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Summary

RNA chaperone activity is one of the many functions of intrinsically disordered regions (IDRs). IDRs
function without the prerequisite of a stable structure. Instead, their functions arise from structural
ensembles. A common theme in IDR function is molecular recognition; IDRs mediate interactions with
other proteins, RNA, or DNA. Many computational methods are available to predicted IDRs from protein
sequence, but relatively few are available for predicting IDR functions. Available methods focus on
protein-protein interactions. DisoRDPbind was developed to predict several protein functions including
interactions with RNA. This method is available as a user-friendly web interface, located at
http://biomine.cs.vcu.edu/servers/DisoRDPbind/. The development and architecture of DisoRDPbind is
briefly presented and its accuracy relative to other RNA binding residue predictors is discussed. We
explain usage of the web interface in detail and provide an example of prediction results and
interpretation. While DisoRDPbind does not identify RNA chaperones directly, we provide a case study
of an RNA chaperone, HCV core protein, as an example of the method’s utility in the study of RNA
chaperones.

Keywords
Intrinsic disorder; protein-RNA interactions; intrinsically disordered regions; molecular recognition.

1. Introduction

RNA chaperone activity is one of the many functions of intrinsically disordered proteins (IDPs) and
intrinsically disordered regions (IDRs) [1]. The sequences of IDPs and IDRs are self-insufficient to form a
stably folded structure in isolation and instead exist as structural ensembles, where structures vary over
time and over population [2-4]. Available sequence analysis methods accurately predict the locations of
IDRs from protein sequence [5-15]. These methods estimate that IDPs and IDRs are prevalent in
proteomes [16-23], particularly in Eukaryotes where 25-40% of their proteins contain significant IDRs
[16,21]. Despite lack of stable structure, IDPs and IDRs perform many and varied biological functions [24-
26,21]. Among their functions, IDPs play an important role in mediating molecular interactions by
binding to proteins and nucleic acids [21,27-37]. In particular, many IDPs are known to function as RNA
chaperones [38,39]. While the potential for IDRs to recognize RNA is well known, predicting novel RNA
binding IDPs from sequence using many of the existing tools [40-48] is problematic; the majority of
these tools have been developed for structured proteins interacting with RNA.

While no specific IDP chaperone prediction method is available to date, many studies have
demonstrated that IDP function can be predicted from protein sequence [49-51,15,8,52-55]. Until
recently, most studies focused on the interaction between IDPs and other proteins, and several methods



are available for prediction of protein recognition regions within IDRs [8]. Less attention has been paid
to other types of IDP functions, including interaction with DNA and RNA. To fill this gap, we developed
DisoRDPbind, a method that simultaneously predicts protein, DNA, and RNA interacting regions within
IDRs [56,57]. This method predicts each type of function separately, allowing identification of the type of
interaction partner for each predicted region. Additionally, DisoRDPbind predicts interactions at residue-
level resolution, allowing identification of the protein regions responsible for each prediction type.
Performance of the method is significantly better than other available methods for RNA interaction
region predicted when applied to IDPs [56].

While not specific to RNA chaperones, DisoRDPbind is a useful tool for identification of novel intrinsically
disordered RNA chaperones when combined with additional function information. As an example, we
examine the Hepatitis C virus (HCV) core protein. This protein is multifunctional, playing a structural role
in capsid formation and RNA organization [58], as well as serving as an RNA chaperone [59,60]. The RNA
chaperone activity is located in the intrinsically disordered N-terminal region of HCV core protein [59]
(Figure 1). The main idea behind methods such as DisoRDPbind is to predict these disordered RNA
binding regions directly from the amino acid sequence. We demonstrate that the residue-level
DisoRDPbind predictions correctly identify residues in this region of the input protein chain as
intrinsically disordered and RNA binding (see Case Study).

The DisoRDPbind method is publicly available as a user-friendly webserver. Further, it was designed as a
high-throughput method that can predicted entire proteomes in a matter of hours. Here we briefly
review the DisoRDPbind method and provide detailed instructions on usage of its web interface. Finally,

we discuss the case study of DisoRDPbind applied to an HCV core protein, an intrinsically disordered
RNA chaperone.
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Figure 1. Sequence of HCV core protein, and annotated IDR, RNA chaperone region, and RNA binding
region.

2. Materials

DisoRDPbind infers the function of novel sequences through use of historical protein functional data.
Available historical data were broken into two sequence dis-similar subsets: the training dataset and the
testing dataset. The training dataset is used to build the models DisoRDPbind uses to infer function in
novel sequences. The testing data is used to assess the performance of the final model on novel data.
Estimation of model accuracy aids in interpreting prediction results for novel proteins; it informs how
many correct and incorrect predictions are typically expected for an average protein sequence.



2.1. Datasets

Training and testing datasets for development of DisoRDPbind [56] were extracted from the DisProt
database [61], a database of IDPs including function annotations. IDPs from DisProt were clustered at
30% sequence identity and clusters were assigned to either the training or testing set. This procedure is
intended to avoid over estimation of method performance by ensuring that orthologous proteins do not
appear in both the training and testing sets. It also demonstrates whether DisoRDPbind can make
correct predictions in the absence of sequence similarity, i.e., when sequence alignment typically would
not produce accurate results. The training dataset included 315 proteins. Two test sets were used, one
with 114 proteins, and another of 36 proteins that consisted of only recent additions to the DisProt
database. These datasets are available at http://biomine.ece.ualberta.ca/DisoRDPhind/.

@Generate sequence (PrOtein Sequence]
profile

~

(" Composition  MSDK..MAE..EKF..KSKL.. TETQEKNPLPSK..I|E..EQ AGES
Sequence complexity  HHHH..HHH. .HHH. .HHHH. .HHHHHHHHHHHH. . HH. .HH. . HHHH

Secondary structure  cccc..HHH. .HHH. HHHH. HHHHCCCCCCCH. HH. .HH. HCCC
Intrinsic disorder ~ 1111..111..111..1111..111111111111..31..11..1111
.- - 1111..101..111..1111..212111101011..21..11..0011 Database of proteins
sequence properties| .. .
3124..303..344..4142..131334202014..73..33..0031 with annotated RNA
\_ Window Size = 55 . binding residues
@ Compute features
@ Sequence similarity
[ 11 features relevant to RNA binding predictions] search

@Prediction

[ Logistic regression model ]

BLAST
Annotation transfer from most and
sufficiently similar sequence

Merge model predictions and
similarity based annotations

Per-residue RNA binding predictions:
Binary binding predictions
Binding propensities

Figure 2. Partial architecture of DisoRDPbind, focused on the RNA binding portion of method. Each stage
referenced in the text is indicated with a number in a yellow circle.

2.2. Architecture

The architecture of DisoRDPbind was designed to allow for high-throughput predictions, enabling
practical whole proteome IDP function prediction. The architecture has five primary stages (Figure 2),
where here we focus on the RNA-binding prediction portion of DisoRDPbind, see Peng et al for full



architecture details [56]. Stage 1 develops a profile representation of the protein sequence that covers
several relevant sequence properties. Stage 2 extracts a processed set of features that are computed
from the profile. These features numerically quantify information that is relevant for prediction, where
independent feature sets are selected for each type of functional region. Stage 3 uses these features as
input to a trained logistic regression model to produce model-based predictions. Stage 4 is done in
parallel to stages 1 through 3, where the input sequence is compared to a database of proteins with
annotated RNA binding function. If a sufficiently similar sequence is found in the database, annotations
are transferred to the input protein at aligned positions in the sequence. Finally, stage 5 merges model-
based predictions with similarity-based predictions to give the final DisoRDPbind prediction.

The feature representation of each sequence (Figure 2, stage 1) involves several calculated features.
Intrinsic disorder predictions are made using the IUPred algorithm [5], and low complexity regions —a
sequence property correlated with IDRs — are identified using the SEG algorithm [62]. Additional
features include residue compositions, secondary structure predictions made with the PSIPRED
algorithm [63], and 17 selected amino acid scales from the AAIndex database [64]. Amino acid scales
guantify physiochemical properties such as hydrophobicity, net charge, and folding free energy. Sliding
windows were applied to average each input features, which transforms residue predictions into local
sequence averages, where a window size of 55 residues was used for RNA-binding prediction.
Windowed averages are used to make predictions for the center residue of the window. Empirical
feature selection (Figure 2, stage 2) was used to remove uninformative and redundant features prior to
model training or prediction. A separate set of features was selected empirically for each function
prediction method. A small set of 11 features was found to give good results for RNA-binding prediction.
Each selected feature set is used in a separate logistic regression model for each function type (Figure 2,
stage 3). Logistic regression models are robust to overfitting, are extremely fast, and provide a
propensity in the range of 0 to 1 for each residue in a protein. The overall method provides three
separate propensity scores, one of which indicates propensity of a residue to be intrinsically disordered
and interact with RNA. The final stage of DisoRDPbind merges these predicted propensities with
functional annotations found through sequence similarity with the training dataset (Figure 2, stage 4).
Input sequences are compared with the training dataset using BLAST [65]. The alignments produced by
BLAST are used to transfer functional annotations from training set protein sequences to input protein
sequences.

DisoRDPbind output consists of the RNA-, DNA-, and protein-binding propensity scores, as well as binary
classification of each residue as RNA-, DNA-, and protein-binding based on a model specific threshold.
The thresholds were selected to produce predictions with a low (10%) false positive rate on the training
dataset [56]. Residues with propensity scores that exceed the model specific threshold are then
classified as either RNA-, DNA-, or protein-binding. Greater propensity scores are indicative of a higher
likelihood of binding to a particular molecule type (see Note 1).

2.3. Predictive Quality and Runtime

Prediction quality of DisoRDPbind for RNA-binding residues of IDPs is significantly better than other
computational predictors of RNA binding residues that were not specifically designed for IDPs, including
BindN+ [41] and RNABindR [46]. The area-under-the-curve (AUC) metric is a threshold agnostic measure
of predictive performance. DisoRDPbind RNA-binding predictions produced AUC values around 0.67,
depending on the specific test set used, which was significantly better than other methods tested, with
AUC values between 0.54 and 0.64 [56]. The other methods tested were developed from structured
RNA-binding proteins, whereas DisoRDPbind was developed form intrinsically disordered proteins,
which suggests that these predictions may be complementary. A comparison of these methods indicates
that this is in fact the case; DisoRDPbind is poorly correlated with other methods of RNA-binding



prediction with a correlation coefficient less than 0.3. This demonstrates that DisoRDPbind is not only
accurate, but also complementary to existing RNA-binding prediction methods. This was also recently
confirmed in a study of putative RNA-binding protein in the human proteome [37].

The runtime of DisoRDPbind increases quadratically with protein length (see Note 2), ranging between a
fraction of a second to several seconds per protein on a modern computer system [56]. This runtime
includes predictions of DNA, RNA, and protein interactions. This efficient runtime performance makes
proteome scale predictions practical. For example, predictions for the entire human proteome can be
obtained in around 40 hours on a modern computer system.

Please follow the three steps below to make predictions:

1. Upload a file with protein sequences, or paste them into text area

Server accepts up to 5000 (FASTA formated) protein sequences. Either upload a file or enter each protein in a new line in the following text field
(see Help for details):
@ Choose afile | No file chosen

@)

Example | Reset sequence(s)

2. Provide your e-mail address (required)

Please provide your e-mail address to be notified when results are ready.

@

3. Predict:

Click button to launch prediction

@ Run DisoRDPbind

Figure 3. The DisoRDPbind prediction submission form. Red numbers indicate the three necessary steps
to submit sequences for predictions, discussed in the text.

2.4. Webserver

The user-friendly web interface for DisoRDPbind can be accessed at
http://biomine.ece.ualberta.ca/DisoRDPbind/. The only system requirements for submitting sequences
for prediction are: an internet connection and a modern web browser. The interface has been tested
with Firefox, Internet Explorer, and Chrome.

Prediction submissions are made at the main page for DisoRDPbind. This page will accept up to 5000
protein sequences in FASTA format, submitted as either a file upload or with a text entry field.
Notification of completed predictions are provided by email, so an email address is required for
submission of sequences for prediction. Notifications provide a link to prediction results and an
explanation of result file format.



Once sequences are submitted, the webserver runs all programs necessary to make DisoRDPbind
predictions. Disorder predictions are made with IUPred [5], secondary structure predictions are made
with PSIPRED (in single sequence mode) [63], low complexity regions are identified with the SEG method
[62], and annotation transfer is made with BLAST [65]. There are no required options for running
DisoRDPbind, simply supply sequences for prediction, enter an email address, and click the “Run
DisRDPbind” button. The webserver will then run all required programs and send a notification to the
supplied email address when predictions are completed.

DisoRDPbind results page

Pbind webserver.

Results for Diso

Use this link to download the results as a text file: results.txt @

Format of Results@
Prediction for each protein is given in 8 lines

o line 1: =protein name

o line 2: protein sequence - 1-letter encoded protein sequence, where the lower (upper) case indicates the residue was predicted to interact (not to
interact) with RNA/DNA/protein

o line 3: RNA-binding residues - 1 represents the putative disordered RNA-binding residues; 0 otherwise

o line 4: RNA-binding propensity scores separated by comma

o line 5: DNA-binding residues - 1 represents the putative disordered DNA-binding residues; 0 otherwise

o line 6 DNA-binding propensity scores separated by comma

o line 7: protein-binding residues - 1 represents the putative disordered protein-binding residues; 0 otherwise

o line 8: protein-binding propensity scores separated by comma

Note: The propensity score, which indicates the likelihood of a residue for the RNA-, DNA-, and/or protein-binding located in a disordered region, is
predicted for each residue.

Visit biomine lab web page

http://biomine.cs.vcu.edu

Figure 4. The DisoRDPbind prediction results page. Red numbers indicate important features of this
page, discussed in the text.

3. Methods

3.1. Running DisoRDPbind
There are three steps to submit sequences for prediction to the DisoRDPbind server (Figure 3, labels
la/b, 2, and 3):

1. Provide FASTA formatted sequences (see Note 3) for prediction using 1 a or b, depending on the
desired submission method. Clicking the “Reset sequence(s)” button below 1b will clear both
submission options. There are limits to both the number of sequences (see Note 4) and
maximum length of sequences (see Note 5) submitted for prediction.

a. Upload a file of FASTA formatted sequences.

b. Provide FASTA formatted sequences as text. This can be done using the copy and paste
function of your operating system; copy from a local file and paste to the text field. For
an example of properly formatted sequences, click the “Example” button located below
the text field.



2. Provide an email address (see Note 6). This email address is only used to send notification of
completed prediction results; you will receive only one notification email per submission.
3. Click “Run DisoRDPbind” to submit sequences and run predictions.

Clicking “Run DisoRDPbind” submit will take the user to a status page, reporting on the current state of
the submitted prediction. Submissions are entered into the webservers queue system and the status
page will report the current position in the queue and when predictions on the submission have begun.
After predictions have completed, the status page will redirect to the prediction results page, and an
email will be sent to the notification email address provided. There is no need to keep the status page
open while predictions are pending, a notification email is always sent on prediction completion.

3.2. Results Generated by DisoRDPbind

The results page can be reached by leaving a browser open to the status page, or following the link
provided in the results email. The results page includes a link to a text file ‘results.txt’ with prediction
results (Figure 4, label 1) and a description of the result file format (Figure 4, label 2). The result file
contains RNA-, DNA-, and protein-interaction prediction results for each of the submitted protein
sequences. Prediction results include both interaction propensities, ranging from 0 for low propensity
and 1 for high propensity, and binary interaction predictions (see Note 7), 0 for non-interacting and 1 for
interacting, for each of the three interaction types. Each sequence is represented by eight lines in the
results file, where the first 4 are relevant for RNA-interaction prediction:

1. The protein name taken from the FASTA header of each sequence.

2. The protein sequence with interacting residues encoded with character case; lower case
residues are predicted to be in intrinsically disordered regions that interact with DNA, RNA,
and/or protein and upper case residues are predicted not to be in intrinsically disordered
regions or to not interact with DNA, RNA, or protein.

3. RNA-interaction binary predictions, either 1 for interaction or 0 for no interaction.

4. RNA-interaction propensity, ranging between 1 for high interaction propensity to 0 for low
interaction propensity.

Predictions for DisoRDPbind job id: XXEDOEOODOEXXXY are ready.
Upon the usage the users are requested to use the following citation(s):

Peng Z, Kurgan L&, 2015. High-throughput prediction of RHNA, DNA and protein binding

regions mediated by intrinsic disorder. Nucleic Acids BResearch, 43(18): e121.
You can find the results for this job at:
http://biomine.cs.vou.edu/webresults/Di=soRDPhind / 300000000000000 /results . html @

The text file can be found here:
http://biomine.c=s.vou.edu/webresults/Di=soRDPbind  300000000000NN fresults . Xt (:)

The webserver can be found here: http://biomine.cs.vcu.edu/servers/DisoRDPbind/

Thank you for using our webserver,
Biomine group

Figure 5. The DisoRDPbind notification email. The email provides links, indicated with red numbers, to
prediction results, discussed in the text.



When prediction results have been completed by the server, a notification email (Figure 5) is sent to the
email address provided during sequence submission. The email notification contains a link to the results
page (Figure 5, label 1) and a direct link to the results text file (Figure 5, label 2). Each job has a unique
numerical identifier (Figure 5, “XXXXXXXXXXXXXX") that is given at the top of the notification email and
is used in links to identify each submission (see Note 8). In the case of issues with a prediction
submission, the prediction identification number is used to trace the corresponding submission.
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Figure 6. Annotated regions and prediction results for HCV core protein. Annotated regions are an IDR,
know RNA binding region, and sufficient RNA chaperone region. DisoRDPbind RNA binding prediction
results are shown both as binary (red regions indicate predicted RNA binding residues) and propensity
per-residue. The VSL2B prediction of intrinsic disorder is also shown as both a binary prediction (green
regions indicate predicted IDRs) and a propensity score, where residues with values greater than 0.5 are
predicted to be disordered.

3.3. Case Study

Flaviviridae are a group of single strand RNA, enveloped viruses that infect mammals, including humans.
This group includes HCV, which chronically infects up to 130-170 million people world-wide resulting in
over 350,000 deaths annually [66]. The core protein of Flaviviridae serves as both a capsid protein and
as an RNA chaperone [59]. The proteomes of Flaviviridae are encoded as a polyprotein, where the core
protein is located at or near the extreme N-terminus and is released by proteolysis [58]. The core



protein of HCV is characterized by a basic N-terminus and hydrophobic C-terminus. While the domain
organization of Flaviviridae may differ, they are generally characterized by the presence of a basic
region. These basic regions have been shown to be intrinsically disordered by circular dichroism and to
carry RNA binding activity. A shorter N-terminal region has been shown to be sufficient for RNA
chaperone activity by base-pairing assays [59]. The intrinsically disordered, RNA binding, and chaperone
regions are shown at the top of Figure 6. We note that this figure was created using a specialized
graphical software package. DisoRDPbind’s users have access to the corresponding text-based output
that is summarized in Figure 4.

Application of DisoRDPbind to HCV core protein demonstrates good agreement between the HCV core
RNA binding region and predicted RNA binding residues (middle of the Figure 6). RNA binding propensity
values for this protein range 0.006 to 0.372, with nearly all of the highest scores located in the known
RNA binding region. These propensity values are used to obtain a binary prediction — either RNA binding
or non-RNA binding — for each residue in the protein by application of a threshold of 0.151. This
threshold was select to balance identification of novel binding residues against spurious predictions
(Note 7). DisoRDPbind predicts residues throughout the known RNA binding region to interact with RNA.
The predicted residues include nearly all of the region known to have RNA chaperone function. Residues
not predicted to be RNA binding by DisoRDPbind are primarily located at the extremes of the defined
RNA binding region. This suggests the hypothesis that the necessary and sufficient RNA binding region
could be the shorter region suggested by DisoRDPbind, which could be tested experimentally.

Disorder predictions for HCV core protein performed with the VSL2b method [7] also agree well with the
characterized disordered region (bottom of Figure 6). Disordered propensity scores are converted to
binary disorder predictions — either disorder or structured — for each residue of a protein in the same
manner as DisoRDPbind, but with a threshold value of 0.5. While disorder predictions give an accurate
estimation of the location of IDRs and structured regions of a protein, they do not carry a direct
indication of protein function. For function prediction, specialized prediction methods, like DisoRDPbind,
can be used to decompose IDR into functional regions.

4. Notes

1. Inthe analysis of individual proteins, it may be useful to examine propensity scores in addition to binary
predictions. Elevated propensity scores that do not exceed the prediction threshold (and consequently
which do not result in the binary prediction of binding) may be indicative of function when combined with
other data. The threshold were originally selected to ensure low (10%) false positive rate on the training
dataset, resulting in a conservative set of binary predictions of binding. Thus, high propensity scores
suggest that the corresponding residues have elevated likelihood for binding, however, the user should
expect higher levels of false positives among these predictions.

2. A formula for estimating the run time in milliseconds of DisoRDPbind for a given sequence was
determined to be [56]:

0.007n% + 0.9028n + 301.06

where n is the number of amino acids in the protein. For n = 200, the estimate is 0.79 sec, and forn =
1000, the estimate is 8.9 secs. Predictions for proteins for each webserver submission are run serially, so
applying the above formula to each sequence in the submission and taking the sum will provide a run
time estimate.

3. The FASTA format is described at https://en.wikipedia.org/wiki/FASTA format. Briefly, the format consists
of a series of sequence label lines, beginning with “>”, followed by the sequence beginning on the next
line.




4. Up to 5000 FASTA formatted sequences can be submitted at one time to the web interface. Submission
sizes exceeding this limit will result in an error notification from the server and no predictions will be run
by the server. For submission of more than 5000 sequences, it will be necessary to break the sequences
into multiple submissions each with 5000 or fewer sequences.

5. The programs used to generate predictor inputs limit the maximum length of protein sequences
submitted to the webserver. Submitted sequences should be limited to fewer than 10,000 residues.

6. Although single sequence predictions can be made in as little as a fraction of a second, prediction of 5000
sequences will typically require several hours. Rather than requiring an active browser connection,
notification of completed predictions are provided via email. The email message will contain instruction
on how to access prediction results.

7. Binary predictions are directly related to propensity scores; propensities greater than the predictor-
specific threshold are classified as interacting (binary value of 1) and propensities less than the same
threshold are classified as non-interacting (binary value of 0). For RNA binding prediction, the threshold is
set at a propensity of 0.151. This threshold was selected to give a 10% false positive rate on the training
dataset.

8. Please save this email or included links. Predictions will be accessible via these links for at least 3 months
after prediction. It is also recommend to save the status page URL, which can be used in the case of a typo
in notification email address resulting in no notification email receipt.
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