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Summary 
Intrinsically disordered proteins and regions (IDPs and IDRs) are involved in a wide range of cellular 
functions and they often facilitate interactions with RNAs, DNAs, and proteins. Although many 
computational methods can predict IDPs and IDRs in protein sequences, only a few methods predict 
their functions and these functions primarily concern protein-binding. We describe how to use the first 
computational method DisoRDPbind for high-throughput prediction of multiple functions of disordered 
regions. Our method predicts the RNA-, DNA-, and protein-binding residues located in IDRs in the input 
protein sequences. DisoRDPbind provides accurate predictions and is sufficiently fast to make 
predictions for full genomes. Our method is implemented as a user-friendly webserver that is freely 
available at http://biomine.ece.ualberta.ca/DisoRDPbind/. We overview our predictor, discuss how to 
run the webserver, and show how to interpret the corresponding results. We also demonstrate the 
utility of our method based on two case studies, human BRCA1 protein that binds various proteins and 
DNA, and yeast 60S ribosomal protein L4 that interacts with proteins and RNA. 
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1 Introduction 
Intrinsically disordered proteins and regions (IDPs and IDRs) lack a stable 3-dimensional structure under 
physiological conditions in-vitro and form an ensemble of structural conformations [1-3]. They 
participate in a wide range of cellular functions and are common in nature, particularly in eukaryotic 
species [3-6]. Many computational methods are available for the prediction of intrinsic disorder from 
protein sequences [7-13]. These predictors were used to estimate the amount of disorder in various 
species and domains of life and to characterize cellular functions of disorder [5,14-20]. IDPs and IDRs 
were shown to be significantly involved in the protein-protein, protein-DNA and protein-RNA 
interactions [5,21-25,18,20,26,27]; for convenience, here we utilize the terms disordered RNA-, DNA-, 
and protein-binding to denote the RNA-, DNA-, and protein-binding located in IDRs. Prediction of 
residues that bind proteins, RNAs and DNAs has attracted strong research interest in the last decade 
[28-33]. However, these predictions address interactions annotated from crystal structures, which 
means that they are primarily focused on the structured (ordered) regions. 

A number of studies  that predict functions of IDPs and IDRs were also recently discussed [34] . A 
prediction of over one hundred Gene Ontology (GO) annotations associated with IDPs and IDRs was 
carried out by Khan et al. [35]. Moreover, several methods were developed for the prediction of 
disordered protein binding regions including alpha-MoRF-Pred [36], ANCHOR [37], MoRFpred [38], 
PepBindPred [39], MFSPSSMpred [40], DISOPRED3 [41], MoRFCHiBi [42], and fMoRFpred [43]. This 
implies that functions of IDRs and IDPs are predictable from protein sequences. Availability of hundreds 
of regions annotated as disordered RNA-, DNA-, and protein-binding in the DisProt database [44] and 
the lack of methods that predict disordered RNA- and DNA-binding motivated the development of a new 
predictor DisoRDPbind [45].  This is the first method that predicts multiple functions mediated by IDPs 
and IDRs. DisoRDPbind obtains favourable predictive performance for these three types of disordered 
binding regions. It is also very fast and can be applied to predict full genomes in a matter of hours using 
its convenient webserver (the largest human genome can be predicted in about 2 days) [45]. The 
DisoRDPbind’s webserver outputs three propensity scores for each input residue that quantify the 
likelihood for this residue to be involved in the disordered RNA-, DNA-, and protein-binding. We 
overview architecture of our method and provide details on how to use the webserver and how to 
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interpret the results. Finally, we use two case studies that involve analysis of RNA-, DNA- and protein-
binding proteins to illustrate how our method can be used to suggest localization of disordered RNA-, 
DNA- and protein-binding regions in protein sequences. 

2 Materials and Method 

2.1 Datasets 
We extracted 315, 114 and 36 proteins from the DisProt database [44] to develop three datasets: 
TRAINING, TEST114 and TEST36, respectively. Each dataset includes disordered regions that were 
annotated to bind RNAs, DNAs and proteins. The TRAINING dataset was used for empirical design of 
DisoRDPbind while the other two datasets were used to assess its predictive performance and compare 
it against other methods. Proteins in TEST114 were collected to share < 30% sequence similarity with 
proteins in TRAINING to allow for assessment of predictive performance on dissimilar proteins. The 
second test dataset, TEST36, includes new depositions to DisProt as compared with the proteins from 
TRAINING. These three datasets are available at http://biomine.ece.ualberta.ca/DisoRDPbind/. Ref. [45] 
provides further details.  

2.2 Architecture 
Recently, we developed the DisoRDPbind method to predict the disordered RNA-, DNA-, and protein-
binding residues in the input protein sequences. Our method is based on a runtime efficient four-layer 
design; see Figure 1. First, we represent the input protein using several structural and functional 
properties. Second, these properties are used to represent each residue in the input protein chain using 
a vector of numeric descriptors/features. Third, these features are inputted into a predictive model. 
Fourth, the outputs of the predictive model are merged with an alignment-based prediction to derive 
the final result. Following we provide a more detailed explanation. 

In layer 1, we represent each input protein sequence based on its amino acid (AA) composition, its 
sequence complexity generated by the SEG algorithm [46], intrinsic disorder predicted by IUPred 
(including IUPred L and IUPred S) [47], secondary structure predicted by PSIPRED [48], and 17 
physiochemical properties of amino acids (AAs) including hydrophobicity, net charge, and free energy. In 
layer 2, we use this information to compute a vector of features for each residue in the input protein 
chain and each predicted function. We utilized sliding window with different window size (WS) to obtain 
the numerical features for different binding events where WS = 55, 21, and 33 for disordered RNA-, 
DNA-, and protein-binding, respectively. We quantified the abovementioned putative sequence 
structural and functional characteristics, such as disorder, secondary structure, hydrophobicity, etc. in a 
window centered over the predicted residue by computing their averages and content values. These 
values represent local (in the sequence) bias that contributes towards the prediction of the residue in 
the middle of the window. Since the many features considered in this layer are redundant and/or 
irrelevant to the predicted functions, we performed an empirical feature selection for each function 
using the TRAINING dataset. Consequently, we selected a small sets of 11, 7 and 7 features for the 
prediction of disordered RNA-, DNA-, and protein-binding, respectively. In layer 3, for each residue in the 
input protein sequence we pass a given selected set of features into a logistic regression model for the 
corresponding binding event. This means that three regression-based models are used to find the 
putative disordered RNA-, DNA-, and protein-binding residues. We picked this type of model based on 
its popularity, short runtime and the ability to output a real-valued propensity. In the last layer 4, we 
merge the regression-based predictions with functional annotations found through sequence similarity 
to generate the final predictions. We utilize BLAST [49] to align the input sequence against a database of 
functionally annotated proteins (TRAINING dataset) and then we transfer the functional annotations for 
each input residue that was aligned to a functional residue in a sufficiently similar annotated protein. 
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The final predictions include three propensity scores for each residue in the input sequence that 
quantify its likelihood to be disordered RNA-, DNA-, and protein-binding residues, respectively; higher 
values of propensity correspond to a higher likelihood of binding. DisoRDPbind also provides a binary 
prediction for each function by using a threshold on a given putative propensity score; residues with 
propensities higher than the threshold are predicted as binding and the other residues are predicted as 
non-binding (see section 2.6). 

2.3 Predictive quality and runtime 
The predictive quality of our method was assessed in the original manuscript [45]. DisoRDPbind was 
shown to secure the area under the ROC curve (AUC) values between 0.62 and 0.72, depending on the 
benchmark dataset used (TEST114 and TEST36) and the disorder function that was assessed. The TP-rate 
(fraction of correctly predicted binding residues) of DisoRDPbind computed at the FP-rate (fraction of 
incorrectly predicted non-binding residues) of 0.1 is 0.27, 0.25, and 0.24 for the prediction of the 
disordered DNA-, protein-, and RNA-binding residues, respectively. These are reasonable levels of TP-
rate and AUC values, which were shown to be higher than the corresponding values of the closest 
alternatives (predictors of disordered protein-binding residues and predictors of ordered DNA- and RNA-
binding residues) [45]. Interestingly, predictions from DisoRDPbind complement predictions from the 
predictors of structured DNA- and RNA-binding residues (they are characterized by low correlation < 
0.3), while as expected they are similar to the outputs of methods that predict disordered protein-
binding residues (correlation > 0.5 with ANCHOR) [45]. Overall, these observations demonstrate that our 
method is relatively accurate and complements the other available methods.  

Using a modern desktop (Intel i7-950 CPU at 3.06GHz with 24GB or RAM), the runtime of DisoRDPbind 
for a single protein is between 0.3 seconds and 1 minute, depending on the chain length, and is 
characterized by a quadratic increase with the chain size [45]. An average size protein with about 200 
residues is predicted in 1 second (see Note 1). This includes the combined runtime of the prediction of 
the three binding events. To put that into perspective, the runtime to predict the entire human 
proteome is just over 40 hours on the abovementioned desktop computer, which means that 
DisoRDPbind can be used to predict full genomes. 

2.4 Webserver 
The webserver of DisoRDPbind was designed to be user-friendly and is freely available at 
http://biomine.ece.ualberta.ca/DisoRDPbind/. The end user only needs a modern web browser (Firefox, 
IE, and Chrome were tested) and internet connection to use the webserver.   

The main (start) page of the webserver is for the submission of the user’s query. It includes a text field 
where up to 5000 input protein sequences in FASTA format can be pasted and another text field for the 
e-mail of the user. For convenience, the server also provides an option to submit the input proteins in a 
FASTA-formatted file. The e-mail is required and is used to send notification when the predictions are 
completed. The notification provides a link to a summary page that explains the format of the outputs 
and the formatted text file with the predictions. 

The DisoRDPbind method uses other programs to generate its inputs. Specifically, our method generates 
the disorder profiles utilizing IUPred [47], predicts the secondary structure with the fast version of 
PSIPRED (without using PSI-BLAST) [48], obtains the information about low complexity regions with the 
SEG algorithm [46], and transfers the functional annotations based on the alignment generated by 
BLAST [49].  These methods are used in a fully automated manner by the scripts that implement the 
webserver. Once the user provides the sequences and the e-mail and hits the "Run DisoRDPbind!" 
button, the results are generated without further interaction with the webserver. 
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2.5 Running DisoRDPbind 
Three easy steps should be followed to use the DisoRDPbind webserver (the step numbers are 
highlighted in red in Figure 2): 

1. Copy and paste protein sequences formatted in the FASTA format into text field or upload 
FASTA-formatted file (an "Example" button may be used to see properly formatted example 
inputs) (see Notes 2 and 3). 

2. Provide e-mail address (required, see Note 4). The notification e-mail, including the hyperlinks 
to the results page and the downloadable outputs, will send to the user once the predictions are 
completed. 

3. Click "Run DisoRDPbind!" button to start the predictions. 

Note that the webserver generates predictions of RNA-, DNA-and protein-binding at the same time for 
each input protein sequence. Once the “Run DisoRDPbind!” button is clicked, the user’s web browser is 
redirected to another page that shows the current status of the prediction. The user’s query is added to 
a queue of predictions on the biomine server (this server also implements a few other methods) and the 
position in the queue is shown and updated. The prediction is executed when the query reaches the first 
position in the queue. After the prediction is completed the user’s web browser is automatically 
redirected to the page with the results and the notification e-mail with a link to this page is sent (see 
Notes 4 and 5). The prediction is completed and e-mail is sent even in the case when the user closes the 
web browser before the completion of the prediction.  

2.6 Results generated by DisoRDPbind 
This webpage with the results includes a hyperlink to the downloadable text file (red number 1 in Figure 
3) and the description of the format of this file (red number 2 in Figure 3). The text file, named 
DisoRDPbind.pred, is provided for download to the end user. This file includes the prediction of 
disordered RNA-, DNA-, and protein-binding residues for all submitted protein sequences. For each of 
the three types of binding we provide a binary prediction (1 for putative binding residues and 0 for 
putative non-binding residues) and a real-valued propensity (higher values indicates higher likelihood for 
binding) for each input residue. The results are organized in eight lines per protein where six lines 
provide prediction for the entire input sequence and two lines lists the residues from the input 
sequence and its name: 

• The first line lists the protein name (as provided in the user’s input) 
• The second line is the protein sequence where each letter identifies a residue and where a lower 

(upper) case indicates the residue was predicted to interact (not to interact) with RNA, DNA, or 
protein. This is based on the binary prediction across the three types of binding. 

• The third/fifth/seventh line provides the putative binary prediction of the RNA-binding/DNA-
binding/protein-binding residues (see Note 6) 

• The fourth/sixth/eighth line provides the putative propensity for the RNA-binding/DNA-
binding/protein-binding for each input residue. The values of the propensities are separated by 
commas, they range between 0 (lowest propensity) and 1 (highest propensity), and they are 
provided with the precision of 3 digits after the decimal point. 

The notification e-mail includes the hyperlinks to the page with the results (red number 1 in Figure 4) 
and to the downloadable outputs (red number 2 in Figure 4). The first hyperlink leads the user directly 
to the "DisoRDPbind Results Page" (Figure 3).  We also provide a unique job ID at the top of the e-mail. 
This ID can be used to trace a given prediction query. In case if the user encounters problems then (s)he 
should simply reply to the e-mail with a description of what is wrong making sure that the job ID is 
included. 
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3 Case studies 

3.1 Case 1. BRCA1 
BRCA1 is the breast cancer type 1 susceptibility protein which is known to play a number of important 
roles in controlling the development of breast cancer. The BRCA1 gene expression is dependent on the 
cell cycle, and the G1–S and the G2–M transition checkpoints are controlled by the BRCA1 protein [50]. 
However, major functions of BRCA1 are related to the repair of chromosomal damage and to the error-
free repair of DNA double-strand breaks [51]. In the norm, BRCA1 is involved in repair of the 
damaged DNA, or, if the DNA damage cannot be repaired, it initiates the cell destruction. The mutation-
induced decrease or loss of the BRCA1 functions results in the accumulation of the damaged DNA, 
increasing the probability of the development of breast cancer [51]. Of the 1863 amino acids of 
BRCA1, only ~20% terminally located residues are involved in the formation of structured domains 
(residues 1-169 and 1646-1863 are folded into the RNG and tandem BRCT domains, respectively), 
whereas a long central region (residues 170-1645) is mostly disordered, acting as a scaffold that 
determines the exceptional binding promiscuity of BRCA1 [52]. Among known interacting partners of 
the central region of BRCA1 are several proteins involved in regulation of various biological processes. 
They include c-Myc, which is a proto-oncogene that is implicated in tumorigenesis, embryonic 
development and apoptosis, which binds to BRCA1 at residues 173–303 and 433–511 [53]; 
retinoblastoma protein (pRB) that is a tumor suppressor protein dysfunctional in several tumors 
interacts with residues 304–394 of BRCA1 [54]; p53, which is known to acts as the guardian of the 
genome and a tumor suppressor [55] and binds BRCA1 at residues 224–500 [56]; Rad50, which forms a 
complex with Mre11 and p95/nibrin that acts in meiotic recombination, homologous recombination, 
non-homologous end joining, the DNA damage response, and telomere maintenance [57], and that 
binds BRCA1 at residues 341–748 [58]; Rad51, which is a member of a protein family that mediates DNA 
strand–exchange functions related to normal recombination [59], and which interacts with the residues 
758–1064 of BRCA1 [60]; FANCA, a member of the proteins related to Fanconi anemia that form a 
nuclear complex [61], which binds BRCA1 at residues 740–1083 [62]; whereas JunB, a transcription 
factor involved in regulation of the gene activity following the primary growth factor response interacts 
with BRCA1 at residues 1343–1440 [63]. Finally, residues 452–1079 of human BRCA1 are known to 
interact with DNA [64].  

Results of the DisoRDPbind analysis of human BRCA1 (UniProt ID: P38398) are shown in Figure 5A.  We 
observe that the putative propensities clearly illustrate that this protein has a number of identifiable 
disordered protein- and DNA-binding sites that are located in the intrinsically disordered region of this 
protein. The entire long central region is predicted as protein binding, which is in agreement with the 
annotated native binding sites that are discussed in the previous paragraph. The known DNA-binding 
region, which is shown as a blue horizontal line at the bottom of Figure 5A also lines up with the higher 
values of the predicted propensities for the DNA binding; we note that the DisoRDPbind webserver 
predicts residues with the propensities for DNA binding ≥ 0.245 as DNA binding (see Note 6), and such 
residues are fairly abundant in the native DNA-binding region. 

3.2 Case 2. Yeast 60S ribosomal protein L4 
Every living cell contains ribosomes, which are ancient ribonucleoprotein complexes serving as 
molecular machines for protein biosynthesis. Ribosomes are large (with the molecular mass of at least 
2.5 MDa) macromolecular complexes composed of one or more ribosomal RNA molecules and a variety 
of proteins. Being the major force in the cellular protein production, these highly specialized machines 
have two major components known as the small and the large ribosomal subunits. These components 
have different roles in protein biosynthesis, with the small ribosomal subunit being responsible for 
“reading” the mRNA and with the large ribosomal subunit catalyzing the peptide bond formation.  
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Although overall function and organization of ribosomes is similar between different organisms, 
prokaryotic and eukaryotic ribosomes have significant differences. For example, in prokaryotes, 
ribosomes are composed of ~65% of rRNA and 35% of ribosomal proteins, whereas in eukaryotic 
ribosomes, the rRNA : protein ratio is close to 1. Furthermore, in prokaryotic ribosomes, small (30S) 
subunit includes 16S rRNA and 21 ribosomal proteins, whereas large (50S) subunit contains 5S and 23S 
rRNA molecules and 31 proteins [65]. In the 80S eukaryotic ribosome, the small 40S subunit contains 
18S rRNA and 33 proteins, and the large 60S subunit is composed of 3 rRNA molecules (5S, 28S, and 
5.8S) and 46 proteins [66]. Proteins derived from the small and large ribosomal subunits are named S1, 
S2, S3... and L1, L2, L3..., respectively. Their high conservation during evolution suggests that they have 
critical roles in ribosome biogenesis or functions of the mature ribosome. The ribosomal proteins are 
known to be enriched in intrinsic disorder [18] which is why they are relevant for our case study. 

Since ribosomal proteins are abundant in every cell, and since they can interact with nucleic acids and 
other proteins, these RNA-binding proteins are known to be recruited to carry out many extra-ribosomal 
or auxiliary functions; i.e., they serve as moonlighting proteins [67-70]. It has been pointed out that the 
ribosomal proteins might have over 30 extra-ribosomal functions including regulation of the gene-
specific control of transcription, transcript-specific translational control, and surveillance of ribosome 
synthesis and they could be involved in induction of cell-cycle arrest or apoptosis and in regulation of 
normal development and cancer [67,69,70]. One of the characteristic examples of such moonlighting 
ribosomal proteins is given by the protein L4. The L4 protein is annotated to have 24% of disordered 
residues in the MobiDB database [71] which are localized in the several regions including residues 1-11, 
52-91, 189-196, 300-313, and at the C-terminus starting at the residue 341. This is also in agreement 
with the D2P2 database [72] that lists residues 1-12, 72-81, 193-194, 306-311, and 347-351 as 
disordered. This protein is known to both inhibit [73] and attenuate [74] the translation of the S10 
operon, which, in E.coli, encodes eleven different ribosomal proteins, one of which is L4 itself [75]. Also, 
L4 can bind to RNase E (which is a part of the degradosome that plays an important role in mRNA 
turnover as well as in the processing and decay of non-coding RNAs), modulate activity of this crucial 
nuclease and thereby regulate mRNA composition in response to stress [76]. Curiously, eukaryotic L4 
seems to be also engaged in the extra-ribosomal functions. In fact, recently it has been pointed out that 
this protein plays an important role in the ribosome biogenesis, since the deletion of the universally 
conserved internal loop of yeast L4 resulted in severe impairment of the growth and reduction of the 
levels of large ribosomal subunits [77], and since the eukaryote-specific acidic C-terminal extension 
(residues 265-362) is involved in several distinct interactions with the 60S surface needed for the 
hierarchical ribosome assembly [78]. Therefore, the internal loop (~60 residues) is known to be involved 
in interaction with the chaperone Acl4 involved in the assembly of the mature ribosome and later binds 
to the cognate nascent rRNA site [78]. In fact, in mature ribosome, the aforementioned loop (residues 
46-111) protrudes from the globular folded core of L4 and deeply projects into the 25S rRNA core, lining 
a peptide exit tunnel of the mature ribosome [78].  

Figure 5B represents results of the DisoRDPbind-based analysis of the interactions of yeast 60S 
ribosomal protein L4 (UniProt ID: P10664) with RNA (red lines) and proteins (green lines). We also 
annotate the native RNA-binding regions (red horizontal line at the bottom of Figure 5B) which were 
collected from the protein-ligand binding database BioLiP [79]; they are in agreement with the 
discussion in the above paragraph. We observe that the two large peaks in the putative propensities for 
disordered RNA binding align with the localization of the native RNA-binding regions; the DisoRDPbind 
webserver predicts residues with the propensities for RNA binding ≥ 0.151 as RNA binding (see Note 6). 
Also, both MobiDB and D2P2 suggest that these regions are intrinsically disordered. Although the 
predicted propensities for the protein-binding are below a cut-off value (the DisoRDPbind webserver 
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predicts residues with the propensities for protein binding ≥ 0.799 as protein binding; see Note 6), the 
N-terminus is predicted with relatively high values that suggest potential for disordered protein-binding.  

Overall, we conclude that both case studies demonstrate that our webserver generates predictions that 
provide useful clues to find native disordered DNA-, RNA- and protein-binding regions. 

4 Notes 
1. The runtime in milliseconds for a given sequence with n residues can be estimated using the 

following formula, time = 0.0077*n2 + 0.9028*n + 301.06. This formula was estimated based on 
empirical data discussed in [45]. Given n = 200, time = 789.6 [milliseconds] = 0.79 [seconds]. 
Given n = 1000, time = 8903.7 [milliseconds] = 8.9 [second]. This formula can be used to 
estimate a total runtime for a large set of proteins since predictions on the webserver are run 
serially. 

2. Server accepts between 1 and 5000 protein sequences. The user must submit their sequence(s) 
in FASTA format to guarantee they will receive the correct response from DisoRDPbind 
webserver. This format is described at https://en.wikipedia.org/wiki/FASTA_format 

3. Due to a limitation of one of the methods that is used to generate DisoRDPbind sequence 
features (i.e., secondary structure profile predicted by PSIPRED), the webserver cannot process 
very long (>10000 residues) protein chains. 

4. Although DisoRDPbind can predict an average size protein with about 200 residues within 1 
second, it may take hours to process the prediction for thousands of (up to 5000) protein 
sequences. Keeping the web browser window open this long could be prohibitive. Therefore, we 
require the user to provide an e-mail address where (s)he will be notified when the results are 
available and how to access these results. 

5. User should store the link to the results for future reference. We store the results of the 
prediction for at least 3 months under the provided link. Although the same link that is shown in 
the web browser window is sent via e-mail, we advise users to copy the link from the web 
browser. This is in case if an invalid e-mail address was entered and thus no e-mail will reach the 
user. 

6. The binary prediction is generated from the predicted propensity scores using a threshold, i.e., 
residues with the propensity higher than the threshold are assigned with the binary value 1 and 
the remaining residues are assigned with 0. These thresholds equal 0.245, 0.151, and 0.799 for 
the predictions of the disordered DNA-, RNA- and protein-binding, respectively. They 
correspond to the FP-rate (fraction of incorrectly predicted non-binding residues) of 0.1 that 
was estimated using the TRAINING dataset. This means that the user should expect that among 
the predicted binding residues there are about 10% of the non-binding residues. 
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Figure Captions 
Figure 1. The architecture of the DisoRDPbind method. The four layers are denoted by the 
corresponding numbers shown inside circles. We use term “composition” to denote the amino acid 
composition. The SEG algorithm is used to generate the sequence complexity and PSIPRED and IUPred 
L(S) are utilized to predict the profiles of secondary structure and intrinsic disorder, respectively. The “17 
AA indices” denote the physiochemical properties of amino acids (AAs) including their hydrophobicity, 
net charge, and free energy. 

Figure 2.  Screenshot of DisoRDPbind input form on the main webserver page. The red numbers 
annotate the three steps that must be followed to run the predictions. 

Figure 3. Screenshot of page with the results generated by DisoRDPbind. The red numbers indicate the 
two main parts of this page. 

Figure 4. Screenshot of the notification e-mail. The red numbers indicate the two main parts of this e-
mail. 

Figure 5. Predictions generated by DisoRDPbind for human BRCA1 protein (UniProt ID: P38398) (panel A) 
and yeast 60S ribosomal protein L4 (UniProt ID: P10664) (panel B). The putative propensities for DNA 
binding in panel A and RNA binding in panel B are shown using blue and red line, respectively; and 
putative propensities for protein binding are shown using green lines. The native annotations are shown 
using horizontal lines that lie on the x-axis.  
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Please follow the three steps below to make predictions:

1. Upload a file with protein sequences, or paste them into text area

Server accepts up to 5000 (FASTA FORMATED) protein sequences.
Either upload a file or enter each protein in a new line in the following text field (see HELP for details): 

no file selected

2. Provide your e-mail address (required): 

Please provide your e-mail address to be notified when results are ready.

3. Predict: 

no 

Example Reset sequence(s)

Run DisoRDPbind!
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http://biomine-ws.ece.ualberta.ca/webresults/DisoRDPbind/20151005020757/results.html[11/8/2015 2:35:06 PM]

DISORDPBIND RESULTS PAGE

Results for DISORDPBIND webserver.

Use this link to download the results as a text file: DISORDPBIND.PRED

Format of Results

Prediction for each protein is given in 8 lines

line 1: >protein name 
line 2: protein sequence - 1-letter encoded protein sequence, where the lower (upper) case indicates the residue was predicted to interact
(not to interact) with RNA/DNA/protein 
line 3: RNA-binding residues - 1 represents the putative disordered RNA-binding residues; 0 otherwise 
line 4: RNA-binding propensity scores separated by comma 
line 5: DNA-binding residues - 1 represents the putative disordered DNA-binding residues; 0 otherwise 
line 6: DNA-binding propensity scores separated by comma 
line 7: protein-binding residues - 1 represents the putative disordered protein-binding residues; 0 otherwise 
line 8: protein-binding propensity scores separated by comma 
Note: The propensity score, which indicates the likelihood of a residue for the RNA-, DNA-, and/or protein-binding located in a disordered
region, is predicted for each residue. 

Visit biomine lab web page

HTTP://BIOMINE.ECE.UALBERTA.CA

http://biomine.ece.ualberta.ca/DisoRDPbind/
http://biomine-ws.ece.ualberta.ca/webresults/DisoRDPbind/20151005020757/DisoRDPbind.pred
http://biomine.ece.ualberta.ca/
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Predictions for DisoRDPbind job id: 20151005020757 are ready.

 

You can find the results for this job at:

http://biomine-ws.ece.ualberta.ca/webresults/DisoRDPbind/20151005020757/results.html

The text file can be found here:

http://biomine-ws.ece.ualberta.ca/webresults/DisoRDPbind/20151005020757/DisoRDPbind.pred

 

Upon the usage the users are requested to use the following citations:

Peng Z., Kurgan L. High-throughput prediction of RNA, DNA and protein binding regions mediated by

intrinsic disorder. Nucleic Acids Res. doi:10.1093/nar/gkv585, 2015.

 

The webserver can be found here:

http://biomine.ece.ualberta.ca/DisoRDPbind/

 

Thank you for using our webserver,

Biomine group
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