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Abstract

While as many as 50% of eukaryotic proteins are estimated to have intrinsically disordered
regions (IDRs), only about 30 thousand out of 130 million of currently sequenced proteins
are experimentally annotated with disorder. This large and growing annotation gap can be
reduced with computational sequence-based predictors of IDRs. This chapter motivates and
illustrates computational prediction of IDRs and surveys popular methods. We discuss
several practical facets concerning their availability, impact, outputs and predictive
performance. Results published in the most recent CASP experiment that included disorder
prediction assessment, CASP10, shows that IDRs can be predicted with high accuracy. The
top three performers in CASP10 (PrDOS-CNF, DISOPRED3 and MFDp) secure AUC > 0.89.
Moreover, disorder predictors enjoy strong citation profiles, with three tools that are cited
at least 50 times annually. We also delineate impact of IDR predictions on the systems
medicine field, focusing on new frontiers to treat and understand human diseases. We show
that annotation and functional understanding of IDRs assist with deciphering mechanisms of
viral infections and the resultant immune responses, facilitate improved molecular-level
understanding of a wide range of human diseases, and aid the development of novel drug
targets and therapeutics.



1 Introduction

Intrinsically disordered regions (IDRs) lack a stable tertiary structure in isolation and
they exist as heterogeneous ensemble of conformations [1,2]. A given protein may have one
or many IDRs, and in some cases entire protein chains are intrinsically disordered. The term
intrinsically disordered refers to an intrinsic property of the protein sequence and was
originally coined by X-ray crystallographers to describe unresolved portions of a protein
structure, which are due to highly fluctuating positions with the crystal lattice. These regions
were assigned with many other names in the literature including floppy, pliable,
rheomorphic, mobile, partially folded, natively denatured, natively unfolded, natively
disordered, intrinsically unstructured, intrinsically denatured, and intrinsically unfolded [2].

IDRs form dynamic conformational ensembles, which means that atomic coordinates
of their residues and their dihedral angles vary substantially over time and populations,
often without a specific equilibrium [3]. Figure 1 shows two example IDRs in the structure of
the chloride conductance regulatory (ICIn) protein (UniProt ID: P35521): V66 to E76 region
and A84 to P106 region. The top of the figure is a cartoon view of 15 superimposed NMR
structures of this protein. The structured/ordered regions are where the NMR structures
converge to the same conformation, compared to the two IDRs that are characterized by
highly structurally variable conformations that are composed of coils. This proteins also
includes two other IDRs, one at each terminus (M1 to R17 region and H134 to H235 region),
where the structure could not be resolved.

Proteins with IDRs are highly abundant in nature. Recent computational studies
estimate that between 3% and 17% of eukaryotic proteins are fully disordered, depending
on an organism, and that about 30-50% of eukaryotic proteins have at least one long IDR
with 2 30 consecutive amino acids [4,5]. Majority of eukaryotic proteins have both
structured regions and IDRs, and both types of these regions implement functions that
these protein have in a variety of cellular contexts. Interestingly, while some IDRs perform
their function when remaining disordered other IDRs undergo a disorder-to-order transition
upon binding their physiological partner(s) [6]. The structural plasticity of IDRs allows them
to interact with numerous and structurally distinct targets. This is also why inclusion of IDRs
is one of the features of hub proteins that interact with large number of proteins in protein-
protein interaction networks [7,8]. As such, proteins with IDRs are crucial for cellular
functions that involve multiple partner interactions, such as molecular assembly, molecular
recognition, signal transduction, cell cycle and cell death regulation as well as transcription
and translation [6,9-19]. Moreover, on an applied side, proteins with IDRs are associated
with various human diseases [20] and constitute attractive drug targets [21,22].

Several databases provide access to experimentally annotated IDRs. They include
DisProt [23], the database of curated and functionally annotated IDRs, IDEAL [24], which
features information about binding partners of IDRs, and Protein Data Bank (PDB) [25],
where IDRs correspond to the regions with missing coordinates in crystal structures and the
highly structurally diverse regions in the NMR structures, see Figure 1 for the example of the
latter conformational diversity. However, these databases cover only a very small portion of
the proteins sequences in nature. Current version 7.05 of DisProt covers 803 proteins [23],
most recent version 20 of the IDEAL resource includes 913 proteins [24], and a recent article



estimated the number of proteins with IDRs that can be collected from PDB to be 25,833
[26]. These are rather small protein sets compared to the number of currently known
proteins sequences that are included in the UniProt resource [27], which as of January 21,
2019 already includes 139.7 million proteins. The large and continually growing annotation
gap can be alleviated with computational methods that provide accurate prediction of IDRs
in the input protein sequences.
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Residue number 1 10 20 30 40 50 60 70
Sequence MSFLKSFPPPGSAEGLRQQQPETEAVLNGKGLGTGTLYIAESRLSWLDGSGLGFSLEYPTISLHAVSRDLNAYPREHLY
DSSP KX XXX XXXXXXKXXXXXX-B-SSEEEEBTTB---EEEEEEETTEEEEEETTTEEEEESS---SEEE--SS-SS--S—--EE
Native IDRs DDDDDDDDDDDDDDDDD DDDDDDDDDDD
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Residue number 80 90 100 110 120 130 140 150

Sequence VMVNAKFGEESKESVAEEEDSDDDVEPIAEFRFVPSDKSALEAMFTAMCECQALHPDPEDEDSDDYDGEEYDVEAHEQGQ
DSSP EEEE----SS-SSS---S--SS—--S-SEEEEEEEES-HHHHHHHHHHHHHHHH-XXXXXXXXXXXXXXXXXXXXXXKXKXKXX
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Residue number 160 170 180 190 200 210 220 230

Sequence GDIPTFYTYEEGLSHLTAEGQATLERLEGMLSQSVSSQYNMAGVRTEDSTRDYEDGMEVDTTPTVAGQFEDADVDH
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Putative IDRs DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
ID propensity 8988888788767767777776677777788888999999999999999999999999999999999999999999

Figure 1. Native intrinsic disorder and putative disorder for the chloride conductance regulatory
(ICIn) protein (UniProt ID: P35521).

The top of the figure is a cartoon view of 15 superimposed NMR structures obtained from PDB that cover sequence
positions Q18 to L133 (PDB ID: 1ZYI). The structures are colored by the secondary structures assigned with the DSSP
method where B structures are in golden, helices in red, and coils in white and blue. Bottom of the figure shows the
protein sequence together with the residue-level annotations of secondary structure and native and predicted disorder.
Detailed assignment of the secondary structure is provided in the “DSSP” line where B is an isolated B-strand residue, E is
an extended strand that forms B sheets, G is 310 helix, H is a-helix, | is 1t helix, S is a bend, T is a hydrogen bonded turn, —
denotes residue without specific secondary and tertiary structure, and X means that this residues is missing in the
structure. Ordered regions are where all NMR structures converge to the same conformation. There are four IDRs that are
annotated with D in the “Native IDRs” line: IDR; (residues M1 to R17), IDR; (V66 to E76), IDR; (A84 to P106), IDR4 (H134 to
H235). IDR; and IDR, are located at the sequence termini and were annotated as disordered based on REMARK 465 in the
PDB structure. IDR; and IDR; were annotated using the DisProt database (DisProt ID: DP000717), and they correspond to
the two regions of conformational ensembles in the above structure, i.e., regions of highly variable structures composed of



coils. The putative disorder was generated with the MFDp method. The “Putative IDRs” line shows binary predictions
where D denotes residues predicted as disordered. The “ID propensity” line gives the putative propensities for disorder
that range between 1 and 9, with higher value denoting higher likelihood for disorder.

This chapter summarizes popular predictors of IDRs and outlines their applications in
the area of systems medicine. Section 2 explains key concepts related to the prediction of
IDRs, overviews and categorizes current predictors, and provides practical details for ten
popular methods. It also explains outputs that disorder predictors produce and comments
on their predictive performance. Section 3 discusses relevance of the intrinsic disorder in
the context of systems medicine. In particular, it points to the relevance of IDRs to the
understanding and treatments of viral infections, conformational diseases, and cancers. It
also remarks on the suitability of disordered proteins as drug targets. Section 4 summarizes
the chapter, discusses future research directions and suggests further readings.

2 Methods and tools for prediction of intrinsic disorder

The functional and biophysical properties of IDRs are intrinsic to their sequences.
The amino acid composition and conservation of IDRs are distinct from those of the
structured regions, and these differences underlie the development of computational
predictors of IDRs in protein sequences. These methods were developed using the currently
limited number of proteins with experimentally annotated IDRs and can be applied to
provide accurate prediction of IDRs in protein sequences that currently lack these
annotations. They rely on predictive models that are typically generated using algorithms
that optimize parameters and topology of these models to minimize error between their
outputs and the native annotation of IDRs for a set of training proteins. After the
optimization is finished, the models are empirically tested on set aside (during the model
training process) proteins to evaluate their predictive performance. Several community-
driven assessments of these models, including the CASP (Critical Assessment of protein
Structure Prediction) experiments, show that these models offer accurate predictions
[28,29]; we discuss these results later in this chapter.

2.1 Overview of the disorder prediction

The field of computational disorder prediction goes back four decades [30,31]. The
first predictor was published in 1979 and aimed to predict random coil conformations [32].
Two notable early methods were developed by Romero, Obradovic and Dunker in 1997 [33]
and by Uversky and Fink in 2000 [34]. Inclusion of the disorder prediction in the biannual
CASP experiments from the CASP5 in 2002 [35] until CASP10 in 2012 [29] has spurred the
development efforts. In total over 60 disorder predictors were developed so far. A complete
list of these methods can be compiled from several relevant surveys [36,37,31,38,1].

The disorder predictors are typically categorized into two broad types: 1) methods
for which predictive models were produced using machine learning algorithms; and 2) ab-
initio models. The former approaches utilize predictive models that are parametrized to
maximize predictive on disorder-annotated training datasets. This training can be performed
using a variety of machine learning algorithms, such as neural networks, support vector
machines, and regression, to name a few. The latter models are derived from fundamental
biophysical principles that are known to differentiate between the disordered and ordered



regions. They typically take form of scoring functions. A couple of representative examples
from this group are GlobPlot [39] and IUPred [40,41]. The machine learning-based group of
method is substantially larger with several illustrative examples that include PONDR
predictors [42-47], RONN [48], DisEMBL [49], DISpro [50,51], Disoclust3 [52], DISOPRED
[53,54], SPINE-D [55], DeepCNF-D [56], SPOT-Disorder [57], PrDOS [58], and SPOT-Disorder-
Single [59]. Recent designs of disorder predictors rely on meta-architectures which combine
outputs produced by several predictors, either via a majority vote consensus or a separate
predictive model. They are motivated by empirical studies showing that such meta-
predictors improve predictive performance when compared to the results produced by their
input single predictors [60,61]. Example meta-predictors include MD [62], MetaDisorder
[63], disCoP [61], DisMeta [64], CSpritz [65], MFDp [66-68], MFDp2 [69], DISOPRED3 [70],
and ESpritz [71].

2.2 Popular disorder predictors

We provide details for ten popular disorder predictors that can be accessed and used
online. The popularity of these predictors is quantified based on their citation data shown in
Table 1. The ten predictors secure relatively high annual citations counts that range
between 15 and 110. Two predictors, IUPred and DisEMBL, have received over 1100
citations each. The median total number of citations across the ten methods is 197,
suggesting that they are heavily utilized by the community. The ten highly cited predictors
include several methods that were originally developed in early 2000s including DISOPRED,
DisEMBL, PONDR and IUPred, and a few methods that were published after 2010, such as
Espritz, SPINE-D, disCoP, and SPOT-Disorder. They can be accessed via the websites listed in
Table 1.

Table 2 summarizes information concerning predictive architecture and performance
for the ten disorder predictors. These computational tools rely a wide range of different
predictive inputs. All 10 methods use the inputs generated directly from the protein
sequence, which typically include composition, physiochemical properties, propensity for
disorder and position of amino acids. Six of the 10 methods use sequence-derived
evolutionary profiles, which are usually generated with the PSI-BLAST algorithm [72]. A few
tools also utilize structural properties such as solvent accessibility, secondary structure,
backbone angles and B-factors that are predicted from the input sequence. The three meta-
predictors (MFDp, ESpritz and disCoP) by definition use the predicted disorder as one of
their inputs. PrDOS also performs alignment to a database of template proteins. Table 2 also
reveals that all but one of the 10 methods utilize machine learning models. The only one
popular ab-initio predictor is IUPred. The high popularity of this tool (Table 1) is driven in
part by its short runtime resulting from the use of a simple predictive model and sequence
only-based input. Table 2 shows that the most frequently used machine learning models are
neural networks and support vector machines. Overall, this analysis reveals that the
described here methods make use of a wide range of predictive architectures.



Table 1. Availability and citation counts for the ten popular disorder predictors that are available online.

Name References Year most cited Number of Annual number URL
article published citations of citations
IUPred [40,41,73] 2005 1533 109.5 http://dis.embl.de/
DisEMBL [49] 2003 1121 70.0 http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1
DISOPRED [70,53,54] 2015 201 50.2 http://www.pondr.com/
PONDR [43-47] 2006 583 44.8 https://iupred2a.elte.hu/
PrDOS [58] 2007 392 32.7 http://prdos.hgc.jp/
ESpritz [71] 2012 193 27.6 http://biomine.cs.vcu.edu/servers/MFDp
SPOT-Disorder [57] 2017 39 19.3 http://protein.bio.unipd.it/espritz/
disCoP [61] 2014 91 18.2 http://sparks-lab.org/SPINE-D/
SPINE-D [55] 2012 117 16.7 http://biomine.cs.vcu.edu/servers/disCoP/
MFDp [66,67] 2010 131 14.6 http://sparks-lab.org/server/SPOT-disorder/

Citations were obtained from Google Scholar on January 21, 2019. To avoid duplicate citations, the most cited publication for tools that were published multiple times was used. Methods are
sorted by their annual number of citations, which is calculated by dividing the number of citations by the number of years since the corresponding article was published, which is given in the
“Year most cited article published” column.

Table 2. Predictive architecture and relative predictive performance for the ten popular disorder predictors that are available online.

Name References Inputs Model type ML model used Meta-predictor Rank in [29] Rankin [36] Rankin [74]
DisEMBL [49] SEQ ML NN No Unavailable 14 18
DISOPRED [70,53,54] SEQ ECP ML NN No 2 5 15
PONDR [43-47] SEQ PDI ML SVM+LR No Unavailable 3 13
IUPred [40,41,73] SEQ ab-initio Not applicable No Unavailable 6 5
PrDOS [58] SEQ ECP ALT ML SVM No 1 Unavailable Unavailable
MFDp [66,67] SEQ ECP PSS PSA PBF PDI ML SVM Yes 3 1 19
ESpritz [71] SEQ ECP PDI ML NN Yes 12 Unavailable 1
SPINE-D [55] SEQ ECP PSS PSA ML NN No 9 Unavailable 3
disCoP [61] SEQ PDI ML LR Yes Unavailable Unavailable Unavailable
SPOT-Disorder [57] SEQ ECP PSS PSA ML NN No Unavailable Unavailable Unavailable

Methods are sorted by the date of their first publication. The “Inputs” column gives a list of predictive inputs that include SEQ (composition, physiochemical properties, propensity for
disorder and position of amino acids); ECP (evolutionary conservation and PSSM/HMM profile); ALT (alighment to template proteins); PSA (putative solvent accessibility); PSS (putative
secondary structure and/or backbone angles); PBF (putative B-factors); and PDI (putative disorder);. The “Model type” column categorizes predictors into machine learning (ML) vs. ab-initio
models. The “ML algorithm” column specifies type of the ML algorithm used: LR (logistic regression), NN (neural network) and SVM (support vector machine). The last three columns provide
ranking in three recent assessments of predictive performance [29,36,74].



The last three columns in Table 2 overview relative predictive performance of the
ten popular methods. This analysis is based on three recent comparative assessments that
include CASP10 [29], one of the largest recent assessments that covered 19 methods [36],
and a recent assessment that focuses on the prediction of long IDRs [74]. We have to
combine results from multiple assessments since each of them relies on a different
benchmark dataset and covers a different subset of methods. The ten popular methods
include several tools that secure top three rank in at least one of the comparative studies.
They are DISOPRED (second in [29]), PONDR (third in [36]), PrDOS (first in [29]), MFDp (first
in [36] and third in [29]), ESpritz (first in [74]), and SPINE-D (third in [74]). The predictive
performance is quantified and further discussed in Section 2.4. Based on the above analysis,
we recommend several methods for the end users. They include the top three predictors
from the CASP10 assessment: PrDQOS, DISOPRED, and MFDp, the best method to predict
long IDRs, ESpritz, and the most cited and fast IUPred.

We also note that pre-computed disorder predictions can be conveniently accessed
and downloaded from databases, such as MobiDB [75] and D?P? [76]. These databases
provide access to the results generated by several methods without the need to find and
run the algorithms. D?P? includes predictions from nine methods for over 10 million proteins
from 1765 complete genomes of 1256 distinct organisms. MobiDB comprehensively covers
the complete set of about 130 million proteins from UniProt and includes predictions for 10
methods.

2.3 Outputs generated by the disorder predictors

The disorder predictors generate two types of outputs for each amino acid in the
input protein sequence: a real-value propensity for disordered conformation and/or a
binary prediction (disordered vs. ordered). As example prediction generated with the
webserver of the MFDp method [66-68], which is available at
http://biomine.cs.vcu.edu/servers/MFDp/, is shown at the bottom of Figure 1 in the
“Putative IDR” (binary prediction) and “ID propensity” lines (real-value putative propensity).
The binary prediction line shows MPDp predicts three IDRs: M1 to K30 region at the N-
terminus, N83 to E109 region, and M123 to H235 region at the C-terminus. They nicely
coincide with three of the native IDRs (M1 to R17, A84 to P106, and H134 to H235 regions),
while the other native IDR (V66 to E76) was missed by this predictor. The propensity scores
provide context for the binary predictions. The predictions of IDRs that have higher scores (5
or above) are assumed to be more reliable. Similarly, residues that are predicted with low
scores (1 or below) are assumed to be likely structured. In contrast, amino acids with the
putative propensities between 2 and 4 are assumed to be less accurately predicted. The
“missed” regions (V66 to E76) is actually associated with the putative propensities = 2 that
suggest that the prediction may not be reliable there.

We also note recent efforts to provide quality assessment score that accompany the
disorder predictions [77,78]. These scores are used to more accurately annotate residues
that are correctly predicted, when compared to using the putative propensities. The
QUARTER tool that offers this functionality for ten disorder predictors is available at
http://biomine.cs.vcu.edu/servers/QUARTER/ [78].



2.4 Predictive quality of the disorder predictors

Various predictors of intrinsic disorder utilize different training datasets, different
information extracted from the input sequence (Table 2), and a variety of different types of
predictive models (Table 2) [31,38]. This leads to different predictions for the same input
sequence, with some being more accurate than others.

The most popular measure of the predictive quality for the putative propensities is
the area under the ROC curve (AUC). AUC ranges between 0.5 (equivalent to random
predictions) and 1 (always correct predictions). The binary predictions of disorder are
typically assessed using the Matthews correlation coefficient (MCC) that ranges between -1
and 1. Predictions with MCC = 0 are equivalent to a random result, while larger and positive
values of MCC correspond to better (more correlated with native annotations of disorder)
predictions.

Figure 2 compares predictive performance for the top 10 predictors that have the
highest AUC values in the CASP6 and CASP10 experiments. The figure shows the values of
the MCC and AUC measures. We do not use the CASP5 results, the first time the disorder
predictors was assessed in CASP, since this assessment included only six method and did not
include an adequate set of measures of predictive performance (e.g., neither AUC nor MCC
were quantified). CASP10 is the last time disorder was evaluated as part of the CASP
experiment. The figure shows that majority of the best predictors at the time of CASP6,
which is in 2004, offered modest levels of predictive quality, with AUCs ranging between
0.65 and 0.88 and with MCCs between 0.14 and 0.41. The results at CASP10 in 2013
demonstrate that much progress has been made. The AUCs of the top 10 predictors in
CASP10 range from 0.86 to 0.91 and MCCs from 0.34 to 0.53. In essence, the best from
CASP6 offer predictive performance that is equivalent to the methods at the bottom of the
top 10 list in CASP10. This analysis also suggests that the current methods, in particular the
top 3 performers at CASP10 (PrDOS-CNF, DISOPRED3 and MFDp) offer very accurate
predictions.

The top three disorder predictors in CASP10 rely on the machine learning-derived
predictive models. PrDOS-CNF is a new version of the popular PrDOS predictor [58] that
uses first order conditional neural field model geared for analysis of linear chains. The inputs
to this model include a 27-residues long sliding window that covers the amino acid chain
and the corresponding position specific scoring matrix (PSSM) generated with PSI-BLAST
[72]. DISOPRED3 [79] is a meta-predictor that combines predictions generated by three
older and complementary versions of the DISOPRED methods [53,54] that utilize different
machine learning models: neural network, support vector machine and nearest neighbour.
The results produced by these methods are processed with a small neural network that has
one hidden layer. MFDp [66-68] is also a meta-predictor but it pools results generated by
nine disorder predictors: DISOPRED2 [80], IUPred [81], MD [62], Norsnet [82], Ucon [83],
SPINE-D [84], GlobPlot [85], DisEMBL [86], and PreDisorder [87]. Besides these inputs, it also
uses information extracted from the HMM-based substitution matrix generated with
HHpred [88] and putative secondary structure, solvent accessibility and B-factors. These
inputs are processed with a simple logistic regression model that outputs propensities for
intrinsic disorder. The high predictive quality of these methods can be attributed to either



the use of a sophisticated predictive model, such as the conditional neural field, or the use
of a well-designed or comprehensive consensus.
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Figure 2. Comparison of the predictive performance for the top 10 predictors from CASP6 and
CASP10 experiments.

The predictive performance is quantified with AUC (y-axis) for the putative propensities and with MCC (x-axis) for the
putative binary predictions. The top three methods in the CASP10 experiment are named in the top right corner.

3 Importance of intrinsic disorder predictions for systems
medicine

Intrinsic disorder is important for several areas of applied research that are
intimately associated with the systems medicine efforts. As one example, recent
computational and experimental studies demonstrate that viruses rely heavily on protein
with IDRs [89]. Viruses typically have small genomes that code for as few as a dozen
proteins that, at the same time, have to interact with many different elements of the host
organism, such as nucleic acids, proteins and membranes. Recent computational studies
that are supported by accurate predictions of IDRs suggest that many viral proteins contains
IDRs or are fully disordered and that a lot of these proteins are involved in the protein-
protein, protein-RNA and protein-DNA binding events [90-92]. Consequently, viral proteins
are capable of performing multiple interactions through their IDRs to exert the multiple
concomitant biological effects. Thus, targeting IDRs within viral proteins to impair critical
protein-protein protein-nucleic acids interactions could constitute an appealing antiviral
strategy [89]. Interestingly, a recent bioinformatics analysis suggests that antiviral innate
immune response of viral hosts also utilizes IDRs [93]. IDRs were found to be common
among human antiviral proteins, including major players involved in controlling and
regulating the innate antiviral immunity. Proteins with IDRs are engaged in protein-protein



and protein-nucleic acids interactions and are enriched in post-translational modification
sites [93], helping us to successfully overcome viral invasions. Correspondingly, we note the
availability of several computational tools that accurately predict IDRs that are specifically
involved in the protein-protein interactions [73,94-96] and protein-nucleic acids binding
[97,94].

Dysfunction of proteins with IDRs is associated with a wide range of human diseases
[20]. The main consequences of protein misfolding that leads to the development of various
conformational diseases are aggregation and pathological fibrillation (amyloidogenesis),
which are fundamentally associated with proteins that are enriched in IDRs. Examples of
these conformational maladies are the Alzheimer's disease, Down's syndrome, polyQ
diseases, prion diseases, Parkinson's disease, and dementia [98]. Moreover, since proteins
with IDRs carry regulatory and signalling functions that often rely on molecular interactions,
their misregulation, misinteractions, and missignaling are also linked to several types of
cancers, diabetes, and cardiovascular diseases [20]. The support for these observations
comes from numerous experimentally characterized disease-related proteins, such as AFP,
p53 and BRCA-1 that are involved in cancers, and AB and tau proteins that are associated
with the Alzheimer's disease, as well as and from comprehensive bioinformatics studies that
rely on high-quality predictions of IDRs [20,99]. A more comprehensive understanding of the
functional significance of IDRs, which can be supported with the currently available
predictive tools, would allow us to gain further insight into molecular-level underpinnings of
these diseases.

The disorder-rich proteins such as a-synuclein, tau, p53, and BRCA-1, are attractive
targets for drugs modulating protein-protein interactions [20]. This type of drug targeting is
a relatively new paradigm that aims to expand the current druggable protein targets by
designing new classes of therapeutic agents [100,101]. A recent comprehensive
computational analysis of the druggable human proteins that covers a dozen drug classes
and close to 20 major classes of drug targets reveals a strong bias towards structured
protein targets [102]. This finding is related to the use of rational drug design techniques
that rely on protein structures to model protein-drug interactions. Given the substantial
enrichment of the intrinsic disorder in the human proteome [4,5], importance of disorder
for protein-protein interactions [20], and current bias towards structured drug targets, it is
inevitable that proteins with IDRs will raise up on the list of prospective drug targets. Thus,
novel strategies for drug discovery efforts that target these proteins are being developed
[21,22] and they will undoubtedly benefit from the availability of accurate predictors of
IDRs.

4 Summary and further readings

Intrinsic disorder is abundant in proteins and crucial for numerous cellular functions
associated with molecular assembly and recognition, signalling, regulation, transcription and
translation, to name just a few examples. However, majority of the disordered protein
regions remain to be discovered and functionally deciphered. These annotation efforts can
be effectively supported with the current predictors of disordered regions and disorder
functions [31]. We survey several well-cited methods for the prediction of IDRs in protein
sequences, focusing on practical aspects related to their availability, impact, outputs and



predictive performance. We also demonstrate that the leading methods provide accurate
predictions. Moreover, we discuss impact of these predictions on the systems medicine
field. We postulate that a more comprehensive knowledge of disorder will open new
frontiers for systems medicine. It will allow us to decipher mechanisms underlying viral
infections and the corresponding immune responses, attain a more complete understanding
of several human diseases, and will contribute to elucidation of novel drug targets and
therapeutics.

While there are many disorder predictors and modern methods offer accurate
results, there is still room for further improvements and development. One potential
avenue is to apply deep neural network models that were recently shown to provide
promising results in several related bioinformatics area [103,104]. Three recent examples of
such disorder predictors are DeepCNF-D that utilizes weighted deep convolutional neural
fields [56], SPOT-Disorder that uses deep recurrent neural network [57] and SPOT-Disorder-
Single that applies an ensemble of deep recurrent and convolutional neural networks [59].
Another, arguably more impactful research direction is the development of methods that
target prediction of specific types of functional IDRs. Several of these tools were released in
recent years including methods that predict protein-binding IDRs [73,94-96,79,105-109],
nucleic acids-binding IDRs [97,94] and disordered linker regions [110]. Lastly, IDRs are
known to be multifunctional [111]. While as many as 37% of the functionally annotated IDRs
in the Disprot database have multiple functions [31], so far only one predictor of these
regions, DMRpred [112], was developed. Numerous other functions of IDRs have no
associated predictive tools and some of the currently covered function would benefit from
availability of more accurate predictors. Thus, we anticipate further growth in the area.

Readers interested in additional information would benefit from a recently published
in-depth survey of predictors of disorder and disorder functions [31]. We also recommend
the special issue on “Intrinsically Disordered Proteins” that was published in the Chemical
Reviews journal in 2014, which includes comprehensive reviews on topics related to
importance of IDRs in human diseases [113], in viral proteomes [89] and in protein-protein
interactions [16].
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Glossary

AUC: Area under the receiver operating curve which is used to assess predictive performance
for numerical (real-valued) predictions.

CASP: Critical Assessment of protein Structure Prediction experiment, a structural-
bioinformatics community initiative to assess predictive performance of tool for the
prediction of protein structure and disorder

Intrinsic disorder: Lack a stable tertiary structure in protein which typically occurs in specific
regions in protein sequence and which is manifested as a highly diverse conformation
ensemble.

MCC: Matthews correlation coefficient which is used to assess predictive performance for
binary predictions.

Meta-predictor: Predictive architecture that combines outputs produced by several
predictors, typically using a majority vote consensus or a separate predictive model.

Relevant Websites

IUPred: https://iupred2a.elte.hu/

DisEMBL: http://dis.embl.de/

DISOPRED3: http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1
PONDR: http://www.pondr.com/

PrDOS: http://prdos.hgc.jp/

Espritz: http://protein.bio.unipd.it/espritz/

SPOT-Disorder: http://sparks-lab.org/server/SPOT-disorder/
disCoP: http://biomine.cs.vcu.edu/servers/disCoP/
SPINE-D: http://sparks-lab.org/SPINE-D/

MFDp: http://biomine.cs.vcu.edu/servers/MFDp
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