
Hybrid Inductive Machine Learning: An Overview of
CLIP Algorithms

Krzysztof J. Cios and Łukasz A. Kurgan

Computer Science and Engineering Department
University of Colorado at Denver
Campus Box 109
Denver, CO 80217-3364, U.S.A.
E-mail: kcios@carbon.cudenver.edu

1. Introduction

The chapter describes inductive machine learning methods for generating
hypotheses about given training data. It focuses on hybrid algorithms that generate
hypotheses in the form of production if… then… rules, which constitute the
model of the data.

Machine learning (ML) can be defined as the ability of a computer program to
improve its own performance, based on the past experience, by generation of a
new data structure that is different from an old one, like production rules from
input numerical or nominal data. The advantage of machine learning is that the
generated description, in the form of rules or decision trees, is explicit. The rules
can be analyzed, learned from, or modified by the user. Because of this machine
learning is a preferred data mining method, in particular in situations where a
decision maker needs to understand and validate the generated model. As such
machine learning is often used as the key step in the knowledge discovery process
(Cios et al., 2000). Here are a few reasons why there is a big interest in machine
learning (Cios et al., 1998):

• We observe exponential growth of the amount of data and information due to

the fast proliferation of the Internet, digital database systems, and information
systems. Thus, automation of the processing of that huge data, which can be
done via ML, becomes a crucial task.

• It can provide techniques for analysis, processing, granulation, and extraction
of the data.

• In some areas machine learning can be used to generate “expert” rules from
available data, especially in medical and industrial domains, where there may
be no experts available to analyze the data.

• It helps in understanding human cognitive processes and enables further
development of better machine-human learning strategies, while taking into
account the accumulated knowledge, analogical reasoning, theory formation,
etc.

• Production rules can be easily “fuzzyfied”, they can also help in a neural
network design and deciphering the knowledge stored in the network’s
weights and connections, to mention just two other important data mining
tools.

A machine learning process consists of two phases. The learning phase, in which
the system analyzes the data and generates the rules by finding some similarities
among the data, and the validation phase, in which the generated rules must be
verified by computing some performance evaluation function on new set of data.

Machine learning algorithms can be categorized in several ways. Most
importantly they are divided into supervised and unsupervised algorithms. They
can use inductive vs. deductive types of learning, incremental vs. non-incremental
learning modes, etc.

In supervised learning the user is a teacher who provides examples labeled with
class values. In case where there is no a priori knowledge of classes, supervised
learning can be still applied if the data has a natural cluster structure. Then, a
clustering algorithm has to be run first to reveal these natural groupings.

The training data set consists of M training data pairs (examples):

S = {(xi, cj) | i = 1,...,M; j = 1,...,C}.

where: xi – n-dimensional pattern vector, whose components are called features,

cj – known class.

The algorithm’s role is to search the space of possible hypotheses to discover the
best estimate of the mapping function f, such that c = f(x). For the search to be
successful the assumption has to be made that the features represent only
properties of the examples but not the relationships between the examples. A
machine learning algorithm generates hypotheses by finding common features and
their values for examples representing each class. Then, the generated hypotheses
are applied to the new examples to predict their class membership.

In unsupervised learning the system learns the classes on its own. This type of
learning learns the classification by searching trough common properties of the
data. An example of unsupervised learning is conceptual clustering (Michalski,

1980; Fisher and Langley, 1986; Fisher, 1987), which is quite different from
classical clustering. Conceptual clustering consists of two tasks: clustering itself,
where the clusters in a given data set are found, and characterization where, for
each found cluster, a concept description is generated. Conceptual clustering can
be thought of as a hybrid of unsupervised (clustering) and supervised
(characterization) learning. In theory, it is possible to transform a supervised
machine learning algorithm into an unsupervised one (Langley, 1996) by running
the supervised algorithm as many times as there are features describing the
examples, each time with a different feature playing the role of the class attribute.

Two basic techniques for inferring the information from data are deduction and
induction. Deduction infers information that is a logical consequence of the
information in the database. The deduction technique can be used if the data
describing some domain is proven to be correct. Induction infers generalized
information, or knowledge, by searching for regularities among the data.
Inductive learning produces results that are always correct for the data but only
plausible outside of the data. Learning by induction is a search for a correct
hypothesis/rule, or a set of them, which is guided by the given examples. Majority
of the machine learning algorithms are inductive.

Incremental learning is performed by providing the learning examples to an
algorithm one at a time, while in non-incremental learning all of the learning
examples are provided to an algorithm simultaneously.

1.1. Machine learning issues

One of the main issues in machine learning is the presence of noise in the data.
The noise can be present in the features, that constitute an example, and/or in the
class descriptions, like false examples. Only some of the machine learning
algorithms are noise-tolerant, which means that they can generate the rules that
are not overfitted, i.e, they do not cover noisy examples.

Another issue is the generalization and specialization factor of the generated rules.
A general rule covers more examples, and thus might perform better on unseen
data then a more specific rule. An example is covered by a rule when it satisfies
all conditions of the if part of the rule.

In cases where the number of the generated hypotheses is excessively large an
algorithm has to choose a subset of them (Cios et al., 1998) by means of :

• heuristics, like Occam’s razor (choosing the shortest rule is best)
• minimum description length principle (a generalization of the Occam’s razor

heuristic)
• background knowledge about the domain
• reasoning from first principles (like laws of physics, mathematical theorems)

• decisions made by the user, based on his/her knowledge of the problem.

There is also an issue of the size and dimensionality of the data. Only a few
algorithms can deal with big and highly dimensional data. We are still dealing
with some variation of the classic artificial intelligence problem of systems that
work for several examples but are not really scalable (Schank, 1991). Among the
algorithms that seem to overcome the problem is the CLIP4 algorithm (Cios and
Kurgan, 2001).

1.2. Generation of Hypotheses

In the machine learning world one works with data that represent information.
The definition of an information system is given below:

>=< fVQSIS ,,,

where :

 S – a finite set of examples, },...,,{ 21 MeeeS = , M – the number of examples
 Q – a finite set of features, },...,,{ 21 nFFFQ = , n - number of features
 jFVV ∪= – a set of feature values jFV – the domain of feature QFj ∈

 jFi Vv ∈ – a value of feature jF

 VQSf →×= – an information function, that satisfies:

jFii VFef ∈),(for every Sei ∈ and QFj ∈

Note: S is often called the learning set, which is a subset of the entire universe,
defined as a Cartesian product of feature domains jFV (j=1,2…n).

As an example let us define a patient whose condition is described by two
features: F1=temperature and F2=blood pressure. Feature F1 can take on three
values: low (<36°C), normal (<36°C, 37°C>), and high (>37°C), while feature F2
can take on values: low (< 90/170), normal (<90/70, 130/90>), and high
(>130/90). Thus, the feature domains are:

},,{

},,{

2

2

highnormallowV

highnormallowV

F

F

=

=

A possible hypothesis, using the above information about the patient, can read: for
any patient with normal temperature and normal blood pressure make a decision,
or in the rule form:

IF F1= normal AND F2= normal THEN decision
To come up with such a rule we need a learning data set. The learning examples
are then analyzed by a machine learning algorithm to generate production rules.
One has to remember that learning examples do not cover the entire universe of
possible examples. Thus, the generated rules need to be general enough to
describe these unseen examples. In the next step, the data are divided into two
parts: positive examples (examples that describe the concept), and negative
examples (counterexamples).

Let us assume that we have the training data as shown in Table 1.

Table 1. Example training data

Patient No F1 (Temperature) F2 (Blood pressure) Decision

1 Normal Low Go home
2 Normal Normal Go home
3 Low Normal Go home
4 High High Treatment

Thus, for our information system:

 }4,3,2,1{=S , M=4

 },{ 21 FFQ = , n=2

Positive examples describe the situation when patient is sent home (patients
1,2and 3). By visual analysis of this data the following rules can be generated:

IF F1=normal AND F2=low THEN go home
IF F1= normal AND F2= normal THEN go home
IF F1=low AND F2= normal THEN go home

or

IF F1= normal THEN go home
IF F2= normal THEN go home

The first three rules are more specific because they cover one example each, they
overfitt the data, and thus might produce poor results on test data. The last two
rules are more general, because they can cover more examples while still not
covering the fourth patient.

The goal of learning algorithms described in this chapter is to generate a set of
rules (hypotheses) that best describe the learning data. After learning, the rules are
tested using another set of unseen validation examples. If the rules fail to correctly

classify majority of the validation examples the learning should be repeated using
procedures described in Appendix 3 (on Overfitting).

The common feature of all machine learning algorithms is their ability to almost
perfectly classify the training examples. However, the true value of the rules
generated by any algorithm can be evaluated only by testing them on new data. It
is also important to establish balance between generalization and specialization to
generate the best possible set of rules.

The rule can be generalized or specialized by the following operations (Cios et al,
1998):

• Replacing constants with variables (more general rule can be generated by

replacing constants in rules that have the same outcome by a variable, and
merging them into one rule), for instance two rules:

IF F1=normal AND F2=low THEN go home
IF F1= normal AND F2= normal THEN go home

 can be replaced by a more general rule:

IF F1=normal THEN go home

• Using disjuncts for rule generalization and conjuncts for rule specialization

• Moving up in a hierarchy for generalization. If there is a known hierarchy in

a given problem domain, the generalization can be performed by replacing
the conditions involving the knowledge of the lower level by the common
conditions involving the knowledge of the upper level

• Chunking. This mechanism is based on the premise that given the goal, every

problem encountered on the way to this goal can be treated as a sub-goal.

This chapter first briefly describes rule and decision tree algorithms and then
concentrates on hybrid algorithms, its main topic. The rule algorithms are
represented by the family of AQ algorithms (Michalski et al., 1986), and decision
tree algorithms by ID algorithms (Quinlan, 1993). Hybrid algorithms combine the
best features of the two approaches: they are represented in the chapter by the
CN2 algorithm (Clark and Niblett, 1989) and the CLIP family of algorithms.

1.3. Rule Algorithms

They will be described by using AQ15 algorithm (Michalski et al., 1986). There
were several improvements (Kaufman and Michalski, 1999) introduced in
subsequent versions of AQ algorithm, but the main idea can still be described

using the AQ15 algorithm. AQ algorithm uses variable-value logic calculus (VL1)
(Michalski, 1974). Below some basic definitions of VL1 are defined:

Selector - it is relational statement of the form:)?(ii vF

where: ? – any relational operator like = or ≠,

iv – a values of attribute iF

e.g. (F1≠low)

Complex (L) – a logical product of selectors:)?(ii vFL ∩=

e.g. ((F1≠low) AND (F2=high OR low))

Cover (C) – a disjunction of complexes: iLC ∩=

e.g. ((F1≠low) AND (F2=high OR low)) OR (F1≠low)

Operations, which can be performed in VL1, are defined below:

Generation of a star)|(ii EeG and generation of a cover)|(21 EEG , where

ii Ee ∈ and 1E and 2E are two sets such that SEE =∪ 21

Star is defined as: ijEeeeGEeG jjjiii ≠∈∀∩= ,),|()|(, so this is a

conjunction of all G(ei|ej). Each G(ei|ej) value is obtained by comparing the
features from ei and ej examples, skipping those which are the same, forbidding ei
from taking on the same values as ej, and combining all generated selectors using
disjunction., e.g.:

 e1={normal, low}, e4={high, high}
 G(e1|e4) = (F1≠high)OR(F2≠high)

Cover is defined as: ijEeEeEEEG iijiji ≠∈∀∩= ,),|()|(, so this is a

conjunction of all evaluated stars.

To evaluate "goodness" of given cover the sparseness function is used; a number,
defined as the total number of examples, which can be potentially covered by
given cover minus the number of examples, which are actually covered by the
cover. If value of sparseness is smaller then the cover is more compact. The cover
with the smallest sparseness value is chosen, in agreement with the minimum
description length principle

The pseudo-code for the AQ15 algorithm (Michalski, 1986) follows:

Given: positive and negative example training sets.
Part 1. While partial cover does not cover all positive examples do:
1. Select an uncovered positive example (a seed)
2. Generate a star, that determine maximally general complexes covering the

seed and no negative examples
3. Select the best complex from the star, according to the user-defined criteria
4. Add the complex to the partial cover
Part 2. While partial star covers negative examples do:
1. Select a covered negative example
2. Generate a partial star (all maximally general complexes) that covers the seed

and excludes the negative example
3. Generate a new partial star by intersecting the current partial star with the

partial star generated so far
4. Trim the partial star if the number of disjoint complexes exceeds the

predefined threshold, called maxstar (to avoid exhaustive search for covers
which can grow out of control)

Result: Rules covering all positive examples and no negative examples.

The AQ15 algorithm performs a top-down search through all positive examples
and generates a decision rule for each class in turn. At each step it starts with
selecting one positive example (the seed) and generates all complexes (a star) that
covers the seed, but does not cover any negative example. Then by using user-
defined criteria (sparseness function and length of complexes) it selects the best
complex from the star. Then this complex is added to the current (partial) cover.

Part 1 of the AQ15 algorithm can be rewritten in an easier to implement form,
namely generation of cover involves these three steps:

For each positive example 1Eei ∈ (E1 is a set of positive examples):
1. Find)|(ji eeG for each 2Ee j ∈ , where E2 is a negative set of examples

2. Find a star)|(2EeG i , as a conjunction of all)|(ji eeG from step 1. If

there is more than one)|(ji eeG (after conversion into disjunctive form)

select the best one according to smallest sparseness
3. Find a cover)|(21 EEG of all positive examples against all negative

examples, as a disjunction of all stars from step 2. The final cover covers all
positive examples and no negative examples

In part 2 of the AQ15 algorithm the partition between positive and negative
examples, that initially do intersect, needs to be achieved. The goal is to come up
with the information function (IF) that results in the partition of the learning data.

Having two disjoint sets of examples E01 and E02 we perform the following
operations in step 2 of the AQ15 algorithm:

1. Generate information functions: IF1 and IF2 using these sets to generate

subsets E1 and E2 which are covered by these information functions
2. If sets E1 and E2 do not intersect we have the partition - STOP, otherwise we

calculate differences between sets E1 and E2 and the intersecting sets
211 EEEE p ∩−= and 212 EEEEn ∩−= , generate corresponding to En and

Ep information functions IFp and IFn.
3. For all examples ei from the intersection we create sets

ip eE ∪ and in eE ∪ and generate information functions IFpi and IFni for them
4. Check if (IFp, IFni) and (IFn, IFpi) create partitions of S:

• If yes, choose better partition using sparseness, chosen pair becomes new
sets E1 and E2, go back to step 1 taking next example from the
intersection

• If not, go to step 2 and check another example from intersection.

Information function represents rule (hypothesis) that covers positive examples.
This algorithm does not guarantee that all examples will be assigned into one of
the two subsets if partition is not achieved.

The example how to generate rules using rule algorithms is given below, using the
data from Table 1. (E1={1,2,3}, E2={4})

G(e1|e4) = G(e1|E2) = (F1≠high) OR (F2≠high)
G(e2|e4) = G(e3|e4) = G(e1|e4)

Now the sparseness is calculated: for F1≠high = 6-3 = 3, for F2≠high = 6-3 = 3
Thus the first rule is: IF (F1≠high)) THEN class “go home”
Now the rule for “treatment” case is generated:

G(e4|e1) = (F1≠normal) OR (F2≠low)
G(e4|e2) = (F1≠normal) OR (F2≠normal)
G(e4|e3) = (F1≠low) OR (F2≠normal)
G(e4|E1) = ((F1≠normal) OR (F2≠low)) AND ((F1≠normal) OR (F2≠normal))

AND ((F1≠low) OR (F2≠normal)) =
((F1≠normal) OR (F1≠normal AND F2≠normal) OR (F2≠low AND
F1≠normal) OR (F2≠low AND F2≠normal)) AND (F1≠low OR F2≠normal) =
(F1≠normal AND F1≠low) OR (sparseness: 3–1=2)
(F1≠normal AND F2≠normal) OR (sparseness: 4–1=3)
(F1≠normal AND F2≠normal AND F1≠low) OR (sparseness: 2–1=1)
(F1≠normal AND F2≠normal) OR (sparseness: 4–1=3)
(F2≠low AND F1≠normal AND F1≠low) OR (sparseness: 2–1=1)
(F2≠low AND F1≠normal AND F2≠normal) OR (sparseness: 2–1=1)
(F2≠low AND F2≠normal AND F1≠low) OR (sparseness: 2–1=1)
(F2≠low AND F2≠normal) (sparseness: 3–1=2)

Thus the second rule is: IF (F1≠normal) AND (F2≠normal) AND (F1≠low) THEN class
“treatment”

The G(e4|E1) star includes almost every permutation of the attribute/value pairs,
and has to be stores in the memory. The rules generated using rule algorithm are
following:

Rule 1: IF (F1≠high)) THEN class “go home”
Rule 2: IF (F1≠normal) AND (F2≠normal) AND (F1≠low) THEN class “treatment”

The above rules have 100% accuracy on the training data. Notice, that these rules
do not agree with the rules we derived intuitively because the only relational
operator used is inequality.

Major advantages and disadvantages of the AQ algorithms are listed below:

• Rules are independent; the rule sets can be added together. It enables

incremental learning.
• The rules are modular
• The rules can be easily modified, because of their structure
• Evaluation of a cover and evaluation of the partition of two sets is

computationally a very expansive process. We have to remember all
examples as well as all generated stars and covers, which is very memory
consuming and can be impossible to perform for very large data sets.

• It does not reveal relationships between produced rules, as is the case of
decision trees. Because of this it is very difficult to see structure of the data
on which the algorithm learned. The only way to deal with this disadvantage
is to try cluster similar rules based on the similarity of examples which they
cover.

• It handles noise outside of the algorithm itself, say by rule truncation.
• It cannot deal with continuous features.

1.4. Decision Tree Algorithms

Decision tree algorithms are represented by the family of ID (C4.5) algorithms
(Quinlan, 1993). The decision tree is a model for approximation of discrete-value
functions that is capable to learn disjunctive expressions. A decision tree consists
of nodes and branches connecting the nodes. The top node in the tree is called the
root, and contains all training examples. The bottom nodes of the tree are called
leaves, and represent final subsets of the data with associated with them class
labels. The decision nodes in the tree are all, but leaf, nodes since they correspond
to decisions that are performed at these nodes using a single selected feature. ID3
algorithm is based on a psychological model (Hunt, 1966) of the process that
people use when learning simple concepts (Quinlan, 1993). People do it by
finding key distinguishing features from the set of training examples. The Hunt’s

model is called the concept learning system (CLS), and it is similar to a divide and
conquer method.

Lets assume that the learning set, S, consists of n examples belonging to c classes.
The task is to divide this set into disjoint subsets based on a single feature, so that
they create a partition. The following pseudocode summarizes the CLS algorithm.

Given: S – set of learning examples
1. Select the most discriminatory (significant) feature
2. Split the entire set S, located at the root of the tree, into several subsets using

the selected feature. The number of children nodes originating from the root
is equal to the number of possible values the selected feature takes on.

3. Recursively find the most significant feature for each subset generated in step
2 and top-down split it into subsets. If each subset contains examples
belonging to one class only (a leaf node) then stop, otherwise go to step 3.

Result: The decision tree from which classification rules can be extracted

Quinlan (1993) used Shannon’s entropy as a criterion for selecting the most
discriminatory features:

∑
=

⋅−=
c

i
ii ppSEntropy

1
2)(log)(

where: pi - proportion of the examples belonging to the i-th class.

In ID3 the uncertainty in each node is reduced by choosing the minimal entropy.
To reach this goal Information Gain is used, which measures expected reduction
in entropy caused by knowing the value of a feature Fj.

∑
∈

⋅−=
jFi

i
i

Vv
v

v
i SEntropy

S

S
SEntropyFSGainnInformatio)()(),(

where: jFV - set of all possible values of feature jF

 ivS - subset of S, for which feature jF has value vi

Information Gain is used to select the best feature at each step of growing the
decision tree. In later versions of the ID algorithm, the Gain Ratio was proposed
to compensate for the bias of the Information Gain for cases with many outcomes.

),(
),(

),(
j

j
j FSnInformatioSplit

FSGainnInformatio
FSRatioGain =

where: ∑
=

⋅=
C

i

ii
j S

S
S
S

FSnInformatioSplit
1

2)(log),(

Split Information is the entropy of S with respect to values of feature Fj. In a
situation when two or more features have the same Information Gain value, the
feature that has less number of values will be selected by the Gain Ratio test. Gain
ratio gives better results, especially for bigger data sets, and results in smaller
trees.

The pseudocode of the discrete ID3 algorithm is:

Given: S – set of learning examples
1. Create the root node containing the entire set S
2. If all examples are positive, or negative, then stop: decision tree has one node
3. Otherwise (general case)

3.1 Select feature Fj that has the largest Information Gain value
3.2 For each value vi from the domain of feature Fj:

a) add a new branch corresponding to this feature value vi, and a new
node, which stores all the examples that have value vi for feature Fj

b) if the node stores examples belonging to one class only then it
becomes a leaf node, else below this node add a new sub-tree, and go
to step 3

Result: The decision tree from which the rules can be extracted

ID3 is using inductive bias during learning, i.e. it prefers small over large decision
trees. Decision tree is represented as disjunction of conjunctions of the feature
values. The trees can be represented by a set of if…then… rules.

To avoid overfitting decision trees are pruned. Pruning also helps to generate
more general rules. The pruning can be done during the process of tree growing
(pre-pruning), or after the entire tree is established (post-pruning). The extreme
case of the pruning was proposed by Holte (1993). He proposed concept of
decision trees that are only one level deep and has shown that the classification
performance of such trees is equally good to other more complex algorithms.

Extension of the ID3, the C4.5 algorithm (Quinlan, 1993) allows the user to work
with continuous features, to grow trees from data containing missing values, and
introduces the windowing techniques to deal with larger data sets. The newest
implementations of C4.5 use boosting (Schapire, 1999) and tree pruning
techniques.

The decision tree for the training data from Table 1 is shown below. There is a
single test in the root of the tree for the attribute F1. For all three outcomes of the
test the resulting subsets are of the uniform class, and thus the tree is 100%
accurate for the training data. Notice that these rules do not agree with the rules

we derived intuitively, because only a single attribute can be tested at each tree
node.

The above tree can be translated into the set of three rules:

Rule 1: IF (F1 = normal) THEN class “go home”
Rule 2: IF (F1 = low) THEN class “go home”
Rule 3: IF (F1 = high) THEN class “treatment”

Decision tree and rule algorithms always create decision boundaries that are
parallel to the coordinate axes of feature values; they create hypercube decision
regions in high-dimensional spaces. Cios and Liu (1992) used that fact to design a
neural network algorithm that can place decision boundaries at any angle. The
Continuous ID3 (CID3) algorithm (Cios and Liu, 1992) is a self-generating neural
network algorithm that uses the idea of entropy minimization for placing
hyperplanes to solve a given classification problem. During the process of
minimizing the entropy, CID3 also generates its own topology. It starts with just
one neuron and adds new neurons and/or new hidden layers until a given problem
is solved (indicated by the entropy value reduced to zero). Minimization of
entropy is used for the “best” placing of separating hyperplanes, in terms of their
orientation and position. Unlike ID algorithms that create many classification-
boxes, CID3 uses a much smaller number of hyperplanes to achieve the same
goal. Top part of Figure 1 illustrates the result of a decision tree algorithm on a
two-class (indicated as pluses and minuses), two-feature problem (Cios et al,
1998). CID3 places hyperplanes at any angle, as shown in the lower part of Figure
1. CID3 does not guarantee finding optimal solution, like the one shown in Figure
1, but the number of the generated hyperplanes always is much smaller than the
number of parallel hyperplanes generated by ID algorithms.

Figure 1. Comparison of decision boundaries created by ID3 and CID3 algorithms

Advantages and disadvantages of decision tree algorithms are listed below:

• They reveal relationships between the rules, which can be derived from the

tree. Because of this it is easy to see the structure of the data.
• They produce rules that best describe all the classes in the training data set
• They are computationally inexpensive
• They may generate very complex (long) rules, which are very hard to prune
• They generate large number of rules. Their number can become excessively

large unless some pruning techniques are used to make them more
comprehensible.

• They require big amounts of memory to store the entire tree for deriving the
rules.

• They do not easily support incremental learning. Although ID3 would still
work if examples are supplied one at a time, but it would grow a new
decision tree from scratch every time a new example is given.

1.5. Hybrid Algorithms

In this section we focus on hybrid algorithms that combine rule and decision tree
algorithms. These algorithms incorporate the best ideas from the two families of
algorithms as well as new features. Two examples of hybrid algorithms are CN2
algorithm (Clark and Niblett, 1989) and CLILP2 algorithm (Cios at al. 1995,
1997, 2001). Below we briefly overview the CN2 algorithm, however, our main
interest is the CLIP family of algorithms.

The main structure of the CN2 algorithm is based on the AQ algorithm and
applies some of the mechanisms from decision tree algorithms. The AQ algorithm
generates complex that covers the “seed” example and excludes all negative
examples. This approach generates rules that are fully consistent with the training

data and thus can overfit the data. The CN2 algorithm performs the search for the
complex that does not necessarily exclude all negative examples. It checks all the
possible specializations of the complex in a manner similar to the ID3 algorithm’s
attribute test to establish a new node in the tree. It generates an ordered list of
production rules and evaluates the quality of a complex by using the entropy
measure

)(log
1

2 i
C

i
i ppEntropy ∑

=
=

where pi is probability that the complex classifies example into the ith class.

To calculate the entropy, a set of examples covered by the complex has to be
found first. The lower the entropy value the better the complex. The second
evaluation criterion tests "significance" of the complex by calculating the
likelihood ratio statistics. This measure calculates the distance between two
distributions: distribution among classes of examples that satisfy the complex, and
the expected distribution that would result if the examples were selected
randomly. If the value of the significance measure is low then the regularities
described by the complex are close to random. The bigger the value of the
significance measure the better the complex.

The CN2 algorithm uses these two measures repeatedly to search for the best
complex and at the same time it incorporates tree-pruning techniques, like
stopping complex specialization when no further specialization is statistically
significant. Further improvements of the CN2 algorithm (Clark and Boswell,
1991) include new methods for calculation of the significance measure for the
complexes. This new measure uses Laplace heuristics that searches for more
general, with higher value of predictive accuracy, complexes. The improved CN2
algorithm is able to generate unordered set of rules, where each rule can be used
separately to classify the examples.

2. CLIP Family of Algorithms

The initial CLIP algorithm, CLILP2 (Cover Learning using Integer Linear
Programming) was developed in 1995 (Cios and Liu). It was later improved into
the CLIP3 algorithm (Cios at al. 1997). Most recently, several new significant
features were added to the algorithm that resulted in the CLIP4 algorithm (Cios
and Kurgan 2001). The new version of the algorithm incorporates features that
make it more powerful and user friendly; they are described later. In this section
detailed description of how the CLIP algorithm works is presented, along with an
illustrative example.

We explain here the fundamental ideas of the CLIP algorithms. First, a brief
description of the CLIP algorithm is provided. Then, the pseudocode of the
algorithm is given along with detailed analysis.

The CLIP algorithm has three phases. In the first phase, a decision tree is grown,
and pruned, to divide the data into subsets. In the second phase the set covering
method is used to generate production rules. In the third phase, goodness of each
of the generated rule is evaluated, and only the best rules are kept while the
remaining (weaker) rules are discarded. Common feature of all three phases is the
use of the Integer Programming (IP) model to perform crucial operations on the
data, like selecting the most discriminating features, growing new branches of the
tree, selecting the data subset that generates the least overlapping and the most
general rules, and finally for generating the rules from the subsets. The use of the
IP model is the heart of the algorithm and, as mentioned above, it is used to solve
many diverse tasks.

Before the algorithm is used the available data is divided into "positive" data
(positive examples), which describe the concept, for which we want to generate
the rules, and the "negative" data (counterexamples).

In the first phase, the original set of positive training data is divided into smaller
subsets of similar data in a decision-tree like manner. Tree pruning is performed
to eliminate noise from the data and to avoid excessive growth of the tree. Each
level of the tree is built using one negative example. This negative example is
used to define distinguishing features between all positive and this particular
negative example, to create new branches of the tree. Each node of the tree
represents one data subset. The difference between growing the tree in the CLIP
algorithm and a decision tree algorithm, like C4.5, is that the CLIP divides the
data in many ways, generating not just one “best” division based on the “best”
feature, say in terms of the highest value of the information gain, but a set of
divisions based on any feature that distinguishes between positive and negative
examples. In this way it generates several data subsets from which the rules can
possibly be generated. The goodness of the subsets used for generating the rules is
measured by the number of examples they cover. Because of this CLIP can
generate more general rules, which is a one of the important features of the
algorithm. The question arises what to do when the resulting tree becomes too
bushy because of this type of search. CLIP deals with this problem using two
techniques. It prunes the subsets that contain very small number of examples
(below the predefined threshold) that are suspected to be noisy, and also prunes
the redundant subsets, which are defined as subsets that are equal or are subsets of
other subsets. One very important feature of the CLIP algorithm is the fact that the
tree in fact does not exist; it is a virtual tree. The "tree" at any iteration consists of
only one, most recently established tree level. The entire tree above this level is
discarded.

In the second phase all terminal subsets (represented by the tree leaves) are judged
whether they are good candidates for rule generation or not. There are two criteria
used to accept or reject them. The first states that large subsets are preferred over
small subsets (because they simply include more examples); thus the rules
generated using them will be “stronger” and more general. The second states that
all accepted subsets (between them) must cover the entire training data. The
second criterion corresponds to the completeness condition, which states that the
classification rules must correctly describe all the positive examples. After best
subsets are selected, the rules are generated. Each rule is generated using one of
the accepted subsets and the entire negative data set. As a result the number of
generated rules is equal to the number of accepted subsets. The set of all generated
rules covers the entire positive training data set. The algorithm also satisfies
consistency condition, which states that every generated rule covers only positive
examples and does not cover any negative examples.

In the third phase we are dealing with rules only. The task is to select the best
rules from the generated rules. To do it each rule is tested on positive data and the
rule that covers the most of them is chosen while the remaining rules are
discarded. This promotes selection of strong and general rules. If there is a tie
between two or more “best rules” the shortest rule is chosen, i.e. the rule that
involves the minimal number of features. After the best rule is selected all the
examples covered by this rule are removed from the positive data set and the
entire process is repeated on the remaining positive (and the entire negative) data.

CLIP algorithm is able to deal with the noisy data. Noisy examples form small
subsets during the first phase of the algorithm’s execution and thus weak rules are
generated from them. These rules, however, are not accepted in the final phase.
Another important feature of the CLIP algorithm, in addition to its noise
tolerance, is its ability of dealing with the data containing missing values.

CLIP algorithm uses three thresholds. These thresholds are used to prune the tree,
to avoid overfitting of the data by the generated rules (by removing rules that
cover too few positive examples, and that are suspected to contain noise), and to
decide when to stop forming the rules. Detailed description of the thresholds is
given later.

Integer Linear Programming Model

Integer programming models have been used for a long time in the field of
operations research, mainly for resource allocation. They are used for
minimization or maximization of a function, subject to a large number of
constraints. A simple IP model in a standard form is shown in Figure 2
(Ravindran et al. 1987).

0,0,3,1,4
:

0,0,0,0
63
422

:

:

4321

4321
421
321

4321

=====

≥≥≥≥
=++
=++−

=+++

xxxxwhenZ
Solution

xxxx
xxx
xxx

toSubject

Zxxxx
Minimize

Figure 2. An example IP model in a standard form and its solution

There are several solutions to an IP model depending on the method used. There
are polynomial algorithms (Chvatal, 1979; Hochbaum, 1982) and non-polynomial
algorithms (Ravindran et al., 1987).

In the CLIP algorithm the simplified version of the general IP model is used. The
following simplifications are used: the function that is subject of optimization has
all the coefficient values equal to one, constraint function coefficients have binary
values, and all constraint functions are greater or equal to one. This integer linear
programming problem is known in the literature as the set-covering problem
(Grafinkel and Nembauser, 1972; Bellmore and Ratliff, 1971).

The simplified IP model example used in the CLIP algorithm is shown in Figure
3.

0,1,0,1,2
:

1
1

1
:

:

4321

3
41

321

4321

=====

≥
≥+
≥++

=+++

xxxxwhenZ
Solution

x
xx

xxx
toSubject

Zxxxx
Minimize

Figure 3. Simplified IP model used by the CLIP algorithm and its solution

The simplified IP model can be transformed and solved in a matrix representation,
see Figure 4.

1
0,1,0,0
1,0,0,1
0,1,1,1

:

:

4
3
2
1

4321

≥















⋅












=+++

x
x
x
x
toSubject

Zxxxx
Minimize

Figure 4. Simplified IP model used in the CLIP algorithm

The solution to the simplified IP model can be found by using only constraint
coefficients matrix, which is called BINary matrix. Columns of this matrix
correspond to variables of the optimized function (features in case of CLIP).
Rows correspond to function constrains (examples in case of CLIP). The solution
for the problem is obtained by selecting minimal number of matrix columns in
such a way that for every row there will be at least one matrix cell with the value
of one for the selected matrix columns. The solution consists of the (binary)
matrix of the selected columns. In order to solve the simplified IP model a
heuristic was developed; its pseudocode follows.

Given: BINary matrix – a matrix (MxK) where each row represents an

example and each column represents a feature
Initialize: SOL = 0, where SOL - a matrix containing solution list (1xK)
 BIN_Row - number of rows in BIN
 1. Sum each column of BINary matrix one at a time
 2. Determine the column that has the largest summed value
 3. Put the value of one in the corresponding column in SOL
 4. Update BINary matrix and BIN_Row
 5. IF BIN_Row > 0 THEN go to 1.
Result: SOL matrix

Calculations for the example shown in Figure 4 follow:

[]

[]]0,1,0,0[1,2,1,2

]0,1,0,1[0,1,0,0],0,0,0,1[
0,1,0,0
1,0,0,1
0,1,1,1

]0,0,0,0[

sum

SOLBINSOLBIN

SOLinitialize

=→==→











=

=

SOL = [1,0,1,0] means that the solution consists of features 1 and 3.

A detailed explanation of the algorithm follows by means of a numerical example.
Consider the postoperative recovery room at a hospital. The doctor needs to make
a decision whether the post-operative patient should be prepared for going home

or should undergo further treatment or observation. The doctor can use the
following information:

• temperature, in the ranges: low <36°C, mid <36°C, 37°C>and high >37°C
• stability of patient's blood pressure: stable, moderately stable, and unstable
• patient’s blood pressure: low < 90/170, mid <90/70, 130/90>, and high
 >130/90
• patient's level of discomfort: an integer from 1 to 5 (highest).

Available historical data consist of patient information together with doctor’s
decisions. The goal is to generate the rules that describe doctor’s way of making
decisions.

The data are shown in Table 2, (the values in the parentheses define integer
coding of the data):

Table 2. Example problem data

Patient

No
Surface

temperature
Blood pressure stability Last blood

pressure
Patient

discomfort
Doctor’s
decision

1 mid (2) moderately-stable (2) low (1) 4 home (1)
2 mid (2) stable (1) mid (2) 4 home (1)
3 mid (2) stable (1) high (3) 5 home (1)
4 high (3) stable (1) high (3) 5 home (1)
5 mid (2) unstable (3) mid (2) 3 home (1)
6 high (3) unstable (3) high (3) 5 treatment (2)
7 mid (2) moderately-stable (2) high (3) 4 treatment (2)
8 mid (2) unstable (3) low (1) 4 treatment (2)

The training data set for this example consists of eight examples (patients),
divided into positive data (first five patients), and negative data (last three
patients). Let us transform the above example into the form required by the CLIP
algorithm:
 M – number of positive examples, N – number of negative examples
 K – number of features, which constitute the examples
 POS –rectangle (NxK) matrix, which represents the positive training data
 NEG –rectangle (MxK) matrix, which represents the negative training data
 negi – ith example from the negative training data set

Thus for our example we have:
 M = 5, N = 3, K = 4

[]5,3,3,3,
4,1,3,2
4,3,2,2
5,3,3,3

,

3,2,3,2
5,3,1,3
5,3,1,2
4,2,1,2
4,1,2,2

1 =











=



















= negNEGPOS

Note: in what follows we use several terms, namely: matrix, node, and subset
interchangeably, since all mean the same.

The high level pseudocode of the CLIP algorithm follows, for details refer to Cios
et al. (1997):

Given: POSitive and NEGative training data
Initialize:
Assign POSitive matrix to the tree root.
Initialize the first subset of the positive training data POS1=POS

Phase I
1. For all NEGative examples negi, create new level of the tree for each negi:

1) For every node consisting of POSj matrix, where j = 1,2…L, L – number
of nodes at the current tree level, do:

• generate BINary matrix by comparing POSj matrix with negi
• solve represented by the BINary matrix IP model
• split the POSj matrix based on the features indicated by the IP solution

creating tree nodes for next tree level, which will contain sub-matrices of
POSj matrix and eliminate redundant sub-matrices

2) Increment index of negative example i=i+1, substitute current tree level
with next tree level

Phase II
1. Generate the TM (template matrix) BINary matrix
2. Solve represented by the TM BINary matrix IP model
3. Back project matrices indicated by the IP solution from step 2
4. Convert each resulting matrix to IP model and solve it
5. Generate rules based on generated in step 4 IP solutions

Phase III
1. Find the best rule
2. Eliminate positive examples covered by the best rule from POSitive matrix
3. If POSitive matrix is not empty go to Phase I

Result: Rules covering all positive examples and none of the negative

The solution of the example using the CLIP algorithm is shown in Figure 5.

Figure 5. Example problem solution using CLIP algorithm.

Phase I explanation

The goal of phase I is to divide the positive data in a tree-like manner into many
subsets. Each subset represents part of positive data, which is recognized as
positive and separated from the negative data. The tree consists of nodes, which
represent subsets, and branches, which represent subsequent divisions of the data.

Each level of the tree is built using one negative example. The tree has the number
of levels equal to the number of negative examples. Each new tree level is built by
dividing all the subsets from the previous level by using the same negative
example. After new level of the tree is built, the previous level is deleted. As a
result, the memory requirements are low because we do not need to store the
entire tree but just one tree level. The process is repeated until all negative
examples are used. Subsets at the bottom of the tree (leaves) are candidates for
rule generation.
Below, the division of the data using the first negative example is shown:

• At the beginning we are at the tree root, which represents the entire positive

data stored in matrix POS1.
• First negative example, neg1, is used to divide the data
• At this step we calculate the BINary matrix by comparing neg1 with the entire

matrix POS, row by row. If feature values are equal, in both being compared
rows, we put a 0 in the corresponding cell in the BIN matrix, else we put a 1

[]


















==



















=

1,1,0,1
0,0,1,0
0,0,1,1
1,1,1,1
1,1,1,1

,5,3,3,3,

3,2,3,2
5,3,1,3
5,3,1,2
4,2,1,2
4,1,2,2

11 BINnegPOS

• Next, the BIN matrix, which represents the IP model, is solved; the solution

matrix, SOL, indicates features that can be used to divide the data
• Each 1 in the SOL matrix represents a feature that can be used to distinguish

between all positive examples and the negi example

[]

[] []
[] []0,0,1,10,0,0,1

0,0,1,03,3,4,4

0,0,1,0

1,1,0,1
0,0,1,0
0,0,1,1
1,1,1,1
1,1,1,1

==
→=

=























=

SOLSOL
columnsBINinonesofsum

BINBIN

• The SOL matrix indicates which features of the negative example, negi, will

be used to divide the matrix POSi to create new nodes for the new level of the
tree. Each value of 1 in the SOL matrix adds a new branch and a new node to
the tree. It accepts examples from matrix POSi that have the corresponding
feature value different from the value of the same feature in negi.

• For the SOL matrix []0,0,1,1=SOL , we have two 1s:

• Since the 1 in the first column corresponds to the first feature (patient’s
temperature) we forbid the corresponding value from the first column of the
neg1 example, because this value can distinguish between positive and
negative example

• For condition F1≠3 we create a new branch of the tree and a new node
containing subset of the POS matrix examples that satisfies the condition.

• The same mechanism is applied to the value of 1 in the second column of the
matrix SOL (i.e. for F2≠3 we create a new branch of the tree and new node
containing subset of matrix POS that satisfy the condition).

• In such a way the new level of the tree is created and consists of two nodes;

the first contains matrix POS1, which satisfies the condition F1≠3 and the
second containing matrix POS2, which satisfies the condition F2≠3
















=
















=

5,3,1,3
5,3,1,2
4,2,1,2
4,1,2,2

,
3,2,3,2
5,3,1,2
4,2,1,2
4,1,2,2

21 POSPOS

• After all the nodes from the preceding level of the tree underwent the above

process (in our case it was just the root node), all created nodes constitute the
new level of the tree

• The process repeats until all negi examples are used exactly once.

Phase II explanation

The goal of phase II is to determine which of the POSi matrices, represented by
the tree leaves, are best candidates for rule generation. First, Template Matrix
(TM) is created. This matrix carries information about how many positive
examples are covered by each POSi matrix. The TM matrix is a BINary matrix,
and by solving the corresponding IP model, the set of best POSi matrices for the
purpose of rule generation is selected. For each of the selected matrices a Back
Projection (BP) matrix is created using the entire negative data set. Once the BP
matrix is created, it is transformed into a BINary matrix. Then, the corresponding
IP model is solved and the solution, in combination with all negative data, is used
to produce the rules.

Below we show calculations performed in phase II:

• Terminal matrices (leaves of the tree) from phase I are shown below:












=



=












=

5,3,1,3
5,3,1,2
4,2,1,2

,4,2,1,2
4,1,2,2,

3,2,3,2
5,3,1,2
4,2,1,2

321 POSPOSPOS

• Matrix TM is of size MxL, where L is number of matrices in the terminal tree
level

• Each column of the TM matrix corresponds to one terminal POSi matrix, and
each row corresponds to one positive example from the POS matrix. For
every example from the terminal POSi matrix, the corresponding cell in the
TM matrix is set to 1 (the cell which is located at the column corresponding to
the POSi matrix, and at the row corresponding to the location of the example
in the POS matrix). For all positive examples, which are not present in POSi,
the corresponding TM matrix cells are set to 0.

• Matrix POS1 consist of examples 2, 3and 5 from matrix POS, matrix POS2
consist of examples 1, 2 and 5 from matrix POS, and matrix POS3 consists of
examples 2, 3 and 4 from matrix POS. The corresponding TM matrix is
shown below.

• Next, the TM matrix, which represents the IP model is solved; the solution
matrix, SOL, is found and indicates subsets that are best candidates for rule
generation

[]

[] [] []

[] [] []1,1,10,1,10,0,1

1,0,01,1,03,3,3

1,0,0
1,0,0
0,1,0

0,0,1
1,0,0
1,0,1
1,1,1
0,1,0

===

→→=

=







=























=

SOLSOLSOL

columnsTMinonesofsum

TMTMTM

• The solution matrix SOL = [1, 1, 1] indicates that all three matrices are best

candidates for rules generation, since a value of 1 in the SOL matrix indicates
that the corresponding matrix is best candidate for rule generation

• For every accepted matrix and entire negative data we generate rules using
back projection

• The goal of back projection is to determine selectors that can distinguish
between positive examples from matrix POSi and all negative examples.
These selectors are used to generate production rules

• BP matrix is build by comparing each cell from matrix NEG with the entire
corresponding column of matrix POSi . If the value from the being compared
cell from matrix NEG is different than any value from the entire
corresponding column of the POSi matrix, then the corresponding cell in the
BP matrix is set to the same value as in the NEG matrix cell, otherwise it is
set to 0.

• Below we show calculations of the BP matrix for POS1 (calculations for
POS2 and POS3 matrices are similar)












=→












=












=

0,1,0,0
0,0,2,0
0,0,0,3

4,1,3,2
4,3,2,2
5,3,3,3

,
3,2,3,2
5,3,1,2
4,2,1,2

11 POSBPNEGPOS

• BP matrix is transformed into the BIN matrix by replacing all nonzero values

with 1.












=→












=

0,1,0,0
0,0,1,0
0,0,0,1

0,1,0,0
0,0,2,0
0,0,0,3

1 BINPOSBP

• Next, the BIN matrix, which represents the IP model is solved, the solution

materix SOL indicates features that will be used in the generated rules

[]

[] [] []

[] [] []0,1,1,10,0,1,10,0,0,1

0,1,0,00,1,1,00,1,1,1

0,1,0,0
0,1,0,0
0,0,1,0

0,1,0,0
0,0,1,0
0,0,0,1

===

→→=

=







=
















=

SOLSOLSOL

columnsTMinonesofsum

BINBINBIN

• From the information contained in the SOL matrix a rule is generated. For

every column of the SOL vector with a 1, the feature values from the
corresponding column of the BP matrix are used to generate selectors that
constitute the rule.

• The rule generated from the above back projected POS1 is:

 IF (F1≠3) AND (F2≠2) AND (F3≠1) THEN class positive

• The same calculations are repeated until all accepted, using the TM matrix,

matrices are converted into rules

Phase III explanation

The goal of phase III is to select the best rule from all generated rules. To perform
this selection two criteria are used. The first tests positive data against the rules
and selects those rules that cover the most positive examples. If there is a tie, the
rule that uses less number of features is selected. Then, the positive examples
covered by the rule are removed from positive data, and the entire process is
repeated. The process is terminated when all positive examples are covered, or if
only a small number of positive examples remain uncovered (these examples are
suspected to be noisy). The stop threshold specifies this number.

• The rules generated for our example problem are as follows:

 RULE 1: IF (F1≠3) AND (F2≠2) AND (F3≠1) THEN class positive
 RULE 2: IF (F2≠3) AND (F3≠3) THEN class positive
 RULE 3: IF (F2≠3) AND (F2≠2) THEN class positive

• In the first step the rules are checked against the training data
 RULE 1 covers three patients 2,3 and 4
 RULE 2 covers two patients 1 and 2
 RULE 3 covers three patients 2,3 and 4

• The rules that cover the most positive examples are selected:
RULE 1 and RULE 3 are selected
• If there is more than one rule selected then the most compact rule is

selected
RULE 1 uses features F1, F2, and F3
RULE 3 uses only feature F2
Thus, RULE 3 is selected
• If still there is a tie, then any rule, say the first one, is selected

• After the best rule is selected, the examples that the rule covers are removed
from matrix POS and the process repeats on the smaller positive data












=



=

4,1,3,2
4,3,2,2
5,3,3,3

3,2,3,2
4,1,2,2 NEGPOS

The finally generated rules are:

 RULE 1: IF (F2≠3) AND (F2≠2) THEN class positive
 RULE 2: IF (F2≠3) AND (F3≠3) THEN class positive
 RULE 3: IF (F3≠3) AND (F3≠1) THEN class positive

which can be transformed into:

 RULE 1: IF (F2=1) THEN class positive

RULE 2: IF (F2=1 OR F2=2) AND (F3=1 OR F3=2) THEN class positive
 RULE 3: IF (F3=2) THEN class positive

For our example the rules read:

RULE 1:

IF (patient’s stability of blood pressure is STABLE)
THEN go home

RULE 2:
IF (patient’s stability of blood pressure is STABLE or MODERATELY-STABLE)
AND (patient’s blood pressure is LOW or MID)
THEN go home

RULE 3:
 IF (patient’s blood pressure is MID) THEN go home

The rules generated for the training data, Table 1, are shown below. The CLIP
algorithm generated 2 rules, one rule less than decision trees. The rules have
100% accuracy for the training data. Notice that these rules do not agree with the
rules we derived intuitively, but they generalized the information from the training
data, by finding that a single attribute is sufficient to describe the data.

 RULE 1. IF (F1 ≠ high) THEN go home
 RULE 2. IF (F1 ≠ normal) AND (F1 ≠ low) THEN treatment

The comparison of all three types of ML algorithms on the training data from
Table 1 is shown in Table 3. The decision trees have lower computational cost but
the CLIP algorithm has much lower memory requirements. Also CLIP generates
smaller number of rules.

Table 3. Comparison of the ML algorithm on the training data from Table 1

Algorithm # of
rules

attributes
used

of selectors
used

Memory
requirements

Computational
cost

Rule Algorithm 2 F1, F2 4 high high
Decision trees 3 F1 3 moderate low

CLIP algorithm 2 F1 3 low moderate

Below we describe the three thresholds used by the CLIP algorithm. One prunes
nodes containing small number of positive examples, the second determines if the
best generated rule is acceptable, and the third determines when to stop forming
the rules. These thresholds control the complexity and number of generated rules.
The user can use default values for all the thresholds: Noise Threshold, Best Rule
Threshold, and Stop Threshold.

• Noise Threshold (NT) determines which nodes (possibly containing noisy

positive examples) will be pruned from the virtual tree grown in the phase I of
the algorithm. The threshold will prune every node that contains fewer
examples than NT. Thus, if NT is 0% then none of the branches are
eliminated.

• Best Rule Threshold (BRT) determines, which rules can be chosen as best
rules. Only the rules that cover more than the BRT percentage of the
(remaining) positive examples can be chosen as best rules.

• Stop Threshold (ST) determines when to stop the algorithm. The algorithm
will be terminated when a smaller than ST percentage of positive examples
remains uncovered (these examples are suspected to be noisy and probably
would produce very specific rules).

Either the BRT or the ST threshold can stop the algorithm.

There are several advantages of the CLIP algorithm:
• It generates very compact rules, measured in terms of a small number of

features used
• It generates small number of rules that describe the concepts from training

data
• The generalization ability of the rules is high. Since the rules often overlap

the performance on unseen validation data is higher. In most cases, by using
default values of thresholds, the CLIP algorithm generates the rules that do
not overfit the data.

• Balance between generalization and specialization of the generated rules can
be controlled by the thresholds

• CLIP deals with noisy data without overfitting. The Stop Threshold can be
used to remove noisy data from the training data.

• Memory requirements are very low, because there is no need to store the
entire decision tree during training, like in case of decision tree algorithms.
Only the bottom level of the tree is needed to generate the rules.

• CLIP splits positive data into many subsets to later generate the best rule. The
partitioning mechanism used in the CLIP algorithm prevents generation of
rules that cover only a small number of examples.

The disadvantages are:
• It does not support incremental learning. It generates rules when examples are

supplied one at a time, but when a new example is provided then it generates
the rules from scratch.

• It works with discrete features only.

The new version of the algorithm, CLIP4 (Cios and Kurgan, 2001) added these
improvements and new features:
• Handling of missing-value data
• Improved tree-pruning methods
• Improved methods for solving IP model
• Application of evolutionary computation methods to improve partitioning

data into subsets
• Addition of 3 front-end discretization algorithms to deal with continuous data
• Acceptance of many rules (not just one) in phase III of the algorithm
• Automatic generation of rules for multi-class problems
• Front-end nominal data encoding and decoding
• Analysis of the feature-value pairs using the CLIP4 rules. Each feature-value

pair has assigned a goodness measure that quantifies its strength and
usefulness.

• Calculation of confidence factors for each classification made by using the
generated rules

• User-friendly, windows-based, implementation

CLIP4 algorithm can be used for data mining purposes because of its efficiency;
the reader can download CLIP4’s executable code from http://isl.cudenver.edu
(under “Software”).

In the next section, we summarize results of CLIP3 and CLILP2 algorithms, as
well as comparison with other machine learning algorithms. The results show that
the CLIP algorithm generates very accurate rules.

2.1. Results and comparison with other algorithms

The lymphatic cancer, breast cancer, and primary tumor data

CLILP2 algorithm was tested on the data from three medical domains: lymphatic
cancer, prognosis of breast cancer recurrence, and location of primary tumor
(Kononenko at al., 1984; Michalski, 1990, Clark and Niblett, 1989)

Lymphatic cancer data has 4 decision classes and 18 attributes, with 148
examples; the data is consistent. Prognosis of breast cancer data has 2 decision
classes and 9 attributes with 186 examples; the data is inconsistent - some
examples belonging to two different classes are identical. Location of primary
tumor data has 22 classes and 17 attributes with 339 examples; the data is
inconsistent.

All data sets were divided into training and validation parts in the same manner as
reported in the literature: 70% were randomly selected for training and remaining
30% for testing.

Two values were calculated: accuracy and complexity. Complexity is calculated
by counting the number of nodes, in case of the decision-tree based algorithms,
and the number of complexes generated, in case of the rule-based algorithms.

The results shown in the Table 4 are repeated after Cios and Liu (1995).

As can bee seen, the rules obtained by the CLILP2 algorithm have the highest
accuracy and comparable complexity on the lymphatic cancer and breast cancer
data, and comparable accuracy and complexity on primary tumor location data.

Table 4. Diagnostic accuracy and complexity results comparison.

 Lymphatic cancer Breast cancer Primary tumour
Algorithm Accuracy [%] Complexity Accuracy [%] Complexity Accuracy [%] Complexity

76

38

67

120

41

188

ASSISTANT
 No pruning
 Pruning 77 25 72 16 46 35
Bayes 83 - 65 - 39 -
AQR 76 76 72 208 35 562

78

24

70

23

37

33

81 22 70 20 36 42

CN2
 90% threshold
 95% threshold
 99% threshold 82 12 71 4 36 19

81

12

66

41

39

104

80 10 68 32 41 42

AQTT-15
 Complete
 Unique >q
 Top rule 82 4 68 2 29 22

85

18

76

40

31

108

CLILP2
 No discard
 Discard 84 16 - - 37 83

Discrete MONK's data

The CLIP3 algorithm was compared with several other algorithms using MONK's
problems (Thrun et al., 1991). The MONK's problem has 432 examples and 6
multi-value attributes. It is divided into 3 separate problems: M1 (positive and
negative data sets includes 216 examples each, training data set of 124 examples
was randomly chosen), M2 (142 positive examples and 290 negative examples,
training data set of 189 examples was randomly chosen), M3 (156 positive
examples and 276 negative examples, training data set of 122 examples was
randomly chosen, 5% of examples were misclassified to induce noise into data).
The MONK's data is an artificially created dataset. It defines a set of robots
described by 6 features including: head shapes, body shapes, facial expressions,
objects being held, jacket colors, and whether or not the robot is wearing a tie.
The seventh feature is a decision attribute (whether a robot belongs to a positive
or a negative class). This produces a domain of 432 unique robots. The training
sets used were exactly the same as those used in (Thrun et al., 1991).

During training the CLIP3 algorithm used the following values for the thresholds
for all data sets: NT = 1 or NT = 2 (all nodes containing less then NT examples
were pruned), ST = 10 (The training was terminated when less then ST examples
remained uncovered), and BRT = 50% (only rules that cover more then 50% of
uncovered positive examples can be accepted).

The MONK's data were coded in the following manner: F1, head shape (1 =
round, 2 = square, 3 = octagon); F2, body shape (1 = round, 2 = square, 3 =
octagon); F3, smiling (1 = yes, 2 = no); F4, object holding (1 = sword, 2 = flag, 3
= balloon); F5, jacket color (1 = red, 2 = yellow, 3 = green, 4 = blue); and F6, has
tie (1 = yes, 2 = no). For example, for the data set M1, a positive learning example
(+) is a square headed, octagon bodied, smiling, balloon holding, red jacketed, and
tie-less robot, was coded as (+ 2 3 1 3 1 2). The results shown in Table 5 are
repeated after Cios et al. (1997).

On this test the CLIP3 algorithm performed better then other algorithm. It also
generated fewer rules than any other algorithm with very high or the highest
accuracy.

Table 5. Diagnostic accuracy and the number of generated rules comparison.

 M1 M2 M3
Algorithm Accuracy [%] No of rules Accuracy [%] No of rules Accuracy [

%]
No of rules

CLIP3 (NT=1) 100 4 82.7 10 88.9 3
CLIP3 (NT=2) 100 4 72.7 7 97.2 2

83.2

62

69.1

110

95.6

31

ID3
 without Windowing
 with Windowing 98.6 28 67.9 110 94.4 29
ID5R 79.8 52 69.2 99 95.3 28
AQR 95.9 36 79.6 83 87.0 36
CN2 100 10 69.0 58 89.1 24
C4.5 Decision Trees 75.7 * 65.0 * 97.2 *
C4.5 Tree Rules 100 * 65.3 * 96.3 *
C4.5 Trees with –S 100 * 70.4 * 100 *
C4.5 -S Tree Rules 100 * 67.1 * 100 *

* data not available

The breast cancer data

The CLIP3 algorithm was also tested on the Breast Cancer Data (Mangasarian and
Wolberg, 1990). This data has 683 examples, 10 features, and two classes. The
features have an integer value from 1 to 10. The early results on this data set
cannot be compared because the data were continuously expanding by adding new
examples. For instance an algorithm run in 1991, when the database contained
367 examples, cannot be compared to an algorithm run in 1995 when the database
contained 683 examples.

The training set was generated by choosing every fifth point from the data. CLIP3
was run with ST of 0, 1and 2. The same data set was used to generate rules with
the C4.5 algorithm with the -u option and the -s option. The results shown in
Table 6 are repeated after Cios et al. (1997).

Table 6. Breast cancer results for CLIP3 and C4.5 algorithms

Algorithm Accuracy [%]
CLIP3 (ST=0) 89.6
CLIP3 (ST=1) 86.8
CLIP3 (ST=2) 92.4
C4.5 (-u option) 89.3
C4.5 (-s option) 90.1

2.2. Other applications

The CLIP algorithm was also applied to several other problems, like:

• Generation of diagnostic rules to describe patients with coronary artery

stenosis (Cios et al., 1993). This problem involved a database containing
thallium-201 scintigraphic studies on 91 patients. The problem was to
recognize typical patterns in the coronary artery stenosis data and compare
rules generated by the CLILP2 algorithm with existing diagnostic expert
system rules. The CLILP2 generated 15 as compared with 68 expert-specified
rules. Accuracy of the rules generated by CLILP2 algorithm was between
89% and 96%. The rules generated using CLILP2 algorithm were in the same
format as rules specified by the experts, thus showing that for domains where
training data is available there may be no need to extract rules from experts.

• Problem of designing end-user satisfaction instrument (Torkzadeh et al.,
1996). This problem involved data collected for development of an end-user
computing satisfaction instrument. The data set included 618 cases, 12
attributes, and 2 target classes (dissatisfied and satisfied). The problem was to
analyze the usefulness of the instrument, according to number of attributes
used, and to create a shorter instrument with comparable end-user satisfaction
factors. As a result the five-item vs. original twelve-item instrument was
developed using CLILP2 algorithm with the average accuracy of 86.5% and
higher then accuracy for the original instrument (75.5%).

• Problem of generation of diagnostic rules from SPECT Bull's-eye maps (Cios
et al., 2000). This application was done using the database containing SPECT
Bull's-eye heart studies on 184 patients. This is a two-classes problem: one
class describes diagnoses for normal patients (160 examples), second for
patients with coronary artery disease (24 examples). The goal of this
investigation was to generate a set of rules, which can correctly recognize
given example into one of these two classes, and to compare existing expert
rules with the rules generated by CLIP3. As a result 14 diagnostic rules were
generated.

• Generating diagnostic rules from cardiac SPECT data (Kurgan at al., 2001).
This problem involved database containing cardiac SPECT heart images
collected on 267 patients in stress and rest studies. CLIP3 algorithm was

applied to generate diagnostic rules for overall diagnosis of the patient’s
study, by using information of partial, in the predefined regions of the heart
muscle, diagnoses. This is a two-classes problem: first class describes normal
patients (55 examples), and second patients with coronary artery disease (212
examples). Three diagnostic rules were generated. The rules accuracy was
84%.

3. Concluding Remarks

We described three major families of ML algorithms that can generate production
rules from the data. The descriptions were supplemented by self-explanatory, easy
to understand examples that gave good insight into the described methods. In
addition, we described discretization methods, hypothesis evaluation methods, and
the problem of overfitting in the appendices. Because the chapter concentrated on
the CLIP algorithms we omitted many other ML algorithms like CART (Breiman
et al., 1984), S-Plus tree (Clark and Pregibon, 1993), FACT (Loh and
Vanichsetakul, 1988), QUEST (Loh and Shih, 1997), IND (Buntine, 1992), OC1
(Murthy, Kasif and Salzberg, 1994), LMTD (Brodley and Utgoff, 1995), T1
(Holte, 1993), etc.

The CLIP family of algorithms has been developed over several years. The most
recent is the CLIP4 algorithm, an efficient tool that can be used to generate
production rules from numerical, nominal, and continuous data. The rules have
high accuracy when tested on unseen data, and the computational cost is
acceptable. The tests with large, over 40K examples, data using the CLIP4
algorithm were very successful.

References

Bellmore, M and Ratliff, H.D., 1971, Set Covering and Involuntary Bases,

Management Science, vol. 18, no 3
Breiman L., Friedman J., Olse R., and Stone C., 1984, Classification and

Regresion Trees, Chapman and Hall, New York, NY
Brodley C.E., Utgoff P.E., 1995, Multivariate decision trees, Machine Learning,

19:45-77
Buntine W., 1992, Learning classification trees, Statistics and Computing, 2:63-

73
Chvatal, V, 1979, A Greedy-Heuristic for The Set-Covering Problem, Math.

Operations Research 4, no 3
Cios, K.J. and Liu, N., 1992, Machine Learning in Generation of a Neural

Network Architecture: a Continuous ID3 approach, IEEE Trans. on Neural
Networks, 3(2): 280-291

Cios, K.J., Liu, N., Goodenday, L.S., 1993, Generation of Diagnostic Rules via
Inductive Machine learning, Kybernetes, vol. 22, no 5, pp 44-56

Cios, K.J. and Liu, N., 1995, An algorithm which learns multiple covers via
integer linear programming. Part I - The CLILP2 Algorithm, Kybernetes,
vol. 24, no 2, pp. 29-50

Cios, K.J. and Liu, N., 1995, An algorithm which learns multiple covers via
integer linear programming. Part II – experimental results and conclusions,
Kybernetes, vol. 24, no 3, pp. 24-36

Cios, K.J., Wedding, D.K. and Liu, N, 1997, CLIP3: cover learning using integer
programming. Kybernetes, 26(4-5): 513-536 (The Norbert Wiener 1997
Outstanding Paper Award)

Cios, K.J., Pedrycz, W., Swiniarski, R., 1998, Data Mining Methods for
Knowledge Discovery, Kluwer

Cios, K.J., Teresinska, A., Konieczna, S., Potocka, J., Sharma, S., 2000,
Diagnosing Myocardial Perfusion from SPECT Bull’s-eye Maps - A
Knowledge Discovery Approach, IEEE Engineering in Medicine and
Biology Magazine, Special issue on Medical Data Mining and Knowledge
Discovery

Cios, K.J., & Kurgan, L., Hybrid Inductive Machine Learning Algorithm that
Generates Inequality Rules, Information Sciences, Special Issue on Soft
Computing Data Mining, submitted, 2001

Clark, P. and Niblett, T., 1989, The CN2 algorithm, Machine learning, 3:261-283
Clark, P. and Boswell, R., 1991, Rule Induction with CN2: Some Recent

Improvements, Lecture Notes in Artificial Intelligence, Proc. of European
Working Session on Learning, Springer-Verlag

Clark L.A., Pregibon D., 1993, Tree-based models, in Chambers J.M., Hastie T.J.
(ed.), Statisticsl Models in S, Chapman and Hall, New York, NY, p.377-419

Fisher, D.H. and Langley, P., 1986, Conceptual clustering and its relation to
numerical taxonomy, Artificial Intelligence and Statistics, Gale W.A. (ed),
Addison-Wesley

Fisher, D.H., 1987, Conceptual clustering, learning from examples and inference,
Proc. of the 4th Int. Workshop on Machine learning, Morgan-Kaufmann,
pp.38-49

Grafinkel, R.S. and Nembauser, G.L., 1972, Integer Programming, John Wiley &
Sons, New York

Hochbaum, D.S., 1982, Approximation Algorithm for The Weighted
Set-Covering and Vertex Cover Problems, Siam J. Comput., vol. 11, no 3

Holte, R.C., 1993, Very simple classification rules perform well on most
commonly used data sets, Machine learning, 11:63-90

Hunt, E.B., Marin, J. and Stone, P.J., 1966, Experiments in Induction, Academic
Press

Kaufman, K.A. and Michalski, R.S., 1999, Learning from Inconsistent and Noisy
Data: The AQ18 Approach, Proc. of the Eleventh International Symposium
on Methodologies for Intelligent Systems, Warsaw, June 8-11

Kononenko, I., Bratko, L., Roskar, E., 1984, Experiments in automatic learning of
medical diagnostic rules, Technical Report, E. Kardelj University, Faculty of
Electrical Engineering, Ljubljana, Yugoslavia

Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M., Goodenday, L.S., 2001,
Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis,
Artificial Intelligence in Medicine, 23:2, pp.149-169

Langley, P., 1996, Elements of Machine learning, Morgan-Kaufmann
Loh W.Y., Shih Y.S., 1997, Split selection methods for classification trees,

Statistical Sinica, 7:815-840
Loh, W.Y., Vanichsetakul, 1988, Tree structured classification via generalized

discriminant analysis (with discussion), Journal of the American Statistical
Association, 83:715-728

Mangasarian, O. L. and Wolberg, W. H., 1990, Cancer Diagnosis Via Linear
Programming, Siam News, vol. 23, no 5, pp. 1-18

Michalski, R.S., 1974, Variable-valued logic: System VLl, Proc. 1974 Int.
Symposium on Multiple-Valued Logic and Pattern Recognition, West
Virginia University, Morgantown, pp. 323-346

Michalski, R.S., 1980, Knowledge acquisition through conceptual clustering: a
theoretical framework and algorithm for partitioning data into conjunctive
concepts, Int. Journal of Policy Analysis and Information Systems, 4:219-243

Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N., 1986, The multipurpose
incremental learning system AQ15 and its testing application to three medical
domains, Proc. 5th National Conf. on Artificial Intelligence, Morgan-
Kaufmann, pp. 1041-1045

Michalski R.S., 1990, Learning flexible concepts: fundamental ideas and a
method based on two-tiered representation, Kodratoff, Y. and Michalski,
R.S., (eds), Machine learning: An Artificial Intelligence Approach, Morgan-
Kaufmann, vol. III, pp. 63-102

Murthy S.K, Kasif S., Salzberg S., 1994, A system for induction of oblique
decision trees, Journal of Artificial Intelligence Research, 2:1-33

Ravindran, A., Phillips, D.T., Solberg, J.J, 1987, Operations Research, Principles
and Practice, Second addition, pp. 1-69, John Wiley & Sons.

Quinlan, J.R., 1993, C4.5 Programs for Machine learning, Morgan-Kaufmann
Schapire, R. E., (1999), A brief introduction to boosting. Proceedings of the

Sixteenth International Joint Conference on Artificial Intelligence
Shank R.C., Where is AI, (1991), AI Magazine, winter 1991, p.38-49
Thrun, S.B., et al., 1991, The MONK's problems: A Performance Comparison of

Different Learning Algorithms, School of Computer Science, Carnegie
Mellon University

Torkzadeh, G., Cios, K.J., Pfughoeft, K.A, 1996, Inductive machine learning for
instrument development, Information and Management, vol. 31, pp 47-55

University of California, Irvine: UCI Machine learning Repository Content
Summary. http://www.ics.uci.edu/~mlearn/MLSummary.html

Appendix 1: Discretization

Most machine learning algorithms accept only discrete feature values. In order to
work with continuous features the CLIP4 algorithm (Cios and Kurgan, 2001)
provides three front-end discretization schemes: equal frequency, Paterson-Niblett
(Paterson and Niblett, 1982), and Class-Attribute Interdependence Uncertainty
and Redundancy (CAIUR) based on the Class-Attribute Interdependence
Redundancy (CAIR) algorithm (Wong and Liu, 1975). Description of the three
schemes is given below.

Discretization is defined as a process of transforming a continuous range of values
of a feature, into a finite number of intervals, and associating with each interval a
discrete value. The quality of discretization is a one of the key factors that
determine performance of a subsequently used algorithm, like the CLIP algorithm.
There are two ways to include discretization capability into a machine learning
algorithm. One is to include a discretization scheme as a part of the algorithm
itself. The other, widely used, is to perform discretization as a front-end operation.
Below we address the latter. For more detailed discussion about different
discretization schemes see Cios et al. (1998).

In general, the discretization process consists of two steps: deciding the number of
discrete intervals, and determining the width of these intervals. There are some
heuristics used to choose the number of intervals. One says that the number of
intervals should not be smaller than the number of classes; the other specifies the
number of intervals, n, using M – number of learning examples and C – number
of classes (Ching at al., 1995):

n = M / (3* C)

We assume that the user supplies the number of intervals for each feature: N =
{nF1, …, nFi ,..., nFn)

The equal frequency discretization scheme sorts the values of each discretized
feature Fi in an ascending order. Then those values are divided into the user-
specified number, nFi, of intervals, in such a way that each interval contains the
same number of sorted feature values.

Example:

c – number of classes, c = 3 (represented by three different colors), M = 33,
n – number of discretization intervals, n = M / (3*c) = 33 / (3*3) = 4
the X axis – represents values of feature Fi

x

• Equal frequency discretization scheme solution
Number of values per one interval = 33 / 4 = 8

Equal frequency discretization scheme is very simple. For most problems it
produces satisfactory results. For harder problems, the user can use in the CLIP4
algorithm CAIUR or Paterson-Niblett discretization schemes. These schemes take
into account relationship between feature values and target class values,
minimizing the number of classes assigned to all values of the discretized feature
in each interval. What is important, the CAIUR and Paterson-Niblett methods
automatically assign proper number of discretization intervals. Thus, these
schemes perform pre-classification for the discretized features, which improves
the accuracy of the subsequently used learning algorithms. The price to pay is that
the two methods are computationally expensive, especially for problems with
large number of examples.

The machine learning algorithm’s task is to discover the relationship between the
class variable (conclusion of a rule) and the feature variable (condition of a rule).
Thus, the discretization problem, especially in case of the CAIUR scheme, is
formalized in view of the class-feature interdependence. Assume that the problem
is described by n features F1,…, Fj ,…, Fn and there are C classes, ci , i = 1,…, C.
Let the interval [a, b] be the range of the continuous-valued feature Fj. A partition
Tj on Fj is defined as:

Tj: {[e0,e1], (e1,e2], . . ., (eLj-1,eLj]}

where e0 = a represents the lowest observed value; eLj = b is the upper boundary
value, and er-1 < er for r = 1, . . ., Lj, where Lj is the number of intervals. With the
change of partition Tj, the class variable, c, and the interval variable, denoted as vjr
= (e r-1, e r], can be understood as two random variables.

Paterson-Niblett discretization scheme

As said above the second discretization scheme used in the CLIP4 algorithm is
based on the work of Paterson and Niblett (1982). Their discretization scheme can
be formalized in the following manner.

x

Given: Feature Fi that has n continuous values
1. All values of Fi are sorted
2. For all possible divisions on feature Fi (each division is created by adding a

one division boundary N):
a. the entire interval of Fi values is split, on value of added boundary

N, into two intervals: those for which Fi ≤ N and those for which Fi
> N.

b. the value information gain is computed
3. The boundary corresponding to the largest value of information gain, or gain

ratio, is added
4. If a stop criteria is satisfied then stop, else go to step 2.

Result: The set of discretization intervals for feature Fi

In case of this scheme, as well as most of other discretization schemes, candidate
division boundary points are set as all the midpoints between all two adjacent
values of a continuous feature. As the stop criterion one can use a threshold value
for the maximal information gain, or gain ratio value established in step 2. The
other way to define the stop criterion is to stop adding new intervals when the
difference between the value of information gain in the previous iteration and the
current iteration is small (below a specified threshold), which means that there
will be no significant improvement in the class-feature interdependence by adding
new interval (adding new decision boundary).

Example:
The boundaries established by using Paterson-Niblett scheme are shown below:

CAIUR discretization scheme

In order to explain this scheme we need several definitions (Ching et al., 1995,
Cios et al., 1998).

A set of boundary points is defined as the set of ordered end points e0, e1, . . ., eLj
that define the Lj intervals. Let Qj denote a set of 2D frequency quanta matrix
such that:

Qj: {qir | i = 1, . . ., C; r = 1, . . ., Lj}

where qir is the number of examples from the i-th class in the r-th interval.

x

An example of quanta matrix is shown in Table 7.

Table 7. Discretization quanta matrix for feature Fj

Class (c) Intervals
[e0,e1] . . . (er-1,er] . . . (eLj-1,eLj]

Total

C1
.
ci
.

cC

 q11 . . . q1r . . . q1Lj

 qi1 . . . qir . . . qiLj

 qC1 . . . qCr . . . qCLj

q1+
.

qi+
.

qC+
Total Q+1 . . . q+r . . . q+Lj M

Example:

For the partition described by the above example, the corresponding quanta matrix
is defined as:

Intervals Classes
First Second Third Fourth

Total

Class 1 3 5 4 4 16
Class 2 5 0 4 0 9
Class 3 0 5 0 3 8
Total 8 10 8 7 33

where the total number of objects, M, is: ∑∑
=

+
=

+ ==
C

i
i

L

r
r qqM

j

11

and q+r is the number of objects in the r-th interval: ∑
=

+ =
C

i
irr qq

1

and qi+ is the number of objects in the i-th class: ∑
=

+ =
jL

r
iri qq

1

The estimated joint probability of the event that an object belongs to class ci while
its feature value Fj falls within the interval vjr is defined as:

M
q

p ir
ir =

x

and the marginal probability of c = ci is defined as:

M
q

p i
i

+
+ =

while the marginal probability of Fj ∈ vjr is defined as:

M
qp r

r
+

+ =

The Class-Attribute (CA) Mutual Information (CAMI) between the class variable
c and the feature interval boundaries of Fj, from the associated quanta matrix Qj, is
defined as:

∑∑
++

=
c v ri

ir
irj

j
pp

p
pvcI 2log):(

The CA Information (CAI) between the class variable and the feature Fj interval
variable, from its associated quanta matrix, Qj, is defined as:

∑∑ +=
c v ir

r
irj

j
p
ppvcINFO 2log):(

The Shannon’s entropy of the quanta matrix measures the randomness of the
distribution of data points with respect to class variable, and interval variable, vj,
and is defined as:

 ∑∑=
c v ir

irj
j

p
pvcH 1log):(2

The Class-Attribute Interdependence Redundancy (CAIR) was introduced by
Wong and Liu (1975). It is the CAMI normalized by entropy H. CAIR measure
was defined as:

):(
):(

):(
j

j
j vcH

vcI
vcR =

To explore the CA interdependence relationship Class-Attribute Interdependence
Uncertainty (CAIU) is defined as the CAI normalized by entropy H:

):(

):(
):(

j

j
j vcH

vcINFO
vcU =

The goal of the CAIUR scheme is to maximize the interdependence between class
labels and the attribute variables, and at the same time minimize the number of
intervals.

In order to define CAIUR scheme, we need to define the following:

• Initial discretization

All possible boundary points are set as candidates for the optimal interval
scheme. Then their number is reduced by elimination. Candidate boundary
points are set as all the midpoints between any two nearby values of a
continuous feature.

• Criteria for a discretization scheme
The CAIR and the CAIU are used as discretization criteria.

CAIUR scheme maximizes the interdependence relationship, and at the same time
minimizes the number of intervals, and keeps the loss of information as small as
possible. In order to achieve this CAIR criterion should be maximized, and CAIU
criterion should be minimized.

Example:
The boundaries established by using the CAIUR scheme are shown below:

Appendix 2: Hypothesis evaluation

The generated hypotheses are verified by checking their ability to generalize on
unseen test data. The decision rules (hypotheses) should recognize all positive test
examples, for which they were generated, and none of the negative test examples.

In order to evaluate goodness of the generated hypotheses two measures are
described below: accuracy test, and verification test (Cios et al., 1998). Assuming
that the hypotheses were generated from large training data (if training data is
small then cross-validation or bagging should be used to generate the hypotheses
– see Appendix 3 on overfitting) these two measures provide good verification
results.

Accuracy test

Machine learning algorithms are generally tested using the accuracy test. A test
example is classified by matching with the rule (hypothesis) that describes it best.
This way the example’s class membership is determined.

x

An accuracy test is simply defined as:

%100
total
TPaccuracy =

where TP – (true positive), the number of correctly recognized test examples,

total – total number of test examples.

A test example is checked against the all rules describing all classes, row-wise.

Verification test

The accuracy test gives only very general information about the “goodness” of the
generated hypotheses. The verification test, which is frequently used in evaluating
medical diagnostic procedures, gives much better and very specific information
about goodness of the generated rules.

The verification test consists of three evaluation criteria:

%100%100
FNTP

TP
positivehypothesis

TPysensitivit
+

==

%100%100
TNFP

TN
negativehypothesis

TNyspecificit
+

==

%100%100
FNFPTNTP

TNTP
total

TNTPaccuracypredictive
+++

+
=

+
=

where: TP (true positive) – number of correct positive classifications

TN (true negative) – number of correct negative predictions
FP (false positive) – number of incorrect positive predictions
FN (false negative) – number of incorrect negative predictions

Possible outcomes of a test are:

 Test result positive Test result negative
Hypothesis positive TP FN
Hypothesis negative FP TN

The predicative accuracy is equivalent to accuracy in accuracy test. The remaining
two criteria give very good insight into the goodness of the generated rules. The
sensitivity measures how many of the examples classified by the rules as positive

were truly positive. The specificity measures how many of the examples classified
by the rules as negative were truly negative. In this way we get the feeling how
well the generated rules can perform on the positive and negative data separately.
This is very important when the numbers of positive and negative examples are
very different. Then, the accuracy measure provides just the average result for
positives and negatives together, when truly accuracy for positives can be very
different then accuracy for the negatives; this can be easily noticed while using
sensitivity and specificity measures. Only the results with high values for all three
measures can assure high confidence level in the generated hypotheses.

The CLIP4 algorithm (Cios and Kurgan, 2001) calculates accuracy, sensitivity,
and specificity during rules validation. The results are given for each class
separately, as well as for the entire test data.

Appendix 3: Overfitting

Overfitting, or overtraining is defined as a tendency of a learning method to agree
with the training data too closely, in order to correctly describe all of the training
examples (Cios et al., 1998). This phenomenon occurs in the learning methods
such as neural networks, machine learning, and even statistics, and can lead to
generation of overfitted weights in case of neural networks, or very specific rules
in case of inductive machine learning. The overfitting causes that the trained
network or the generated rules may achieve very poor results on unseen test data.
Additionally, if the learning data contains inaccuracies, like noise-corrupted data
points, or inconsistent data (a data point that belongs to more than one category),
overfitting will cause that this “error” information will be also taken into account
in the weights of a neural network or the generated rules.

In most of the cases we can expect two possible outcomes of learning: we can
obtain rules, or a network, that perfectly, with almost a 100% accuracy, classifies
all the learning data; or some of the learning examples are misclassified by the
rules or a network, but the accuracy for unseen test data will be higher. Obviously,
it is better to choose the rules or a network for the latter outcome. To avoid
overfitting in case of neural networks it is to stop training early, although further
training would continue to reduce the error value.

In case of inductive machine learning avoiding overfitting is a more difficult.
There are, however, some techniques to prevent overfitting of generated rules:

• cross-validation.

The training data set is divided into several disjoint subsets (e.g. randomly).
Then the algorithm using all the subsets, except one, as a training data set at
the time generates the rules. This repeats for the every created subset; each
time one of the subsets is set aside for validation. The rule is that the smaller

the training data set the larger the number of training subsets should be used.
In an extreme case just one example is set aside for validation, thus the
algorithm is run as many times as there are examples. This latter method is
called hold-one-out.

• bootstrap aggregation, or bagging
The training data set is divided into about 2/3 of the entire training data for
learning and 1/3 for validation. The algorithm is run several times, each time
on a 2/3 subset of the original training data set. The subsets are chosen
randomly, with replacement, from the entire training data set, so many
training examples can appear several times in different subsets.

As the result of cross-validation or bagging, the rules that on average perform best
on training data (so they also should perform well on unseen test data) are kept.

In case of decision trees there are also other approaches that can be used to
prevent overfitting:

• Generation of several trees instead one, “best” tree. The classification, when

using multiple trees, can be generated using a voting scheme.
• Stop growing the tree before it perfectly classifies all training data, thus

allowing for the leaf nodes containing examples from more then one class
• Pruning the overfitted tree by deleting the branches that cover only a few

examples or that will not cause a significant decrease in accuracy for the
validation data. The problem associated with this method is the need to store
the entire decision tree, before pruning; it is computationally expensive.

References

Ching, J.Y., Wong, A.K.C. and Chan, K.C.C., 1995, Class-dependent

discretization for inductive learning from continuous and mixed-mode data,
IEEE Trans. on PAMI, 17:641-651

Cios, K.J., Pedrycz, W., Swiniarski, R., 1998, Data Mining Methods for
Knowledge Discovery, Kluwer

Cios, K.J., & Kurgan, L., Hybrid Inductive Machine Learning Algorithm that
Generates Inequality Rules, Information Sciences, Special Issue on Soft
Computing Data Mining, submitted, 2001

Paterson, A. and Niblett, T.B., 1982, ACLS Manual, Edinburgh: Intelligent
Terminals, Ltd

Wong, A.K.C. and Liu, T.S., 1975, Typicality, diversity and feature pattern of an
ensemble, IEEE Trans. on Computers, 24: 158-181

