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ABSTRACT 

Computational prediction of intrinsically disordered proteins (IDPs) is a mature research field. 
These methods predict disordered residues and regions in an input protein chain. Over 60 
predictors of IDPs were developed so far. This unit defines computational prediction of intrinsic 
disorder, summarizes major types of predictors of disorder, and provides details about three 
accurate and recently released methods. We illustrate their predictions using a few sample 
proteins, provide insights how these predictions should be interpreted, and discuss and quantify 
their predictive performance. We comment on how easy it is to collect these predictions using 
freely and conveniently accessible webservers. Lastly, we point to the availability of databases 
that provide access to annotations of native and pre-computed putative intrinsic disorder and we 
summarize a few experimental methods that can be used to validate computational predictions. 
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INTRODUCTION 

While many proteins maintain a well-defined tertiary structure, many lack structure under 
physiological conditions and take the form of dynamic conformational ensembles. These 
intrinsically disordered proteins (IDPs) (Dunker et al., 2013; van der Lee et al., 2014) lack the 
structure along their entire amino acid chain or in specific regions. IDPs are highly abundant in 
nature. According to a few recent estimates, 19, 6, and 4% of amino acids are disordered in 
eukaryotes, bacteria, and archaea (Peng et al., 2015b), respectively, between 30 and 50% of 
eukaryotic proteins (depending on an organism) have at least one long (≥ 30 consecutive amino 
acids) intrinsically disordered region (IDR) (Dunker et al., 2000; Ward et al., 2004b; Xue et al., 
2012), and between  6 and 17% of proteins encoded by various genomes are fully disordered 
(Tompa, 2002). Furthermore, 44% of protein-coding genes in human include long disordered 
regions (Oates et al., 2013). The IDPs participate in a diverse range of cellular functions (Peng et 
al., 2015b; van der Lee et al., 2014). They play important functional roles in transcription 
(Fuxreiter et al., 2008; Liu et al., 2006), translation (Peng et al., 2014), protein-protein 
interactions (Dunker et al., 2005; Fuxreiter et al., 2014), protein-RNA interactions (Varadi et al., 
2015; Wang et al., 2016) and cell signaling (Dyson and Wright, 2005; Galea et al., 2008; 
Uversky et al., 2005; Xie et al., 2007), to name but a few. IDPs are also associated with various 
human diseases (Uversky et al., 2008) and they were recently suggested to be attractive targets 
for drug discovery (Hu et al., 2015). Several databases of IDPs are available, such as DisProt 
(Sickmeier et al., 2007), the largest database of manually curated and functionally annotated 
IDRs, and IDEAL (Fukuchi et al., 2014), which includes information about binding partners of 
IDPs. Moreover, IDRs can be found in the Protein Data Bank (PDB) (Berman et al., 2000) as 
residues with missing coordinates in crystal structures and highly flexible residues in NMR 
structures (Martin et al., 2010). However, these repositories of experimentally annotated intrinsic 
disorder represent only a small fraction of sequences in nature. The total number of IDPs in 
IDEAL and DisProt is only 713 and 803, respectively, while the number of currently known 
proteins that are included in the UniProt resource has already reached 68 million.  
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Interestingly, sequences of IDRs are different when compared to structured regions and proteins. 
For instance, the disordered regions have specific composition of amino acids, lower sequence 
complexity, and lower propensity to form alpha and beta secondary structure (Li et al., 1999; 
Pentony et al., 2010; Romero et al., 1997; Romero et al., 2001). Given these differences, the 
experimentally annotated IDRs and IDPs are used to empirically derive predictive models, which 
in turn are used to predict intrinsic disorder for the millions of the unannotated proteins. These 
methods use protein sequence as their input and generate propensity for intrinsic disorder for 
each residue in this sequence as their output. A study in 2012 indicated that there were 
approximately 60 computational predictors of disorder (Kozlowski and Bujnicki, 2012). In 2016, 
we found approximately 70 such predictors. We classify these methods into four categories: 
1) Scoring function-based methods. The propensity for disorder is calculated using a function 

that takes physiochemical properties of individual amino acid in the input protein chain as its 
inputs. Examples methods include NORSP (Liu and Rost, 2003), GlobPlot (Linding et al., 
2003b) and IUPred (Dosztányi et al., 2005a; Dosztányi et al., 2005b). 

2) Machine learning-based methods. The propensity for disorder is computed using a predictive 
model generated by a machine learning algorithm (such as neural network and support vector 
machine (SVM)) using inputs derived based on physiochemical properties of amino acid, 
evolutionary conservation, and putative secondary structure and solvent accessibility. 
Examples are DisEMBL (Linding et al., 2003a), DISOPRED (Jones and Cozzetto, 2015; 
Jones and Ward, 2003), and a family of VLS predictors (Obradovic et al., 2003; Obradovic et 
al., 2005). 

3) Meta methods. These methods combine prediction of multiple predictors of disorder with 
information extracted from protein sequence and putative structural properties of the 
sequence (secondary structure and solvent accessibility) to predict propensity for disorder. 
They include MFDp (Mizianty et al., 2010), MetaDisorder (Kozlowski and Bujnicki, 2012) 
and PONDR-FIT (Xue et al., 2010). 

4) Hybrid methods. These predictors combine the abovementioned machine learning approach 
with structural modelling, typically using template-based structure predictions. Examples are 
PrDOS (Ishida and Kinoshita, 2007) and Disoclust3 (McGuffin et al., 2015). 

 
This unit defines computational prediction of disorder, summarizes three arguably most accurate 
predictors, and present a case study that explains and compares their predictions. 

PREDICTION OF INTRINSIC DISORDER FROM SEQUENCE 

Computational predictors of intrinsic disorder use protein sequence as their only input. They 
generate putative propensity for intrinsic disorder for every residue in the input protein sequence.  
Typically, this propensity is expressed as a numeric score where a low value denotes high 
propensity for a structured conformation and a high value denotes propensity for the disordered 
state. Besides this numeric propensity, most of the predictors also offer a binary prediction where 
each residue is categorized as either structured or disordered.  
 
We illustrate predictions of intrinsic disorder and contrast these predictions with the native 
annotations of disorder using the ICln protein (Figure 1). This protein is a chloride channel that 
is involved in regulation of several cellular processes including membrane ion transport and 
RNA splicing. Structure of ICln, which was solved using NMR, is composed of several 
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superimposed conformations. The regions colored in blue converge to the same confirmation and 
constitute structured regions. The disordered regions that are colored in red form an ensemble of 
diverse conformations. The annotation of disordered regions was collected from DisProt version 
6.02 and is shown below the image in Figure 1 (“Native Dis” line). The figure includes eight IDRs 
which are numbered in the structure as they appear along the amino acid sequence. The structure 
excludes parts of both termini of this protein, including residues 1 to 18 and residues 134 to 235, 
which are disordered. The bottom part of Figure 1 includes predictions of three methods: MFDp 
(meta method), DISOPRED (machine-learning method) and PrDOS (hybrid method). Both 
binary and numeric scores are included where the numeric scores that range between 0 and 1 are 
represented by the first digit after the decimal point. A given residue is predicted as disordered if its 
predicted numeric propensity is high: 0.5 and above for PrDOS and DISOPRED, and >0.37 for 
MFDp; otherwise it is predicted as structured.  
 

 
 
Figure 1. Native intrinsic disorder and putative disorder for the ICln protein (PDB ID: 1ZYI; DisProt ID: DP000717). The top 
portion of the figure is a cartoon view of multiple superimposed NMR structures of this protein taken from PDB. Ordered regions 
where all structures converge to the same conformation and disordered regions that form conformational ensembles are colored 
in blue and red, respectively. The eight disordered regions are numbered 1 to 8, and they correspond to eight underlined disorder 
regions in the “Native Dis” line. The bottom part shows native disorder annotations collected from DisProt along with putative 
disorder annotations generated with PrDOS, DISOPRED3 and MFDp methods. The first line shows residue number which is 
followed by the amino acid sequence. The third line shows 8-state secondary structure assigned with DSSP, where B is an 
isolated β-strand residue, E is an extended strand that forms β sheets, G is 310 helix, H is α-helix, I is π helix, S is a bend, T is a 
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hydrogen bonded turn and – denotes residue without specific secondary and tertiary structure. The forth line shows native 
annotation of disorder where 0 denotes structured residues, 1 denotes disordered residues, and x denotes a residue that lacks 
annotation. The following six lines show binary predictions and propensity scores. The propensity that ranges between 0 and 1 is 
represented by the first digit after the decimal point.  

 
To interpret results produced by the computational predictors, users should first analyze the 
binary predictions in order to extract the corresponding putative IDRs and structured regions. 
Next, each predicted IDRs should be assessed using the numeric propensities. Residues that have 
high scores are more likely to be disordered and the corresponding predictions are more likely to 
be accurate. Users can also analyze the scores of all residues in a given putative IDR, which is 
annotated based on binary predictions, to quantify the likelihood of this entire region to be 
correctly identified. On the other hand, low scores can be used to identify structured residues and 
regions. The predictions for residues with scores close to 5 for PrDOS and DISOPRED, and 
close to 4 for MFDp (these values are used to convert the propensity into the binary prediction) 
are arguably less accurate than the predictions with either high or low scores. We also 
recommend that, if possible, multiple methods should be used and the users should rely on a 
consensus-based prediction. In other words, IDRs and disordered residues predicted by multiple 
methods are more likely to be correct compared with predictions that disagree between different 
methods. The favourable predictive performance of a consensus-based approach was shown 
empirically in a few recent studies (Fan and Kurgan, 2014; Peng and Kurgan, 2012a). 

SELECTED COMPUTATIONAL PREDICTORS OF INTRINSIC 
DISORDER 

We introduce three accurate predictors of intrinsic disorder, DISOPRED, MFDp and PrDOS. 
These methods were ranked as the top three in predictive performance among 28 methods that 
were assessed during the most recent Critical Assessment of protein Structure Prediction (CASP) 
experiment, CASP10 (Monastyrskyy et al., 2014), that featured evaluation of predictions of 
disorder. CASP is a biannual worldwide event in which predictions submitted by research labs 
across the world are assessed on a blind dataset of proteins (these proteins that were not available 
to the participants ahead of time) by a group of independent assessors who not participate in the 
event. The three predictors were also ranked among the top three in other recent comparative 
reviews (Deng et al., 2012; Peng and Kurgan, 2012b). We list them in chronological order and 
discuss their origin, key architectural characteristics, and several practical aspects. The latter 
include their inputs, outputs, and availability. 
 

PrDOS (2007) 

PrDOS was created by Ishida and Kinoshita at the University of Tokyo (Ishida and Kinoshita, 
2007). This is a hybrid method that combines a machine learning approach that relies on an SVM 
model with a template-based model. The machine learning model uses an evolutionary profile of 
the input sequence as its input. The template-based model searches for homologues in PDB. The 
prediction is based on a weighted average of the results produced by the machine learning and 
template-based models.  
Input: One FASTA-formatted or raw amino acid sequence. 
Output: Putative binary disorder annotation and propensity scores for each residue. 
Availability: PrDOS is available as a webserver at http://prdos.hgc.jp/cgi-bin/top.cgi 
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MFDp (2010) 

MFDp was developed by Kurgan’s group at the University of Alberta (currently at the Virginia 
Commonwealth University) (Mizianty et al., 2010). This meta predictor combines three SVM 
models that are specialized to predict long, short, and all-size IDRs. Each SVM utilizes a diverse 
set of inputs that include information extracted directly from the amino acid sequence and from 
putative disorder predicted by three predictors, evolutionary profile, putative B-factors, putative 
secondary structure and backbone dihedral torsion angles, putative solvent accessibility, and 
putative annotation of globular domains.  This method was upgraded to a new version, MFDp2, 
in 2013 (Mizianty et al., 2013; Mizianty et al., 2014). MFDp2 combines predictions generated by 
MFDp with predictions computed based on alignment against a database of disordered proteins 
extracted from DisProt. These predictions are corrected such that the number of predicted 
disordered residues matches the number of putative disordered residues output by DisCon 
method (Mizianty et al., 2011).  
Input: Up to 5 FASTA-formatted amino acid sequences for MFDp. Up to 100 FASTA-formatted 
amino acid sequences for MFDp2. 
Output: Putative binary disorder annotation and propensity scores for each residue. 
Availability: MFDp is available as a webserver at http://biomine-ws.ece.ualberta.ca/MFDp. 
MFDp2 is available as a webserver at http://biomine-ws.ece.ualberta.ca/MFDp2 

DISOPRED3 (2015) 

DISOPRED was released by Jones’s group at the University College London (Jones and 
Cozzetto, 2015). The first version of this method was published in 2003 (Jones and Ward, 2003), 
the second version, DISOPRED2, in 2004  (Ward et al., 2004a) and the newest third version, 
DISOPRED3, in 2015 (Jones and Cozzetto, 2015). DISOPRED3 is a machine learning method 
implemented as a two-stage neural network which uses predictions from three predictors: 
DISOPRED2, a specialized predictor of long IDRs, and a nearest neighbor-based model that uses 
similarity to a set of proteins annotated with IDRs. This design is to some extend similar to 
MFDp2 that also includes a module that predicts long IDRs and an alignment-based module. The 
main differences are the input information that consists of an evolutionary profile and the second 
stage that combines these three predictions using a neural network. Moreover, DISOPRED3 also 
predicts protein binding sites, defined as protein binding regions located inside IDRs. 
DISOPRED3 is a part of a comprehensive protein sequence analysis workbench PSIPRED that 
includes predictors of tertiary and secondary protein structure, membrane helices and topology of 
transmembrane helices, protein domains, and protein functions. 
Input: One FASTA-formatted or raw amino acid sequence, or multiple sequence alignment. 
Output: Putative binary disorder annotation and propensity scores for each residue. Putative 
binary annotations and propensity scores for disordered protein binding sites. 
Availability: DISOPRED3 is available as a webserver and standalone package running on Linux 
platform at http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1 
 
Each of these methods offers a convenient and user-friendly webserver. A user only needs a web 
browser and internet connection to use these webservers. After arriving at the specific URL that 
is listed above, a user only needs to provide the sequences of the protein and request the 
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prediction by clicking on the “run” button. The computations are performed on the server side 
and delivered back via the web site and/or to a user-provided email.  
 
Besides these webservers, users have an option to employ databases that provide access to pre-
computed predictions of intrinsic disorder. An advantage of these databases is that the 
predictions are available instantly, while the predictors require up to a few minutes to predict one 
protein. However, the databases are limited to a specific list of proteins while the predictors can 
generate putative disorder for any sequence provided by the users. Two largest databases of 
putative intrinsic disorder are MobiDB at http://mobidb.bio.unipd.it/ (Di Domenico et al., 2012; 
Potenza et al., 2015) and D2P2 at http://d2p2.pro/ (Oates et al., 2013). MobiDB offers access the 
putative disorder generated by ten predictors and a consensus of these predictions. It also 
provides access to experimental annotations of disorder collected from DisProt and PDB. The 
current MobiDB’s version 2.3.2014.07 includes over 80 million proteins which are cross-
referenced to UniProt (Consortium, 2010). D2P2 stores results of nine predictors, is linked to the 
experimental data from DisProt and IDEAL (Fukuchi et al., 2012), and includes annotations of 
putative disordered protein binding regions. It covers over 10 million proteins from complete 
proteomes of 1,765 distinct species. The main difference between these two resources is that 
MobiDB includes a larger set of proteins while D2P2 focuses on complete proteomes. 

ASSESSMENT OF PREDICTIVE PERFORMANCE OF 
COMPUTATIONAL PREDICTORS OF INTRINSIC DISORDER 

One of important aspects in the context of the prediction of intrinsic disorder is predictive 
performance. Since the predictions are in two formats: binary and propensity, we define two 
corresponding and widely accepted metrics of predictive performance: Matthews’s correlation 
coefficient (MCC) and area under Receiver operating characteristic (AUC). These measures 
were used in CASP and other comparative evaluations. 
 
MCC that is used to evaluate the binary predictions is defined as: 

 
       

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


      
 

where TP (true positives) is the number of correctly predicted disorder residues, FN (false 
negatives) is the number of disorder residues predicted as structured, FP (false positives) is the 
number of structured residues predicted as disordered, and TN (true negatives) is the number of 
correctly predicted structured residues. Like other correlation coefficients, MCC ranges between 
–1 and +1, where 0 denotes lack of correlation (predictions are no better than random) and a 
larger positive value denotes higher predictive performance. Negative correlation, which does 
not happen in practise, indicates that structured residues are predicted primarily as disordered 
and vice versa, meaning that the predictions are inverted.  
 
AUC is used to assess propensity scores and it quantifies area under the ROC curve defined as a 
relation between true positive rate, TPR = TP/(TP + FN), and false positive rate, FPR = FP/(FP 
+ TN). The curve is composed of multiple points that correspond to the TPR and FPR values 
computed at different thresholds imposed over the propensity scores, where the residues with 
scores above (below) the threshold are assumed to be predicted as disordered (structured). AUC 
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values range between 0.5, which is equivalent to a random predictor, and 1 that implies perfect 
prediction.  
 
Next, we analyze results from the DISOPRED3, MFDp and PrDOS methods for the ICln protein 
(Figure 1) and quantify their predictive quality using MCC and AUC. The predictions from 
DISOPRED3 correctly identify the three largest disordered regions: the region at the N-terminus, 
the seventh IDRs and the region at the C-terminus. However, they fail to identify the remaining 
shorter IDRs. The predictions from MFDp similarly cover the three longest native IDRs, where 
the two putative regions at the termini are elongated. Finally, PrDOS also identifies the three 
largest IDRs but it makes mistakes for parts of the IDR at the C-terminus. Overall, these methods 
identify majority of disordered residues correctly and miss a few shorter disordered regions. The 
MCC values of DISOPRED3, MFDp and PrDOS are 0.57, 0.38, and 0.39, respectively. These 
values suggest that the predictions are correlated with the native disorder, with the strongest 
correlation attributed to DISOPRED3. These numbers agree with our analysis. The propensity 
scores from DISOPRED3, MFDp and PrDOS methods follow a similar pattern. The three long 
IDRs identified by the three predictors have high scores, which suggest that the user should be 
confident that the predictions are correct. One exception is the IDR predicted by PrDOS at the C-
terminus that was scored in the 5 to 7 range compared to the 7 to 8 range for the other two IDRs 
predicted by this method. DISOPRED also provides low scores for the structured regions 
(annotated using 0 in the “Native Dis” line in Figure 1). Such low scores suggest that these 
predictions are likely correct. The AUC values that quantify predictive performance of these 
scores are 0.92, 0.83 and 0.84 for DISOPRED3, MFDp and PrDOS, respectively. They again 
agree with our observations, in particular pointing to the high quality of scores generated by 
DISOPRED3.  
 
Next, we assess these three methods on three proteins to provide insights on how their predictive 
performance varies depending on the input protein. The three proteins were selected from 
DisProt version 6.02 and were deposited into this database after the version 5.9 was released. 
This means that they were not available where the three predictions were developed and thus can 
be used to perform a blind test (test on proteins that were not used to design these methods). 
Table 1 summarizes the AUC and MCC values of PrDOS, DISOPRED3 and MFDp for the three 
proteins. The average AUC values of these predictors are similar and equal 0.80 for PrDOS and 
0.83 for MFDp and DISOPRED3. The average MCC values are also comparable and equal 0.52 
for DISOPRED3 and 0.39 for MFDp and PrDOS. These values agree with the results of recent 
comparative reviews of predictors of intrinsic disorder. In a study by Cheng’s group 
DISOPRED, MFDp and PrDOS were shown to achieve AUC = 0.85, 0.82 and 0.85, respectively 
(Deng et al., 2012). In another study by Kurgan’s group DISOPRED and MFDp were shown to 
secure AUC = 0.78 and 0.82, and MCC = 0.41 and 0.45, respectively (Peng and Kurgan, 2012b). 
Interestingly, results in Table 1 reveal that there is no universally best method. For instance, 
while AUC of DISOPRED is the highest for the ICln and PPARG proteins, the results of this 
predictor are outperformed by both MFDp and PrDOS for the CRK protein. This observation 
supports our advice to use and combine results from multiple methods in order to secure 
predictions that are characterized by higher predictive performance. 
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Table 1. Comparison of predictive performance of three predictors of intrinsic disorder (PrDOS, DISOPRED3 and MFDp) and their consensus for three disordered proteins 
collected from DisProt. The highest AUC and MCC values for each protein are shown in bold font. The consensus binary prediction is based on a majority vote (residue is 
assumed disordered if most methods predict it as disordered, otherwise it is predicted as structured). The consensus propensities are calculated as average of the propensities for 
methods that predict a given residue as disordered (structured) if the binary prediction for this residue is that it is disordered (structured). The runtime, which is measured in 
minutes, is computed as an average over five predictions for the same protein on the same webserver. Proteins are sorted by their length from shortest to longest to demonstrate 
that runtime increases with the protein length. 

 
Protein name  
(DisProt ID) 

Protein 
length 

AUC  MCC  Runtime [minutes] 
PrDOS DISOPRED3 MFDp Consensus PrDOS DISOPRED3 MFDp Consensus PrDOS DISOPRED3 MFDp 

ICln (DP000717) 235 0.84 0.92 0.83 0.88 0.39 0.57 0.38 0.59 12±8.7 55±15.1 6±0.0 
CRK (DP00748) 304 0.75 0.69 0.79 0.77 0.49 0.51 0.35 0.54 15±13.5 62±24.5 7±0.5 
PPARG (DP00718) 477 0.79 0.88 0.87 0.88 0.28 0.49 0.44 0.45 16±15.3 196±111.8 11±0.4 
Average  
(± standard deviation) 

338±124 0.80±0.05 0.83±0.13 0.83±0.04 0.84±0.07 0.39±0.10 0.52±0.04 0.39±0.05 0.53±0.76 14±2.1 104±79.5 8±2.6 
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Figure 2. Visualization of predictions generated by PrDOS, DISOPRED3 and MFDp and a consensus-based prediction for ICln 
protein (Panel A; DisProt ID: DP00717), CRK protein (Panel B; DisProt ID: DP00748), and Peroxisome proliferator-activated 
receptor gamma (PPARG) protein (Panel C; DisProt ID: DP00718_A001). The x-axis denotes the protein sequence and plots at 
the top of each panel show the propensity scores; higher propensity values indicate higher likelihood for disorder. Propensities 
generated by PrDOS, DISOPRED3 and MFDp and consensus-based method are shown using hollow dark green, dark green, light 
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green and black lines, respectively. The binary annotations of both native and putative disorder (each residue is categorized as 
either disordered or structured) are shown with horizontal lines at the bottom of each panel. The native binary annotations of 
disordered and structured residues that were collected from DisProt are shown using red and blue line, respectively. The putative 
binary annotations for the three predictors and the consensus-based predictor follow the color scheme of the propensity plots. 
They were obtained from the putative propensities by using thresholds = 0.5 for PrDOS and DISOPRED3 and = 0.37 for MFDp 
that were suggested by the authors, i.e., residues with propensities above the corresponding threshold are predicted as disordered 
and below the threshold as structured. The threshold values are shown using dashed horizontal lines. Panel C also includes 
prediction of disordered DNA binding residues shown using thin red line that were generated with the DisoRDPbind method. 

 
We also measure the runtime required to obtain predictions for these three proteins using the 
public webservers of the selected three methods. We predict each protein five times on the same 
webserver and we report the average time and the corresponding standard deviation in Table 1. 
MFDp requires the least amount of time, with an average of about 8 minutes per protein. The 
second fastest is PrDOS which needs 14 minutes per protein while DISOPRED3 needs over 100 
minutes per protein. We caution the reader that this estimate includes the time to run a given 
method on the input protein and possibly also wait time in a queue of other jobs on a given 
webserver. This is evident by the relatively high values of the standard deviations, in particular 
the deviation of 80 minutes for DISOPRED3. The runtime also depends on the length of a given 
protein meaning that, as expected, longer proteins require more time (Table 1). The PPARG 
protein that is twice as long as the ICln protein requires about twice the runtime when using 
MFDp, 25% longer runtime using PrDOS and about three time longer runtime using 
DISOPRED3. Overall, the users should expect that a single prediction takes typically several 
minutes with more time needed for longer proteins. 
 
Figure 2 visualizes the predictions from PrDOS, DISOPRED3 and MFDp on the three proteins 
and compares these predictions with the native annotations of disorder. The three methods 
generate relatively similar predictions for the ICln protein (Figure 2A). They correctly annotate 
the two IDRs at both termini and also the large IDR between positions 85 and 107, except for 
PrDOS that under-predicts the region at the C-terminus. At the same time, the three methods 
equally struggle to find several short IDRs located between positions 29 and 77.  
In contrast to the results for the two above proteins, the predictions for CRK protein differ 
between the three methods (Figure 2B). MFDp predicts seven IDRs, DISOPRED3 predicts six 
IDRs, and PrDOS annotates four putative disordered regions. The propensity scores generated by 
these methods diverge particularly between positions 110 and 180. The three predictors identify 
the short native IDRs located at the N-terminus and parts of the long IDR at the C-terminus. The 
short IDR between positions 122 and 134 is correctly predicted by MFDp and DISOPRED3 and 
is missed by PrDOS. Moreover, MFDp and PrDOS identify a longer false IDR near position 75 
while DISOPRED3 incorrectly predicts only two disordered residues there. MFDp also predicts 
another false IDR near position 140, and DISOPRED incorrectly annotates a couple of 
disordered residues near position 40. The PPARG protein includes three IDRs, one at each 
termini and one between positions 239 and 299 (Figure 2C). Again, we observe that the three 
predictions are in agreement with each other. They correctly find the IDR at the N-terminus and 
a fragment of the internal to the sequence IDR, while they fail to identify the IDR at the C-
terminus. The propensities generated by DISOPRED3 and MFDp are better than the propensities 
generated by PrDOS since they have higher values for the disordered regions and lower values 
for the structured regions. This is why DISOPRED and MFDp secure higher AUCs than PrDOS 
for this protein (Table 1). We note that the three methods consistently predict a fragment of the 
IDR at the N-terminus as structured. This IDR was shown to interact with DNA and the nature of 
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this interaction that stabilizes protein structure is perhaps the reason for this incorrect prediction 
(Chandra et al., 2008). To this end, we use DisoRDPbind method (Peng and Kurgan, 2015; Peng 
et al., 2015a) to predict disordered DNA-binding regions and found that its predictions (shown 
using thin red line in Figure 2B) complement the disorder predictions for that fragment of the 
IDR at the N-terminus. More specifically, DisoRDPbind identifies a disordered region that binds 
DNA and this region fills in the gap in the disorder predictions. This suggests that methods that 
predict specific functions of disordered regions, such as DisoRDPbind that predicts disordered 
protein-, DNA- and RNA-binding regions, may offer information that complements the results 
produced by the predictors of “generic” disordered regions.  
 
Overall, these examples demonstrate that the predictions of disorder are relatively accurate and 
can be used to identify IDRs in the input protein chains. Our examples convey the richness of the 
information that can be obtained from the disorder predictions and illustrate how to analyze and 
understand these predictions. 

CONSENSUS-BASED PREDICTIONS  

One of aspects related to the interpretation of the results generated by different predictors is how 
to proceed when these methods are in disagreement. This is particularly relevant to the CRK 
protein where our three predictors diverge (Figure 2B). We suggest to use a consensus approach 
where the final prediction is determined by a majority of the results generated by the considered 
methods. In the case of the binary predictions, a given residue should be assumed disordered if 
most methods predict it as disordered, otherwise it should be predicted as structured. The 
propensities should be calculated as an average of the propensities generated by the methods that 
predict a given residue as disordered (structured) if the binary prediction is disordered 
(structured). This approach is inspired by favourable empirical results of the consensus-based 
approaches when compared to the predictions of individual methods (Fan and Kurgan, 2014; 
Peng and Kurgan, 2012a) and the fact that consensus predictions are provided in the D2P2 and 
MobiDB databases. We visualize the consensus predictions in Figure 2 using black lines and 
include the corresponding predictive quality in Table 1. The consensus prediction for the ICln 
protein (Figure 2A) avoids the pitfalls of the PrDOS’s prediction of the IDR at the C-terminus, 
trims the incorrectly elongated putative IDR generated by MFDp at the N-terminus, and more 
accurately delineates the long disordered regions at position 82 compared to the output of 
DISOPRED3. Consequently, it secures the highest MCC value for this protein (Table 1). 
Similarly, for the other two proteins the consensus resolves the disagreements between the three 
predictors in a way that generally is in a better agreement with the native annotations of disorder. 
For instance, the consensus trims a number of disordered residues that were overpredicted by 
MFDp and adds the disordered region at position 120 that was missed by PrDOS for the CRK 
protein (Figure 2B). It also fixes the incorrect predictions from PrDOS at positions 220 to 238 
where a structured region is incorrectly predicted as disordered (Figure 2C). Overall, the 
consensus secures a higher AUC and MCC values compared with each of the three predictors 
(Table 1). However, we note that this improvement comes at a cost of running the three 
predictors which takes more runtime than running a single method. 
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EXPERIMENTAL MEANS FOR VALIDATION OF PREDICTED 
DISORDER  

There are multiple experimental approaches that may be used to validate and support predictions 
of the intrinsic disorder. Similar to the outputs of different predictors that either generate 
information on the overall disorder status of a whole protein molecule or provide the per-residue 
disorder score, experimental techniques also describe the whole protein or give a residue-level 
information. There are several reviews and books that describe a wide range of experimental 
techniques that can be used to characterize intrinsic disorder in proteins (Daughdrill et al., 2005; 
Eliezer, 2009; Receveur-Brechot et al., 2006; Uversky, 2015; Uversky and Dunker, 2012a; 
Uversky and Dunker, 2012b; Uversky and Dunker, 2012c; Uversky and Longhi, 2010). The 
number of such experimental techniques amounts to almost 70. Detailed description of these 
approaches is outside the scope of this unit and here we summarize four selected techniques: X-
ray crystallography, NMR, limited proteolysis and hydrogen-deuterium exchange. These 
methodologies provide information on the intrinsic disorder at the residue level. From the 
viewpoint of natural propensity of an amino acid sequence for the intrinsic disorder, these four 
techniques are non-invasive since their application does not require introduction of the amino 
acid substitutions, which can affect predisposition of a protein for the intrinsic disorder. 
 
Although X-ray crystallography is traditionally used to describe atomic-level structures of 
structured proteins, the increased flexibility of atoms in the structured regions is reflected in high 
values of their B-factor, whereas high flexibility of atoms in the disordered regions is responsible 
for the non-coherent X-ray scatter in the crystallographic experiments. As a consequence of the 
non-coherent X-ray scatter the corresponding atoms become “invisible”, giving rise to the 
missing electron density regions (Le Gall et al., 2007; Radivojac et al., 2004). Therefore, if a 
crystal structure of a protein that contains both structured and disordered regions is available, 
then the validity of the predicted disorder of some of its regions can be verified by looking for 
the presence of regions with missing electron density (remark 465) in the corresponding PDB 
entry. The NMR spectroscopy is the technique of choice for providing high-resolution, residue-
level structural information on the intrinsically disordered proteins. In fact, heteronuclear 
multidimensional NMR can generate precise structural information on IDPs/IDRs via assignment 
of their resonances and can also provide direct measurement of the mobility of IDRs (Daughdrill 
et al., 2005; Eliezer, 2009; Jensen et al., 2010; Nodet et al., 2009; Salmon et al., 2010). Both, 
limited proteolysis and hydrogen-deuterium exchange are based on the solvent accessibility of 
corresponding target sites. A high solvent accessibility of the potential cleavage sites makes non-
folded proteins highly susceptible to proteolytic degradation in vitro (Fontana et al., 2004). 
Therefore, limited proteolysis can be used to indirectly confirm the increased conformational 
flexibility of IDPs and IDRs (Fontana et al., 2012) and thereby confirm the results of a disorder 
prediction. Similarly, structural information and detailed description of the dynamics of a protein 
chain can be obtained from the analysis of the efficiency and rates of incorporation of deuterium 
into a protein’s backbone amide. This is achieved via monitoring hydrogen/deuterium exchange 
in proteins by mass spectrometry combined with the high performance liquid chromatography 
(Smith et al., 1997). The ability of this technique to distinguish between structured and 
disordered protein regions by their level of protection against hydrogen/deuterium exchange 
makes it suitable to detect intrinsic disorder and to validate predictions of disorder (Bobst and 
Kaltashov, 2012). 
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CONCLUSIONS  

The first predictor of intrinsic disorder was developed over 35 year ago. With dozens of new 
predictors that were developed over the last three decades, their predictive performance and 
availability has substantially improved. Modern predictors are characterized by sophisticated 
designs that are based on meta and hybrid approaches, utilize state-of-the-art machine learning 
algorithms, and are available to the users as convenient webservers. Most importantly, 
predictions generated by these methods are accurate, with AUC values at about 0.8 and MCC 
values in the 0.4 to 0.5 range. We describe and illustrate inputs, outputs, architectures, predictive 
performance, and runtime of three popular and accurate predictors. We also discuss how to 
proceed when the predictions of different methods disagree and suggest several experimental 
methods that can be used to validate the predictions. Moreover, we describe several databases of 
native and putative annotations of disordered residues. While these methods and databases 
reaches the point of maturity, research in this area has recently shifted to the prediction of 
various functions of the disordered regions. These functions include protein-protein binding 
regions (Disfani et al., 2012; Dosztanyi et al., 2009; Jones and Cozzetto, 2015; Malhis et al., 
2016; Peng and Kurgan, 2015; Peng et al., 2015a; Yan et al., 2015), protein-RNA and protein-
DNA binding regions (Peng and Kurgan, 2015; Peng et al., 2015a), and disordered linkers (Meng 
and Kurgan, 2016), to name a few that were already addressed.  
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Key References 

van der Lee et al. 2014 
Defines intrinsic disorder and discusses the relevant experimental and computational tools 
 
Ishida and Kinoshita, 2007 
Describes PrDOS, one of the most accurate hybrid method for the prediction of intrinsic disorder 
 
Jones and Cozzetto, 2015 
Describes DISOPRED3, one of the most accurate machine learning method for the prediction of 
intrinsic disorder and disordered protein binding regions 
 
Mizianty et al. 2010 
Describes MFDp, one of the most accurate meta method for the prediction of intrinsic disorder 
 
Peng and Kurgan 2012b 
Provides comprehensive empirical assessment of predictive performance of modern methods for 
the prediction of intrinsic disorder 
 
Sickmeier et al. 2007 
Introduces and describes the DisProt database of the intrinsically disordered proteins 
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DISOPRED3’s webserver 
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MFDp’s webserver 
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MobiDB database  
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