Table 1. (E1={1,2,3}, E2={4}) 

G(e1|e4) = G(e1|E2) = (F1≠high) OR (F2≠high) 
G(e2|e4) = G(e3|e4) = G(e1|e4) 

Now the sparseness is calculated: for F1≠high = 6-3 = 3, for F2≠high = 6-3 = 3 
Thus the first rule is: IF (F1≠high)) THEN class “go home” 
Now the rule for “treatment” case is generated: 

G(e4|e1) = (F1≠normal) OR (F2≠low) 
G(e4|e2) = (F1≠normal) OR (F2≠normal) 
G(e4|e3) = (F1≠low) OR (F2≠normal) 
G(e4|E1) = ((F1≠normal) OR (F2≠low)) AND ((F1≠normal) OR (F2≠normal)) 

AND ((F1≠low) OR (F2≠normal)) = 
((F1≠normal) OR (F1≠normal AND F2≠normal) OR (F2≠low AND 
F1≠normal) OR (F2≠low AND F2≠normal)) AND (F1≠low OR F2≠normal) =  
(F1≠normal AND F1≠low) OR    (sparseness: 3–1=2) 
(F1≠normal AND F2≠normal) OR   (sparseness: 4–1=3) 
(F1≠normal AND F2≠normal AND F1≠low) OR  (sparseness: 2–1=1) 
(F1≠normal AND F2≠normal) OR   (sparseness: 4–1=3) 
(F2≠low AND F1≠normal AND F1≠low) OR  (sparseness: 2–1=1) 
(F2≠low AND F1≠normal AND F2≠normal) OR  (sparseness: 2–1=1) 
(F2≠low AND F2≠normal AND F1≠low) OR  (sparseness: 2–1=1) 
(F2≠low AND F2≠normal)    (sparseness: 3–1=2) 



 

  
 
 

Thus the second rule is: IF (F1≠normal) AND (F2≠normal) AND (F1≠low) THEN class 
“treatment” 
 
The G(e4|E1) star includes almost every permutation of the attribute/value pairs, 
and has to be stores in the memory. The rules generated using rule algorithm are 
following: 
  

Rule 1: IF (F1≠high)) THEN class “go home” 
Rule 2: IF (F1≠normal) AND (F2≠normal) AND (F1≠low) THEN class “treatment” 

 
The above rules have 100% accuracy on the training data. Notice, that these rules 
do not agree with the rules we derived intuitively because the only relational 
operator used is inequality. 
 
Major advantages and disadvantages of the AQ algorithms are listed below:  
 
• Rules are independent; the rule sets can be added together. It enables 

incremental learning. 
• The rules are modular 
• The rules can be easily modified, because of their structure 
• Evaluation of a cover and evaluation of the partition of two sets is 

computationally a very expansive process. We have to remember all 
examples as well as all generated stars and covers, which is very memory 
consuming and can be impossible to perform for very large data sets. 

• It does not reveal relationships between produced rules, as is the case of 
decision trees. Because of this it is very difficult to see structure of the data 
on which the algorithm learned. The only way to deal with this disadvantage 
is to try cluster similar rules based on the similarity of examples which they 
cover. 

• It handles noise outside of the algorithm itself, say by rule truncation. 
• It cannot deal with continuous features. 

 
1.4. Decision Tree Algorithms 
 
Decision tree algorithms are represented by the family of ID (C4.5) algorithms 
(Quinlan, 1993). The decision tree is a model for approximation of discrete-value 
functions that is capable to learn disjunctive expressions. A decision tree consists 
of nodes and branches connecting the nodes. The top node in the tree is called the 
root, and contains all training examples. The bottom nodes of the tree are called 
leaves, and represent final subsets of the data with associated with them class 
labels. The decision nodes in the tree are all, but leaf, nodes since they correspond 
to decisions that are performed at these nodes using a single selected feature. ID3 
algorithm is based on a psychological model (Hunt, 1966) of the process that 
people use when learning simple concepts (Quinlan, 1993). People do it by 
finding key distinguishing features from the set of training examples. The Hunt’s 



 

  
 
 

model is called the concept learning system (CLS), and it is similar to a divide and 
conquer method.  
 
Lets assume that the learning set, S, consists of n examples belonging to c classes.  
The task is to divide this set into disjoint subsets based on a single feature, so that 
they create a partition. The following pseudocode summarizes the CLS algorithm.   
 
Given: S – set of learning examples 
1. Select the most discriminatory (significant) feature 
2. Split the entire set S, located at the root of the tree, into several subsets using 

the selected feature. The number of children nodes originating from the root 
is equal to the number of possible values the selected feature takes on.    

3. Recursively find the most significant feature for each subset generated in step 
2 and top-down split it into subsets. If each subset contains examples 
belonging to one class only (a leaf node) then stop, otherwise go to step 3. 

Result: The decision tree from which classification rules can be extracted 
 
Quinlan (1993) used Shannon’s entropy as a criterion for selecting the most 
discriminatory features: 
 

∑
=

⋅−=
c

i
ii ppSEntropy
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2 )(log)(  

 
where: pi - proportion of the examples belonging to the i-th class.  
 
In ID3 the uncertainty in each node is reduced by choosing the minimal entropy.  
To reach this goal Information Gain is used, which measures expected reduction 
in entropy caused by knowing the value of a feature Fj. 
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where:  jFV - set of all possible values of feature jF  

 ivS - subset of S, for which feature jF has value vi 
 
Information Gain is used to select the best feature at each step of growing the 
decision tree. In later versions of the ID algorithm, the Gain Ratio was proposed 
to compensate for the bias of the Information Gain for cases with many outcomes.  
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Split Information is the entropy of S with respect to values of feature Fj. In a 
situation when two or more features have the same Information Gain value, the 
feature that has less number of values will be selected by the Gain Ratio test. Gain 
ratio gives better results, especially for bigger data sets, and results in smaller 
trees. 
 
The pseudocode of the discrete ID3 algorithm is: 
 
Given: S – set of learning examples 
1. Create the root node containing the entire set S 
2. If all examples are positive, or negative, then stop: decision tree has one node 
3. Otherwise (general case) 

3.1 Select feature Fj that has the largest Information Gain value 
3.2 For each value vi from the domain of feature Fj: 

a) add a new branch corresponding to this feature value vi, and a new 
node, which stores all the examples that have value vi for feature Fj 

b) if the node stores examples belonging to one class only then it 
becomes a leaf node, else below this node add a new sub-tree, and go 
to step 3 

Result: The decision tree from which the rules can be extracted 
 
ID3 is using inductive bias during learning, i.e. it prefers small over large decision 
trees. Decision tree is represented as disjunction of conjunctions of the feature 
values. The trees can be represented by a set of if…then… rules.  
 
To avoid overfitting decision trees are pruned. Pruning also helps to generate 
more general rules. The pruning can be done during the process of tree growing 
(pre-pruning), or after the entire tree is established (post-pruning). The extreme 
case of the pruning was proposed by Holte (1993). He proposed concept of 
decision trees that are only one level deep and has shown that the classification 
performance of such trees is equally good to other more complex algorithms. 
  
Extension of the ID3, the C4.5 algorithm (Quinlan, 1993) allows the user to work 
with continuous features, to grow trees from data containing missing values, and 
introduces the windowing techniques to deal with larger data sets. The newest 
implementations of C4.5 use boosting (Schapire, 1999) and tree pruning 
techniques. 
 
The decision tree for the training data from Table 1 is shown below. There is a 
single test in the root of the tree for the attribute F1. For all three outcomes of the 
test the resulting subsets are of the uniform class, and thus the tree is 100% 
accurate for the training data. Notice that these rules do not agree with the rules 



 

  
 
 

we derived intuitively, because only a single attribute can be tested at each tree 
node. 
 

 
 
The above tree can be translated into the set of three rules: 
 

Rule 1: IF (F1 = normal) THEN class “go home” 
Rule 2: IF (F1 = low) THEN class “go home” 
Rule 3: IF (F1 = high) THEN class “treatment” 

 
Decision tree and rule algorithms always create decision boundaries that are 
parallel to the coordinate axes of feature values; they create hypercube decision 
regions in high-dimensional spaces. Cios and Liu (1992) used that fact to design a 
neural network algorithm that can place decision boundaries at any angle. The 
Continuous ID3 (CID3) algorithm (Cios and Liu, 1992) is a self-generating neural 
network algorithm that uses the idea of entropy minimization for placing 
hyperplanes to solve a given classification problem. During the process of 
minimizing the entropy, CID3 also generates its own topology. It starts with just 
one neuron and adds new neurons and/or new hidden layers until a given problem 
is solved (indicated by the entropy value reduced to zero). Minimization of 
entropy is used for the “best” placing of separating hyperplanes, in terms of their 
orientation and position. Unlike ID algorithms that create many classification-
boxes, CID3 uses a much smaller number of hyperplanes to achieve the same 
goal. Top part of Figure 1 illustrates the result of a decision tree algorithm on a 
two-class (indicated as pluses and minuses), two-feature problem (Cios et al, 
1998). CID3 places hyperplanes at any angle, as shown in the lower part of Figure 
1. CID3 does not guarantee finding optimal solution, like the one shown in Figure 
1, but the number of the generated hyperplanes always is much smaller than the 
number of parallel hyperplanes generated by ID algorithms. 
 
 



 

  
 
 

 

 
 

Figure 1. Comparison of decision boundaries created by ID3 and CID3 algorithms 
 
 
Advantages and disadvantages of decision tree algorithms are listed below:  
 
• They reveal relationships between the rules, which can be derived from the 

tree. Because of this it is easy to see the structure of the data. 
• They produce rules that best describe all the classes in the training data set 
• They are computationally inexpensive 
• They may generate very complex (long) rules, which are very hard to prune 
• They generate large number of rules. Their number can become excessively 

large unless some pruning techniques are used to make them more 
comprehensible. 

• They require big amounts of memory to store the entire tree for deriving the 
rules. 

• They do not easily support incremental learning.  Although ID3 would still 
work if examples are supplied one at a time, but it would grow a new 
decision tree from scratch every time a new example is given. 

 
1.5. Hybrid Algorithms 
 
In this section we focus on hybrid algorithms that combine rule and decision tree 
algorithms. These algorithms incorporate the best ideas from the two families of 
algorithms as well as new features. Two examples of hybrid algorithms are CN2 
algorithm (Clark and Niblett, 1989) and CLILP2 algorithm (Cios at al. 1995, 
1997, 2001).  Below we briefly overview the CN2 algorithm, however, our main 
interest is the CLIP family of algorithms.  
 
The main structure of the CN2 algorithm is based on the AQ algorithm and 
applies some of the mechanisms from decision tree algorithms. The AQ algorithm 
generates complex that covers the “seed” example and excludes all negative 
examples. This approach generates rules that are fully consistent with the training 



 

  
 
 

data and thus can overfit the data. The CN2 algorithm performs the search for the 
complex that does not necessarily exclude all negative examples. It checks all the 
possible specializations of the complex in a manner similar to the ID3 algorithm’s 
attribute test to establish a new node in the tree. It generates an ordered list of 
production rules and evaluates the quality of a complex by using the entropy 
measure 
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where pi is probability that the complex classifies example into the ith class. 
 
To calculate the entropy, a set of examples covered by the complex has to be 
found first. The lower the entropy value the better the complex. The second 
evaluation criterion tests "significance" of the complex by calculating the 
likelihood ratio statistics. This measure calculates the distance between two 
distributions: distribution among classes of examples that satisfy the complex, and 
the expected distribution that would result if the examples were selected 
randomly. If the value of the significance measure is low then the regularities 
described by the complex are close to random. The bigger the value of the 
significance measure the better the complex. 
 
The CN2 algorithm uses these two measures repeatedly to search for the best 
complex and at the same time it incorporates tree-pruning techniques, like 
stopping complex specialization when no further specialization is statistically 
significant. Further improvements of the CN2 algorithm (Clark and Boswell, 
1991) include new methods for calculation of the significance measure for the 
complexes. This new measure uses Laplace heuristics that searches for more 
general, with higher value of predictive accuracy, complexes. The improved CN2 
algorithm is able to generate unordered set of rules, where each rule can be used 
separately to classify the examples. 
 
 
2. CLIP Family of Algorithms 
 
 
The initial CLIP algorithm, CLILP2  (Cover Learning using Integer Linear 
Programming) was developed in 1995 (Cios and Liu). It was later improved into 
the CLIP3 algorithm (Cios at al. 1997). Most recently, several new significant 
features were added to the algorithm that resulted in the CLIP4 algorithm (Cios 
and Kurgan 2001). The new version of the algorithm incorporates features that 
make it more powerful and user friendly; they are described later. In this section 
detailed description of how the CLIP algorithm works is presented, along with an 
illustrative example. 
 



 

  
 
 

We explain here the fundamental ideas of the CLIP algorithms. First, a brief 
description of the CLIP algorithm is provided. Then, the pseudocode of the 
algorithm is given along with detailed analysis. 
  
The CLIP algorithm has three phases. In the first phase, a decision tree is grown, 
and pruned, to divide the data into subsets. In the second phase the set covering 
method is used to generate production rules. In the third phase, goodness of each 
of the generated rule is evaluated, and only the best rules are kept while the 
remaining (weaker) rules are discarded. Common feature of all three phases is the 
use of the Integer Programming (IP) model to perform crucial operations on the 
data, like selecting the most discriminating features, growing new branches of the 
tree, selecting the data subset that generates the least overlapping and the most 
general rules, and finally for generating the rules from the subsets. The use of the 
IP model is the heart of the algorithm and, as mentioned above, it is used to solve 
many diverse tasks. 
 
Before the algorithm is used the available data is divided into "positive" data 
(positive examples), which describe the concept, for which we want to generate 
the rules, and the "negative" data (counterexamples).  
 
In the first phase, the original set of positive training data is divided into smaller 
subsets of similar data in a decision-tree like manner. Tree pruning is performed 
to eliminate noise from the data and to avoid excessive growth of the tree. Each 
level of the tree is built using one negative example. This negative example is 
used to define distinguishing features between all positive and this particular 
negative example, to create new branches of the tree. Each node of the tree 
represents one data subset. The difference between growing the tree in the CLIP 
algorithm and a decision tree algorithm, like C4.5, is that the CLIP divides the 
data in many ways, generating not just one “best” division based on the “best” 
feature, say in terms of the highest value of the information gain, but a set of 
divisions based on any feature that distinguishes between positive and negative 
examples. In this way it generates several data subsets from which the rules can 
possibly be generated. The goodness of the subsets used for generating the rules is 
measured by the number of examples they cover. Because of this CLIP can 
generate more general rules, which is a one of the important features of the 
algorithm. The question arises what to do when the resulting tree becomes too 
bushy because of this type of search. CLIP deals with this problem using two 
techniques. It prunes the subsets that contain very small number of examples 
(below the predefined threshold) that are suspected to be noisy, and also prunes 
the redundant subsets, which are defined as subsets that are equal or are subsets of 
other subsets. One very important feature of the CLIP algorithm is the fact that the 
tree in fact does not exist; it is a virtual tree. The "tree" at any iteration consists of 
only one, most recently established tree level. The entire tree above this level is 
discarded. 
 



 

  
 
 

In the second phase all terminal subsets (represented by the tree leaves) are judged 
whether they are good candidates for rule generation or not. There are two criteria 
used to accept or reject them. The first states that large subsets are preferred over 
small subsets (because they simply include more examples); thus the rules 
generated using them will be “stronger” and more general. The second states that 
all accepted subsets (between them) must cover the entire training data. The 
second criterion corresponds to the completeness condition, which states that the 
classification rules must correctly describe all the positive examples. After best 
subsets are selected, the rules are generated. Each rule is generated using one of 
the accepted subsets and the entire negative data set. As a result the number of 
generated rules is equal to the number of accepted subsets. The set of all generated 
rules covers the entire positive training data set. The algorithm also satisfies 
consistency condition, which states that every generated rule covers only positive 
examples and does not cover any negative examples. 
 
In the third phase we are dealing with rules only. The task is to select the best 
rules from the generated rules. To do it each rule is tested on positive data and the 
rule that covers the most of them is chosen while the remaining rules are 
discarded. This promotes selection of strong and general rules. If there is a tie 
between two or more “best rules” the shortest rule is chosen, i.e. the rule that 
involves the minimal number of features. After the best rule is selected all the 
examples covered by this rule are removed from the positive data set and the 
entire process is repeated on the remaining positive (and the entire negative) data. 
 
CLIP algorithm is able to deal with the noisy data. Noisy examples form small 
subsets during the first phase of the algorithm’s execution and thus weak rules are 
generated from them. These rules, however, are not accepted in the final phase. 
Another important feature of the CLIP algorithm, in addition to its noise 
tolerance, is its ability of dealing with the data containing missing values. 
 
CLIP algorithm uses three thresholds. These thresholds are used to prune the tree, 
to avoid overfitting of the data by the generated rules (by removing rules that 
cover too few positive examples, and that are suspected to contain noise), and to 
decide when to stop forming the rules. Detailed description of the thresholds is 
given later. 
 
Integer Linear Programming Model 
 
Integer programming models have been used for a long time in the field of 
operations research, mainly for resource allocation. They are used for 
minimization or maximization of a function, subject to a large number of 
constraints. A simple IP model in a standard form is shown in Figure 2 
(Ravindran et al. 1987). 
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Figure 2.  An example IP model in a standard form and its solution 

 
 
There are several solutions to an IP model depending on the method used. There 
are polynomial algorithms (Chvatal, 1979; Hochbaum, 1982) and non-polynomial 
algorithms (Ravindran et al., 1987). 
 
In the CLIP algorithm the simplified version of the general IP model is used. The 
following simplifications are used: the function that is subject of optimization has 
all the coefficient values equal to one, constraint function coefficients have binary 
values, and all constraint functions are greater or equal to one. This integer linear 
programming problem is known in the literature as the set-covering problem 
(Grafinkel and Nembauser, 1972; Bellmore and Ratliff, 1971).   
 
The simplified IP model example used in the CLIP algorithm is shown in Figure 
3. 
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Figure 3.  Simplified IP model used by the CLIP algorithm and its solution 

 
 
The simplified IP model can be transformed and solved in a matrix representation, 
see Figure 4.  
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Figure 4.  Simplified IP model used in the CLIP algorithm  

 
 

The solution to the simplified IP model can be found by using only constraint 
coefficients matrix, which is called BINary matrix. Columns of this matrix 
correspond to variables of the optimized function (features in case of CLIP). 
Rows correspond to function constrains (examples in case of CLIP). The solution 
for the problem is obtained by selecting minimal number of matrix columns in 
such a way that for every row there will be at least one matrix cell with the value 
of one for the selected matrix columns. The solution consists of the (binary) 
matrix of the selected columns. In order to solve the simplified IP model a 
heuristic was developed; its pseudocode follows. 
 
Given:  BINary matrix – a matrix (MxK) where each row represents an 

example and each column represents a feature 
Initialize:  SOL = 0, where SOL - a matrix containing solution list (1xK) 
   BIN_Row - number of rows in BIN  
  1. Sum each column of BINary matrix one at a time 
  2. Determine the column that has the largest summed value 
  3. Put the value of one in the corresponding column in SOL  
  4. Update BINary matrix and BIN_Row 
  5. IF BIN_Row > 0 THEN go to 1. 
Result:   SOL matrix 
 
Calculations for the example shown in Figure 4 follow: 
 

[ ]

[ ] ]0,1,0,0[1,2,1,2

]0,1,0,1[0,1,0,0],0,0,0,1[
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SOL = [1,0,1,0] means that the solution consists of features 1 and 3. 
 
A detailed explanation of the algorithm follows by means of a numerical example. 
Consider the postoperative recovery room at a hospital. The doctor needs to make 
a decision whether the post-operative patient should be prepared for going home 



 

  
 
 

or should undergo further treatment or observation. The doctor can use the 
following information: 
 
• temperature, in the ranges: low <36°C, mid <36°C, 37°C>and high >37°C 
• stability of patient's blood pressure: stable, moderately stable, and unstable 
• patient’s blood pressure: low < 90/170, mid <90/70, 130/90>, and high 
 >130/90 
• patient's level of discomfort: an integer from 1 to 5 (highest). 
 
Available historical data consist of patient information together with doctor’s 
decisions. The goal is to generate the rules that describe doctor’s way of making 
decisions. 
 
The data are shown in Table 2, (the values in the parentheses define integer 
coding of the data): 

 
Table 2. Example problem data 

 
Patient 

No 
Surface 

temperature 
Blood pressure stability Last blood 

pressure 
Patient 

discomfort 
Doctor’s 
decision 

1 mid (2) moderately-stable (2) low (1) 4 home (1) 
2 mid (2) stable (1) mid (2) 4 home (1) 
3 mid (2) stable (1) high (3) 5 home (1) 
4 high (3) stable (1) high (3) 5 home (1) 
5 mid (2) unstable (3) mid (2) 3 home (1) 
6 high (3) unstable (3) high (3) 5 treatment (2) 
7 mid (2) moderately-stable (2) high (3) 4 treatment (2) 
8 mid (2) unstable (3) low (1) 4 treatment (2) 

 
The training data set for this example consists of eight examples (patients), 
divided into positive data (first five patients), and negative data (last three 
patients). Let us transform the above example into the form required by the CLIP 
algorithm: 
 M – number of positive examples, N – number of negative examples 
 K – number of features, which constitute the examples 
 POS –rectangle (NxK) matrix, which represents the positive training data 
 NEG –rectangle (MxK) matrix, which represents the negative training data 
 negi – ith example from the negative training data set 
 
Thus for our example we have: 
 M = 5, N = 3, K = 4 
 

[ ]5,3,3,3,
4,1,3,2
4,3,2,2
5,3,3,3
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Note: in what follows we use several terms, namely: matrix, node, and subset 
interchangeably, since all mean the same. 
 
The high level pseudocode of the CLIP algorithm follows, for details refer to Cios 
et al. (1997): 
 
Given: POSitive and NEGative training data 
Initialize: 
Assign POSitive matrix to the tree root. 
Initialize the first subset of the positive training data POS1=POS 
 
Phase I 
1. For all NEGative examples negi, create new level of the tree for each negi: 

1) For every node consisting of POSj matrix, where j = 1,2…L, L – number 
of nodes at the current tree level, do: 

• generate BINary matrix by comparing POSj matrix with negi 
• solve represented by the BINary matrix IP model 
• split the POSj matrix based on the features indicated by the IP solution 

creating tree nodes for next tree level, which will contain sub-matrices of 
POSj matrix and eliminate redundant sub-matrices 

2) Increment index of negative example i=i+1, substitute current tree level 
with next tree level 

 
Phase II 
1.  Generate the TM (template matrix) BINary matrix 
2.  Solve represented by the TM BINary matrix IP model 
3.  Back project matrices indicated by the IP solution from step 2 
4.  Convert each resulting matrix to IP model and solve it 
5.  Generate rules based on generated in step 4 IP solutions 
 
Phase III 
1.   Find the best rule 
2. Eliminate positive examples covered by the best rule from POSitive matrix 
3. If POSitive matrix is not empty go to Phase I 
 
Result: Rules covering all positive examples and none of the negative 
 
The solution of the example using the CLIP algorithm is shown in Figure 5. 
 



 

  
 
 

 
 

Figure 5.  Example problem solution using CLIP algorithm. 
 
Phase I explanation 
 
The goal of phase I is to divide the positive data in a tree-like manner into many 
subsets. Each subset represents part of positive data, which is recognized as 
positive and separated from the negative data. The tree consists of nodes, which 
represent subsets, and branches, which represent subsequent divisions of the data. 



 

  
 
 

Each level of the tree is built using one negative example. The tree has the number 
of levels equal to the number of negative examples. Each new tree level is built by 
dividing all the subsets from the previous level by using the same negative 
example. After new level of the tree is built, the previous level is deleted. As a 
result, the memory requirements are low because we do not need to store the 
entire tree but just one tree level. The process is repeated until all negative 
examples are used. Subsets at the bottom of the tree (leaves) are candidates for 
rule generation. 
Below, the division of the data using the first negative example is shown: 
 
• At the beginning we are at the tree root, which represents the entire positive 

data stored in matrix POS1. 
• First negative example, neg1, is used to divide the data 
• At this step we calculate the BINary matrix by comparing neg1 with the entire 

matrix POS, row by row. If feature values are equal, in both being compared 
rows, we put a 0 in the corresponding cell in the BIN matrix, else we put a 1 
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• Next, the BIN matrix, which represents the IP model, is solved; the solution 

matrix, SOL, indicates features that can be used to divide the data 
• Each 1 in the SOL matrix represents a feature that can be used to distinguish 

between all positive examples and the negi example 
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• The SOL matrix indicates which features of the negative example, negi, will 

be used to divide the matrix POSi to create new nodes for the new level of the 
tree. Each value of 1 in the SOL matrix adds a new branch and a new node to 
the tree. It accepts examples from matrix POSi that have the corresponding 
feature value different from the value of the same feature in negi. 

 
• For the SOL matrix [ ]0,0,1,1=SOL , we have two 1s: 



 

  
 
 

• Since the 1 in the first column corresponds to the first feature (patient’s 
temperature) we forbid the corresponding value from the first column of the 
neg1 example, because this value can distinguish between positive and 
negative example 

• For condition F1≠3 we create a new branch of the tree and a new node 
containing subset of the POS matrix examples that satisfies the condition. 

• The same mechanism is applied to the value of 1 in the second column of the 
matrix SOL (i.e. for F2≠3 we create a new branch of the tree and new node 
containing subset of matrix POS that satisfy the condition). 

 
• In such a way the new level of the tree is created and consists of two nodes; 

the first contains matrix POS1, which satisfies the condition F1≠3 and the 
second containing matrix POS2, which satisfies the condition F2≠3 
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• After all the nodes from the preceding level of the tree underwent the above 

process (in our case it was just the root node), all created nodes constitute the 
new level of the tree 

• The process repeats until all negi examples are used exactly once. 
 
Phase II explanation 
 
The goal of phase II is to determine which of the POSi matrices, represented by 
the tree leaves, are best candidates for rule generation. First, Template Matrix 
(TM) is created. This matrix carries information about how many positive 
examples are covered by each POSi matrix. The TM matrix is a BINary matrix, 
and by solving the corresponding IP model, the set of best POSi matrices for the 
purpose of rule generation is selected. For each of the selected matrices a Back 
Projection (BP) matrix is created using the entire negative data set. Once the BP 
matrix is created, it is transformed into a BINary matrix. Then, the corresponding 
IP model is solved and the solution, in combination with all negative data, is used 
to produce the rules. 
 
Below we show calculations performed in phase II:  
 
• Terminal matrices (leaves of the tree) from phase I are shown below: 
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• Matrix TM is of size MxL, where L is number of matrices in the terminal tree 
level 

• Each column of the TM matrix corresponds to one terminal POSi matrix, and 
each row corresponds to one positive example from the POS matrix. For 
every example from the terminal POSi matrix, the corresponding cell in the 
TM matrix is set to 1 (the cell which is located at the column corresponding to 
the POSi matrix, and at the row corresponding to the location of the example 
in the POS matrix). For all positive examples, which are not present in POSi, 
the corresponding TM matrix cells are set to 0. 

• Matrix POS1 consist of examples 2, 3and 5 from matrix POS, matrix POS2 
consist of examples 1, 2 and 5 from matrix POS, and matrix POS3 consists of 
examples 2, 3 and 4 from matrix POS. The corresponding TM matrix is 
shown below. 
 

• Next, the TM matrix, which represents the IP model is solved; the solution 
matrix, SOL, is found and indicates subsets that are best candidates for rule 
generation 
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• The solution matrix SOL = [1, 1, 1] indicates that all three matrices are best 

candidates for rules generation, since a value of 1 in the SOL matrix indicates 
that the corresponding matrix is best candidate for rule generation 

• For every accepted matrix and entire negative data we generate rules using 
back projection  

• The goal of back projection is to determine selectors that can distinguish 
between positive examples from matrix POSi and all negative examples. 
These selectors are used to generate production rules 

• BP matrix is build by comparing each cell from matrix NEG with the entire 
corresponding column of matrix POSi . If the value from the being compared 
cell from matrix NEG is different than any value from the entire 
corresponding column of the POSi matrix, then the corresponding cell in the 
BP matrix is set to the same value as in the NEG matrix cell, otherwise it is 
set to 0. 

• Below we show calculations of the BP matrix for POS1 (calculations for 
POS2 and POS3 matrices are similar) 
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• BP matrix is transformed into the BIN matrix by replacing all nonzero values 

with 1. 
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• Next, the BIN matrix, which represents the IP model is solved, the solution 

materix SOL indicates features that will be used in the generated rules 
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• From the information contained in the SOL matrix a rule is generated. For 

every column of the SOL vector with a 1, the feature values from the 
corresponding column of the BP matrix are used to generate selectors that 
constitute the rule. 

• The rule generated from the above back projected POS1 is: 
 
 IF (F1≠3) AND (F2≠2) AND (F3≠1) THEN class positive 

 
• The same calculations are repeated until all accepted, using the TM matrix, 

matrices are converted into rules 
 
Phase III explanation 
 
The goal of phase III is to select the best rule from all generated rules. To perform 
this selection two criteria are used. The first tests positive data against the rules 
and selects those rules that cover the most positive examples. If there is a tie, the 
rule that uses less number of features is selected. Then, the positive examples 
covered by the rule are removed from positive data, and the entire process is 
repeated. The process is terminated when all positive examples are covered, or if 
only a small number of positive examples remain uncovered (these examples are 
suspected to be noisy). The stop threshold specifies this number. 



 

  
 
 

 
• The rules generated for our example problem are as follows: 

 RULE 1: IF (F1≠3) AND (F2≠2) AND (F3≠1) THEN class positive 
 RULE 2: IF (F2≠3) AND (F3≠3) THEN class positive 
 RULE 3: IF (F2≠3) AND (F2≠2) THEN class positive 

• In the first step the rules are checked against the training data 
 RULE 1 covers three patients 2,3 and 4 
 RULE 2 covers two patients 1 and 2 
 RULE 3 covers three patients 2,3 and 4 

• The rules that cover the most positive examples are selected: 
RULE 1 and RULE 3 are selected 
• If there is more than one rule selected then the most compact rule is 

selected 
RULE 1 uses features F1, F2, and F3 
RULE 3 uses only feature F2 
Thus, RULE 3 is selected 
• If still there is a tie, then any rule, say the first one, is selected 

• After the best rule is selected, the examples that the rule covers are removed 
from matrix POS and the process repeats on the smaller positive data 
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The finally generated rules are: 
 
 RULE 1: IF (F2≠3) AND (F2≠2) THEN class positive 
 RULE 2: IF (F2≠3) AND (F3≠3) THEN class positive 
 RULE 3: IF (F3≠3) AND (F3≠1) THEN class positive 
  
which can be transformed into: 
 
 RULE 1: IF (F2=1) THEN class positive 

RULE 2: IF (F2=1 OR F2=2) AND (F3=1 OR F3=2) THEN class positive 
 RULE 3: IF (F3=2) THEN class positive 
  
For our example the rules read: 
 
RULE 1:  

IF (patient’s stability of blood pressure is STABLE)  
THEN go home 

RULE 2: 
IF (patient’s stability of blood pressure is STABLE or MODERATELY-STABLE) 
AND (patient’s blood pressure is LOW or MID)  
THEN go home 

RULE 3: 
 IF (patient’s blood pressure is MID) THEN go home 



 

  
 
 

The rules generated for the training data, Table 1, are shown below. The CLIP 
algorithm generated 2 rules, one rule less than decision trees. The rules have 
100% accuracy for the training data. Notice that these rules do not agree with the 
rules we derived intuitively, but they generalized the information from the training 
data, by finding that a single attribute is sufficient to describe the data. 
 
      RULE 1. IF (F1 ≠ high) THEN go home 
      RULE 2. IF (F1 ≠ normal) AND (F1 ≠ low) THEN treatment 
 
The comparison of all three types of ML algorithms on the training data from 
Table 1 is shown in Table 3. The decision trees have lower computational cost but 
the CLIP algorithm has much lower memory requirements. Also CLIP generates 
smaller number of rules. 
 
 

Table 3. Comparison of the ML algorithm on the training data from Table 1 
 

Algorithm # of 
rules 

attributes 
used 

# of selectors 
used 

Memory 
requirements 

Computational 
cost 

Rule Algorithm 2 F1, F2 4 high high 
Decision trees  3 F1 3 moderate low 

CLIP algorithm 2 F1 3 low moderate 
 
 
Below we describe the three thresholds used by the CLIP algorithm. One prunes 
nodes containing small number of positive examples, the second determines if the 
best generated rule is acceptable, and the third determines when to stop forming 
the rules. These thresholds control the complexity and number of generated rules. 
The user can use default values for all the thresholds: Noise Threshold, Best Rule 
Threshold, and Stop Threshold. 
 
• Noise Threshold (NT) determines which nodes (possibly containing noisy 

positive examples) will be pruned from the virtual tree grown in the phase I of 
the algorithm. The threshold will prune every node that contains fewer 
examples than NT. Thus, if NT is 0% then none of the branches are 
eliminated. 

• Best Rule Threshold (BRT) determines, which rules can be chosen as best 
rules. Only the rules that cover more than the BRT percentage of the 
(remaining) positive examples can be chosen as best rules.   

• Stop Threshold (ST) determines when to stop the algorithm. The algorithm 
will be terminated when a smaller than ST percentage of positive examples 
remains uncovered (these examples are suspected to be noisy and probably 
would produce very specific rules).  

 
Either the BRT or the ST threshold can stop the algorithm. 
 



 

  
 
 

There are several advantages of the CLIP algorithm: 
• It generates very compact rules, measured in terms of a small number of 

features used 
• It generates small number of rules that describe the concepts from training 

data 
• The generalization ability of the rules is high. Since the rules often overlap 

the performance on unseen validation data is higher. In most cases, by using 
default values of thresholds, the CLIP algorithm generates the rules that do 
not overfit the data. 

• Balance between generalization and specialization of the generated rules can 
be controlled by the thresholds 

• CLIP deals with noisy data without overfitting. The Stop Threshold can be 
used to remove noisy data from the training data. 

• Memory requirements are very low, because there is no need to store the 
entire decision tree during training, like in case of decision tree algorithms. 
Only the bottom level of the tree is needed to generate the rules. 

• CLIP splits positive data into many subsets to later generate the best rule. The 
partitioning mechanism used in the CLIP algorithm prevents generation of 
rules that cover only a small number of examples. 

 
The disadvantages are: 
• It does not support incremental learning. It generates rules when examples are 

supplied one at a time, but when a new example is provided then it generates 
the rules from scratch. 

• It works with discrete features only. 
 
The new version of the algorithm, CLIP4 (Cios and Kurgan, 2001) added these 
improvements and new features: 
• Handling of missing-value data  
• Improved tree-pruning methods 
• Improved methods for solving IP model 
• Application of evolutionary computation methods to improve partitioning 

data into subsets 
• Addition of 3 front-end discretization algorithms to deal with continuous data  
• Acceptance of many rules (not just one) in phase III of the algorithm 
• Automatic generation of rules for multi-class problems 
• Front-end nominal data encoding and decoding 
• Analysis of the feature-value pairs using the CLIP4 rules. Each feature-value 

pair has assigned a goodness measure that quantifies its strength and 
usefulness. 

• Calculation of confidence factors for each classification made by using the 
generated rules  

• User-friendly, windows-based, implementation 
 



 

  
 
 

CLIP4 algorithm can be used for data mining purposes because of its efficiency; 
the reader can download CLIP4’s executable code from http://isl.cudenver.edu 
(under “Software”). 
 
In the next section, we summarize results of CLIP3 and CLILP2 algorithms, as 
well as comparison with other machine learning algorithms. The results show that 
the CLIP algorithm generates very accurate rules. 
 
 
2.1. Results and comparison with other algorithms 
 
 
The lymphatic cancer, breast cancer, and primary tumor data 
 
CLILP2 algorithm was tested on the data from three medical domains: lymphatic 
cancer, prognosis of breast cancer recurrence, and location of primary tumor 
(Kononenko at al., 1984; Michalski, 1990, Clark and Niblett, 1989) 
 
Lymphatic cancer data has 4 decision classes and 18 attributes, with 148 
examples; the data is consistent. Prognosis of breast cancer data has 2 decision 
classes and 9 attributes with 186 examples; the data is inconsistent - some 
examples belonging to two different classes are identical. Location of primary 
tumor data has 22 classes and 17 attributes with 339 examples; the data is 
inconsistent.  
 
All data sets were divided into training and validation parts in the same manner as 
reported in the literature: 70% were randomly selected for training and remaining 
30% for testing. 
 
Two values were calculated: accuracy and complexity. Complexity is calculated 
by counting the number of nodes, in case of the decision-tree based algorithms, 
and the number of complexes generated, in case of the rule-based algorithms. 
 
The results shown in the Table 4 are repeated after Cios and Liu (1995). 
 
As can bee seen, the rules obtained by the CLILP2 algorithm have the highest 
accuracy and comparable complexity on the lymphatic cancer and breast cancer 
data, and comparable accuracy and complexity on primary tumor location data. 
 
 
 
 
 
 
 



 

  
 
 

 
Table 4. Diagnostic accuracy and complexity results comparison. 

 
 Lymphatic cancer Breast cancer Primary tumour 
Algorithm Accuracy [%] Complexity Accuracy [ %] Complexity Accuracy [ %] Complexity 

 
76 

 
38 

 
67 

 
120 

 
41 

 
188 

ASSISTANT 
      No pruning 
      Pruning 77 25 72 16 46 35 
Bayes 83 - 65 - 39 - 
AQR 76 76 72 208 35 562 

 
78 

 
24 

 
70 

 
23 

 
37 

 
33 

81 22 70 20 36 42 

CN2 
  90% threshold 
  95% threshold 
  99% threshold 82 12 71 4 36 19 

 
81 

 
12 

 
66 

 
41 

 
39 

 
104 

80 10 68 32 41 42 

AQTT-15 
      Complete 
      Unique >q 
      Top rule 82 4 68 2 29 22 

 
85 

 
18 

 
76 

 
40 

 
31 

 
108 

CLILP2 
       No discard 
       Discard 84 16 - - 37 83 
 
 
Discrete MONK's data 
 
The CLIP3 algorithm was compared with several other algorithms using MONK's 
problems (Thrun et al., 1991). The MONK's problem has 432 examples and 6 
multi-value attributes. It is divided into 3 separate problems: M1 (positive and 
negative data sets includes 216 examples each, training data set of 124 examples 
was randomly chosen), M2 (142 positive examples and 290 negative examples, 
training data set of 189 examples was randomly chosen), M3 (156 positive 
examples and 276 negative examples, training data set of 122 examples was 
randomly chosen, 5% of examples were misclassified to induce noise into data). 
The MONK's data is an artificially created dataset. It defines a set of robots 
described by 6 features including: head shapes, body shapes, facial expressions, 
objects being held, jacket colors, and whether or not the robot is wearing a tie. 
The seventh feature is a decision attribute (whether a robot belongs to a positive 
or a negative class). This produces a domain of 432 unique robots. The training 
sets used were exactly the same as those used in (Thrun et al., 1991).  
 
During training the CLIP3 algorithm used the following values for the thresholds 
for all data sets: NT = 1 or NT = 2 (all nodes containing less then NT examples 
were pruned), ST = 10 (The training was terminated when less then ST examples 
remained uncovered), and BRT = 50% (only rules that cover more then 50% of 
uncovered positive examples can be accepted). 
 



 

  
 
 

The MONK's data were coded in the following manner: F1, head shape (1 = 
round, 2 = square, 3 = octagon); F2, body shape (1 = round, 2 = square, 3 = 
octagon); F3, smiling (1 = yes, 2 = no ); F4, object holding (1 = sword, 2 = flag, 3 
= balloon); F5, jacket color (1 = red, 2 = yellow, 3 = green, 4 = blue); and F6, has 
tie (1 = yes, 2 = no). For example, for the data set M1, a positive learning example 
(+) is a square headed, octagon bodied, smiling, balloon holding, red jacketed, and 
tie-less robot, was coded as (+ 2 3 1 3 1 2). The results shown in Table 5 are 
repeated after Cios et al. (1997). 

 
On this test the CLIP3 algorithm performed better then other algorithm. It also 
generated fewer rules than any other algorithm with very high or the highest 
accuracy.  
 
Table 5. Diagnostic accuracy and the number of generated rules comparison.  

 
 M1 M2 M3 
Algorithm Accuracy [%] No of rules Accuracy [%] No of rules Accuracy [ 

%] 
No of rules 

CLIP3 (NT=1) 100 4 82.7 10 88.9 3 
CLIP3 (NT=2) 100 4 72.7 7 97.2 2 

 
83.2 

 
62 

 
69.1 

 
110 

 
95.6 

 
31 

ID3  
  without Windowing 
  with Windowing 98.6 28 67.9 110 94.4 29 
ID5R 79.8 52 69.2 99 95.3 28 
AQR 95.9 36 79.6 83 87.0 36 
CN2 100 10 69.0 58 89.1 24 
C4.5 Decision Trees 75.7 * 65.0 * 97.2 * 
C4.5 Tree Rules 100 * 65.3 * 96.3 * 
C4.5 Trees with –S 100 * 70.4 * 100 * 
C4.5 -S Tree Rules 100 * 67.1 * 100 * 

* data not available 
 
 

The breast cancer data 
 
The CLIP3 algorithm was also tested on the Breast Cancer Data (Mangasarian and 
Wolberg, 1990). This data has 683 examples, 10 features, and two classes. The 
features have an integer value from 1 to 10. The early results on this data set 
cannot be compared because the data were continuously expanding by adding new 
examples. For instance an algorithm run in 1991, when the database contained 
367 examples, cannot be compared to an algorithm run in 1995 when the database 
contained 683 examples.  
 
The training set was generated by choosing every fifth point from the data. CLIP3 
was run with ST of 0, 1and 2. The same data set was used to generate rules with 
the C4.5 algorithm with the -u option and the -s option.  The results shown in 
Table 6 are repeated after Cios et al. (1997). 



 

  
 
 

Table 6. Breast cancer results for CLIP3 and C4.5 algorithms 
 

Algorithm Accuracy [%] 
CLIP3 (ST=0) 89.6 
CLIP3 (ST=1) 86.8 
CLIP3 (ST=2) 92.4 
C4.5 (-u option) 89.3 
C4.5 (-s option) 90.1 

 
 
2.2. Other applications 
 
The CLIP algorithm was also applied to several other problems, like: 
 
• Generation of diagnostic rules to describe patients with coronary artery 

stenosis (Cios et al., 1993). This problem involved a database containing 
thallium-201 scintigraphic studies on 91 patients. The problem was to 
recognize typical patterns in the coronary artery stenosis data and compare 
rules generated by the CLILP2 algorithm with existing diagnostic expert 
system rules. The CLILP2 generated 15 as compared with 68 expert-specified 
rules. Accuracy of the rules generated by CLILP2 algorithm was between 
89% and 96%. The rules generated using CLILP2 algorithm were in the same 
format as rules specified by the experts, thus showing that for domains where 
training data is available there may be no need to extract rules from experts. 

• Problem of designing end-user satisfaction instrument (Torkzadeh et al., 
1996). This problem involved data collected for development of an end-user 
computing satisfaction instrument. The data set included 618 cases, 12 
attributes, and 2 target classes (dissatisfied and satisfied). The problem was to 
analyze the usefulness of the instrument, according to number of attributes 
used, and to create a shorter instrument with comparable end-user satisfaction 
factors. As a result the five-item vs. original twelve-item instrument was 
developed using CLILP2 algorithm with the average accuracy of 86.5% and 
higher then accuracy for the original instrument (75.5%). 

• Problem of generation of diagnostic rules from SPECT Bull's-eye maps (Cios 
et al., 2000). This application was done using the database containing SPECT 
Bull's-eye heart studies on 184 patients. This is a two-classes problem: one 
class describes diagnoses for normal patients (160 examples), second for 
patients with coronary artery disease (24 examples). The goal of this 
investigation was to generate a set of rules, which can correctly recognize 
given example into one of these two classes, and to compare existing expert 
rules with the rules generated by CLIP3. As a result 14 diagnostic rules were 
generated. 

• Generating diagnostic rules from cardiac SPECT data (Kurgan at al., 2001). 
This problem involved database containing cardiac SPECT heart images 
collected on 267 patients in stress and rest studies. CLIP3 algorithm was 



 

  
 
 

applied to generate diagnostic rules for overall diagnosis of the patient’s 
study, by using information of partial, in the predefined regions of the heart 
muscle, diagnoses. This is a two-classes problem: first class describes normal 
patients (55 examples), and second patients with coronary artery disease (212 
examples). Three diagnostic rules were generated. The rules accuracy was 
84%. 

 
 
3. Concluding Remarks 
 
We described three major families of ML algorithms that can generate production 
rules from the data. The descriptions were supplemented by self-explanatory, easy 
to understand examples that gave good insight into the described methods. In 
addition, we described discretization methods, hypothesis evaluation methods, and 
the problem of overfitting in the appendices. Because the chapter concentrated on 
the CLIP algorithms we omitted many other ML algorithms like CART (Breiman 
et al., 1984), S-Plus tree (Clark and Pregibon, 1993), FACT (Loh and 
Vanichsetakul, 1988), QUEST (Loh and Shih, 1997), IND (Buntine, 1992), OC1 
(Murthy, Kasif and Salzberg, 1994), LMTD (Brodley and Utgoff, 1995), T1 
(Holte, 1993), etc.  
 
The CLIP family of algorithms has been developed over several years. The most 
recent is the CLIP4 algorithm, an efficient tool that can be used to generate 
production rules from numerical, nominal, and continuous data. The rules have 
high accuracy when tested on unseen data, and the computational cost is 
acceptable. The tests with large, over 40K examples, data using the CLIP4 
algorithm were very successful. 
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Appendix 1:  Discretization  
 
Most machine learning algorithms accept only discrete feature values. In order to 
work with continuous features the CLIP4 algorithm (Cios and Kurgan, 2001) 
provides three front-end discretization schemes: equal frequency, Paterson-Niblett 
(Paterson and Niblett, 1982), and Class-Attribute Interdependence Uncertainty 
and Redundancy (CAIUR) based on the Class-Attribute Interdependence 
Redundancy (CAIR) algorithm (Wong and Liu, 1975). Description of the three 
schemes is given below. 
 
Discretization is defined as a process of transforming a continuous range of values 
of a feature, into a finite number of intervals, and associating with each interval a 
discrete value. The quality of discretization is a one of the key factors that 
determine performance of a subsequently used algorithm, like the CLIP algorithm. 
There are two ways to include discretization capability into a machine learning 
algorithm. One is to include a discretization scheme as a part of the algorithm 
itself. The other, widely used, is to perform discretization as a front-end operation. 
Below we address the latter. For more detailed discussion about different 
discretization schemes see Cios et al. (1998). 
 
In general, the discretization process consists of two steps: deciding the number of 
discrete intervals, and determining the width of these intervals. There are some 
heuristics used to choose the number of intervals. One says that the number of 
intervals should not be smaller than the number of classes; the other specifies the 
number of intervals, n, using M – number of learning examples and C – number 
of classes (Ching at al., 1995):  
 

n = M / (3* C) 
 
We assume that the user supplies the number of intervals for each feature: N = 
{nF1, …, nFi ,..., nFn) 
 
The equal frequency discretization scheme sorts the values of each discretized 
feature Fi in an ascending order. Then those values are divided into the user-
specified number, nFi, of intervals, in such a way that each interval contains the 
same number of sorted feature values.  
 
Example: 
 

c – number of classes, c = 3 (represented by three different colors), M = 33, 
n – number of discretization intervals, n = M / (3*c) = 33 / (3*3) = 4 
the X axis – represents values of feature Fi 

 

x 



 

  
 
 

• Equal frequency discretization scheme solution 
Number of values per one interval = 33 / 4 = 8 
 

 
Equal frequency discretization scheme is very simple. For most problems it 
produces satisfactory results. For harder problems, the user can use in the CLIP4 
algorithm CAIUR or Paterson-Niblett discretization schemes. These schemes take 
into account relationship between feature values and target class values, 
minimizing the number of classes assigned to all values of the discretized feature 
in each interval. What is important, the CAIUR and Paterson-Niblett methods 
automatically assign proper number of discretization intervals. Thus, these 
schemes perform pre-classification for the discretized features, which improves 
the accuracy of the subsequently used learning algorithms. The price to pay is that 
the two methods are computationally expensive, especially for problems with 
large number of examples. 
 
The machine learning algorithm’s task is to discover the relationship between the 
class variable (conclusion of a rule) and the feature variable (condition of a rule). 
Thus, the discretization problem, especially in case of the CAIUR scheme, is 
formalized in view of the class-feature interdependence. Assume that the problem 
is described by n features F1,…, Fj  ,…, Fn and there are C classes, ci , i = 1,…, C.  
Let the interval [a, b] be the range of the continuous-valued feature Fj.  A partition 
Tj on Fj is defined as: 
 

Tj: {[e0,e1], (e1,e2], . . ., (eLj-1,eLj]} 
 
where e0 = a represents the lowest observed value; eLj = b is the upper boundary 
value, and er-1 < er for  r = 1, . . .,  Lj, where Lj is the number of intervals.  With the 
change of partition Tj, the class variable, c, and the interval variable, denoted as vjr 
= (e r-1, e r], can be understood as two random variables. 
 
 
Paterson-Niblett discretization scheme 
 
As said above the second discretization scheme used in the CLIP4 algorithm is 
based on the work of Paterson and Niblett (1982). Their discretization scheme can 
be formalized in the following manner. 
 
 
 
 
 

x 



 

  
 
 

Given: Feature Fi that has n continuous values 
1. All values of Fi are sorted 
2. For all possible divisions on feature Fi (each division is created by adding a 

one division boundary N): 
a. the entire interval of Fi values is split, on value of added boundary 

N, into two intervals: those for which  Fi ≤ N and those for which  Fi  
> N. 

b. the value information gain is computed 
3. The boundary corresponding to the largest value of information gain, or gain 

ratio, is added 
4. If a stop criteria is satisfied then stop, else go to step 2. 
 
Result: The set of discretization intervals for feature Fi 
 
In case of this scheme, as well as most of other discretization schemes, candidate 
division boundary points are set as all the midpoints between all two adjacent 
values of a continuous feature. As the stop criterion one can use a threshold value 
for the maximal information gain, or gain ratio value established in step 2. The 
other way to define the stop criterion is to stop adding new intervals when the 
difference between the value of information gain in the previous iteration and the 
current iteration is small (below a specified threshold), which means that there 
will be no significant improvement in the class-feature interdependence by adding 
new interval (adding new decision boundary).  
 
Example: 
The boundaries established by using Paterson-Niblett scheme are shown below: 
 

 
 
 
CAIUR discretization scheme 
 
In order to explain this scheme we need several definitions (Ching et al., 1995, 
Cios et al., 1998).  
 
A set of boundary points is defined as the set of ordered end points e0, e1, . . ., eLj 
that define the Lj intervals. Let Qj denote a set of 2D frequency quanta matrix 
such that: 

 
Qj: {qir | i = 1, . . ., C;  r = 1, . . ., Lj} 
 
where qir is the number of examples from the i-th class in the r-th interval. 

x 



 

  
 
 

An example of quanta matrix is shown in Table 7. 
 

Table 7. Discretization quanta matrix for feature Fj 
 

Class ( c )                       Intervals 
[e0,e1]     . . .   (er-1,er]       . . .        (eLj-1,eLj] 

Total 

C1 
. 
ci 
. 

cC 

    q11      . . .       q1r             . . .            q1Lj 
      .          .          .              .                . 
    qi1       . . .      qir           . . .            qiLj 
      .          .          .              .                . 
   qC1       . . .     qCr           . . .            qCLj 

q1+ 
. 

qi+ 
. 

qC+ 
Total     Q+1      . . .     q+r           . . .            q+Lj M 

 
 
Example: 
 
 

 
For the partition described by the above example, the corresponding quanta matrix 
is defined as: 
 

Intervals Classes 
First Second Third Fourth 

Total 

Class 1 3 5 4 4 16 
Class 2 5 0 4 0 9 
Class 3 0 5 0 3 8 
Total 8 10 8 7 33 

 

where the total number of  objects, M, is:  ∑∑
=

+
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and q+r  is the number of objects in the r-th interval:  ∑
=

+ =
C

i
irr qq

1
 

and qi+ is the number of objects in the i-th class:  ∑
=

+ =
jL

r
iri qq

1
 

 
The estimated joint probability of the event that an object belongs to class ci while 
its feature value Fj falls within the interval vjr is defined as: 

M
q

p ir
ir =  
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and the marginal probability of c = ci is defined as:  

M
q

p i
i

+
+ =  

while  the marginal probability of Fj  ∈  vjr  is defined as: 

M
qp r

r
+

+ =  

 
The Class-Attribute (CA) Mutual Information (CAMI) between the class variable 
c and the feature interval boundaries of Fj, from the associated quanta matrix Qj, is 
defined as: 

∑∑
++

=
c v ri

ir
irj

j
pp

p
pvcI 2log):(  

 
The CA Information (CAI) between the class variable and the feature Fj interval 
variable, from its associated quanta matrix, Qj, is defined as: 
 

∑∑ +=
c v ir

r
irj

j
p
ppvcINFO 2log):(  

The Shannon’s entropy of the quanta matrix measures the randomness of the 
distribution of data points with respect to class variable, and interval variable, vj,  
and is defined as: 

  ∑∑=
c v ir

irj
j

p
pvcH 1log):( 2  

 
The Class-Attribute Interdependence Redundancy (CAIR) was introduced by 
Wong and Liu (1975). It is the CAMI normalized by entropy H. CAIR measure 
was defined as: 

):(
):(

):(
j

j
j vcH

vcI
vcR =  

 
To explore the CA interdependence relationship Class-Attribute Interdependence 
Uncertainty (CAIU) is defined as the CAI normalized by entropy H: 
 

 
):(

):(
):(

j

j
j vcH

vcINFO
vcU =  

 
The goal of the CAIUR scheme is to maximize the interdependence between class 
labels and the attribute variables, and at the same time minimize the number of 
intervals. 
 
 



 

  
 
 

In order to define CAIUR scheme, we need to define the following: 
 
• Initial discretization  

All possible boundary points are set as candidates for the optimal interval 
scheme. Then their number is reduced by elimination. Candidate boundary 
points are set as all the midpoints between any two nearby values of a 
continuous feature. 

• Criteria for a discretization scheme   
The CAIR and the CAIU are used as discretization criteria.  

 
CAIUR scheme maximizes the interdependence relationship, and at the same time 
minimizes the number of intervals, and keeps the loss of information as small as 
possible. In order to achieve this CAIR criterion should be maximized, and CAIU 
criterion should be minimized. 
 
Example: 
The boundaries established by using the CAIUR scheme are shown below: 

 
 
 
Appendix 2: Hypothesis evaluation 
 
The generated hypotheses are verified by checking their ability to generalize on 
unseen test data. The decision rules (hypotheses) should recognize all positive test 
examples, for which they were generated, and none of the negative test examples.  
 
In order to evaluate goodness of the generated hypotheses two measures are 
described below: accuracy test, and verification test (Cios et al., 1998). Assuming 
that the hypotheses were generated from large training data (if training data is 
small then cross-validation or bagging should be used to generate the hypotheses 
– see Appendix 3 on overfitting) these two measures provide good verification 
results.   
 
 
Accuracy test 
 
Machine learning algorithms are generally tested using the accuracy test. A test 
example is classified by matching with the rule (hypothesis) that describes it best. 
This way the example’s class membership is determined. 
 
 

x 



 

  
 
 

 
An accuracy test is simply defined as: 
 

%100
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where  TP – (true positive), the number of correctly recognized test examples,  

total – total number of test examples. 
 
A test example is checked against the all rules describing all classes, row-wise.   
 
 
Verification test 
 
The accuracy test gives only very general information about the “goodness” of the 
generated hypotheses. The verification test, which is frequently used in evaluating 
medical diagnostic procedures, gives much better and very specific information 
about goodness of the generated rules.    
 
The verification test consists of three evaluation criteria: 
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where: TP (true positive) – number of correct positive classifications 

TN (true negative) – number of correct negative predictions 
FP (false positive) – number of incorrect positive predictions 
FN (false negative) – number of incorrect negative predictions 

 
Possible outcomes of a test are: 
 

 Test result positive Test result negative 
Hypothesis positive TP FN 
Hypothesis negative FP TN 

 
The predicative accuracy is equivalent to accuracy in accuracy test. The remaining 
two criteria give very good insight into the goodness of the generated rules. The 
sensitivity measures how many of the examples classified by the rules as positive 



 

  
 
 

were truly positive. The specificity measures how many of the examples classified 
by the rules as negative were truly negative. In this way we get the feeling how 
well the generated rules can perform on the positive and negative data separately. 
This is very important when the numbers of positive and negative examples are 
very different. Then, the accuracy measure provides just the average result for 
positives and negatives together, when truly accuracy for positives can be very 
different then accuracy for the negatives; this can be easily noticed while using 
sensitivity and specificity measures. Only the results with high values for all three 
measures can assure high confidence level in the generated hypotheses. 
 
The CLIP4 algorithm (Cios and Kurgan, 2001) calculates accuracy, sensitivity, 
and specificity during rules validation. The results are given for each class 
separately, as well as for the entire test data. 
 
 
Appendix 3: Overfitting  
 
Overfitting, or overtraining is defined as a tendency of a learning method to agree 
with the training data too closely, in order to correctly describe all of the training 
examples (Cios et al., 1998). This phenomenon occurs in the learning methods 
such as neural networks, machine learning, and even statistics, and can lead to 
generation of overfitted weights in case of neural networks, or very specific rules 
in case of inductive machine learning. The overfitting causes that the trained 
network or the generated rules may achieve very poor results on unseen test data. 
Additionally, if the learning data contains inaccuracies, like noise-corrupted data 
points, or inconsistent data (a data point that belongs to more than one category), 
overfitting will cause that this “error” information will be also taken into account 
in the weights of a neural network or the generated rules.   
 
In most of the cases we can expect two possible outcomes of learning: we can 
obtain rules, or a network, that perfectly, with almost a 100% accuracy, classifies 
all the learning data; or some of the learning examples are misclassified by the 
rules or a network, but the accuracy for unseen test data will be higher. Obviously, 
it is better to choose the rules or a network for the latter outcome. To avoid 
overfitting in case of neural networks it is to stop training early, although further 
training would continue to reduce the error value. 
 
In case of inductive machine learning avoiding overfitting is a more difficult. 
There are, however, some techniques to prevent overfitting of generated rules: 
 
• cross-validation. 

The training data set is divided into several disjoint subsets (e.g. randomly). 
Then the algorithm using all the subsets, except one, as a training data set at 
the time generates the rules. This repeats for the every created subset; each 
time one of the subsets is set aside for validation. The rule is that the smaller 



 

  
 
 

the training data set the larger the number of training subsets should be used. 
In an extreme case just one example is set aside for validation, thus the 
algorithm is run as many times as there are examples. This latter method is 
called hold-one-out. 

• bootstrap aggregation, or  bagging 
The training data set is divided into about 2/3 of the entire training data for 
learning and 1/3 for validation. The algorithm is run several times, each time 
on a 2/3 subset of the original training data set. The subsets are chosen 
randomly, with replacement, from the entire training data set, so many 
training examples can appear several times in different subsets. 

 
As the result of cross-validation or bagging, the rules that on average perform best 
on training data (so they also should perform well on unseen test data) are kept.  
 
In case of decision trees there are also other approaches that can be used to 
prevent overfitting: 
 
• Generation of several trees instead one, “best” tree. The classification, when 

using multiple trees, can be generated using a voting scheme. 
• Stop growing the tree before it perfectly classifies all training data, thus 

allowing for the leaf nodes containing examples from more then one class 
• Pruning the overfitted tree by deleting the branches that cover only a few 

examples or that will not cause a significant decrease in accuracy for the 
validation data. The problem associated with this method is the need to store 
the entire decision tree, before pruning; it is computationally expensive. 

 
 
References 
 
Ching, J.Y., Wong, A.K.C. and Chan, K.C.C., 1995, Class-dependent 

discretization for inductive learning from continuous and mixed-mode data, 
IEEE Trans. on PAMI, 17:641-651 

Cios, K.J., Pedrycz, W., Swiniarski, R., 1998, Data Mining Methods for 
Knowledge Discovery, Kluwer 

Cios, K.J., & Kurgan, L., Hybrid Inductive Machine Learning Algorithm that 
Generates Inequality Rules, Information Sciences, Special Issue on Soft 
Computing Data Mining, submitted, 2001 

Paterson, A. and Niblett, T.B., 1982, ACLS Manual, Edinburgh: Intelligent 
Terminals, Ltd 

Wong, A.K.C. and Liu, T.S., 1975, Typicality, diversity and feature pattern of an 
ensemble, IEEE Trans.  on Computers, 24: 158-181 


