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Summary 

Computational identification of B-cell epitopes from antigen chains is a difficult and actively 

pursued research topic. Efforts towards the development of method for the prediction of linear 

epitopes span over the last three decades, while only recently several predictors of conformational 

epitopes were released. We review a comprehensive set of thirteen recent approaches that predict 

linear and four methods that predict conformational B-cell epitopes from the antigen sequences. We 

introduce several databases of B-cell epitopes, since the availability of the corresponding data is at 

the heart of the development and validation of computational predictors. We also offer practical 

insights concerning the use and availability of these B-cell epitope predictors, and motivate and 

discuss feature research in this area. 
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1. Introduction 

One of the key aspects of an immune system is the antibody-mediated ability to identify foreign, 

infectious objects, such as bacteria and viruses. This is implemented through binding of the 

antibodies and antigens (e.g., proteins from the pathogenic entity) at sites known as B-cell epitopes. 

Ability to identify these binding areas in the antigen sequence or on its surface is important for the 

development of vaccines and immunotherapeutics (1). The B-cell epitopes are categorized into two 

classes: linear/continuous and conformational/discontinuous. The former B-cell epitope is a short 

segment in the corresponding amino acid sequence (Figure 1A). Majority of the B-cell epitopes are 

conformational, which means that they are distributed over multiple segments in the protein chain 

that are located in close proximity in the folded 3-dimensional structure (Figure 1B) (2). 

 

Although several experimental techniques can be used to identify the B-cell epitopes (3), they are 

relatively time consuming and expensive, particularly when considering to do that on large, 

genomic scale. Computational methods are a viable alternative to provide a fast and cost-effective 

way to predict the B-cell epitopes (4). A fairly large number of computational B-cell epitope 

predictors, which are characterized by varying degrees of success and scope, have been developed 

over the last three decades (4-7). Although progress has been accomplished in the context of the 

development and applications of these computational methods, much remains to be done, 

particularly considering modest predictive performance of these approaches (see Note 1). In parallel, 

a few efforts to collect, annotate and deposit B-cell epitopes into publicly accessible databases are 

currently underway (8-10) and integrated resources that provide access to multiple tools for 

prediction and analysis of epitopes are available (11,12). Such efforts should make these 

technologies more accurate (more data allows for building more accurate predictive models) and 

more convenient (freely available and integrated) for the end users. 

 



The algorithms that predict the B-cell epitopes are classified into sequence-based and 

structure-based. The structure-based methods use the 3-dimensional structure of the antigen to 

perform the prediction, while the sequence-based methods utilize only the sequence of the antigen. 

While the structure-based predictors usually provide higher predictive performance when directly 

compared with the sequence-based methods (13-15), they are constrained to a relatively small set of 

targets for which the structure is available. They also suffer from a limited availability of the 

annotated data. Recent years have witnessed a revival of the development of the sequence-based 

methods, which currently are capable of finding both linear and conformational epitopes. To this 

end, we overview major relevant databases and summarize a comprehensive set of 17 

sequence-based predictors of the B-cell epitopes, which expands over the coverage of recent 

predictors offered by the prior reviews (4, 6). 

2. Databases of B-cell epitopes 

Several databases that store experimentally annotated B-cell epitopes were developed over the last 

decade. They differ in scope and sources of data. These databases provide data that are used to 

develop and evaluate new and improved predictors of B-cell epitopes (see Note 2). We briefly 

summarize, in chronological order, six publicly available databases. 

2.1 AntiJen  

This repository was developed in 2001 at the Edward Jenner Institute for Vaccine Research in UK 

(16). It was later updated to version 2.0 (10, 17). It stores experimental thermodynamic binding data 

concerning the interaction of peptides including B-cell receptors, T-cell receptors, Major 

Histocompatibility Complexes (MHCs), TAP transporters and immunological protein-protein 

interactions. The B-cell and T-cell epitopes are also included. As of January 2013, there were total 

of 24000 entries in this database, and according to (17) 816 entries were related to B-cell epitopes. 

Users can search for the relevant data utilizing BLAST (18) and a variety of specialized search 



options that allow defining specific experimental conditions and molecules. Based on the Web of 

Knowledge as of June 2013, this resource accumulated 211 citations across the three publications. 

Availability: http://www.ddg-pharmfac.net/antijen/ 

2.2 IEDB 

IEDB (Immune Epitope DataBase) was established in 2004 at the La Jolla Institute of Allergy and 

Immunology in San Diego (19,20) and it was recently upgraded to version 2.0 (8). This 

comprehensive resource provides integrated access to experimentally characterized B-cell epitopes, 

T-cell epitopes and data on the MHC binding. The data are extracted from epitope-related articles 

available in PubMed and from direct submissions from scientists. The database includes epitope 

sequence and structure, source antigen and organism from which the epitope is derived, and details 

concerning experiments describing recognition of an epitope and related assays including MHC 

ligand elution assays and MHC binding assays. Users can conveniently query the database through 

a web interface utilizing a variety of criteria, such as the source antigen, source organism, epitope 

structure, immune recognition context, host organism, etc. Based on the Web of Knowledge as of 

June 2013, this database is highly cited with the combined number of citations for the three articles 

totaling to 332. 

Availability: http://www.iedb.org 

2.3 Bcipep  

This resource was developed in 2004 at the Institute of Microbial Technology Chandigarh in India 

(21). It provides access to experimentally determined linear B-cell epitopes, which were extracted 

from literature in PubMed and collected from other publicly available databases. As of January 

2013, it contained 3031 entries including 539 entries from bacteria, 2046 from viruses, 236 from 

protozoa, 53 from fungi, and 157 from other organisms. Users can search the database through a 

variety of options including keywords related to the relevant publications, sequence, entry number, 



source organism, etc., by utilizing sequence similarity with BLAST, and by scanning through the 

associated protein structures. 

Availability: http://www.imtech.res.in/raghava/bcipep/ 

2.4 CED  

CED (Conformational Epitope Database) was built in 2005 by Huang and Honda at the University 

of Electronic Science and Technology in China (22). This database focuses on the conformational 

epitopes. The entries were extracted from peer-reviewed journal articles collected from PubMed 

and ScienceDirect. CED provides the location of the epitope in the sequence and structure, 

immunological properties of the epitope, the source antigen, and corresponding antibody. The 

database can be browsed or searched using keywords through a website interface. As of January 

2013, CED included 293 entries. 

Availability: http://immunet.cn/ced/  

2.5 Epitome  

This database was established in 2005 by Rost group at the Columbia University (23). Epitome 

provides access to a collection of antigen-antibody complex structures, including annotation and 

visualization of residues that are involved in the interactions and information concerning certain 

structural characteristics of the binding regions. The entries were collected from Protein Data Bank 

(PDB) (24). User can search the database utilizing keywords with options to specify chain and 

certain structural properties of antigen and antibody, and also by finding similar sequence with 

BLAST. This resource contains 142 antigens from protein-antibody complexes (23). 

Availability: http://www.rostlab.org/services/epitome/ 

2.6 SEDB 

Structural Epitope Database (SEDB) was developed in 2011 at the Pondicherry University in India 

(9). It provides access to a comprehensive set of structures of B-cell, T-cell and MHC binding 



proteins. The data was collected from PDB, PDBsum (25), MHCBN (26), IMGT/3D (27), Bcipep, 

and IEDB databases. SEDB includes information concerning epitope sequence and position, 

antigen-antibody interacting residues, corresponding taxonomic identifiers, and is cross-linked to 

relevant databases such as IEDB, UniprotKB (28), PDB, and NCBI (29). The database can be either 

browsed or searched by finding, using BLAST, similar chains. It currently includes 614 entries with 

273 B-cell epitopes. 

Availability: http://sedb.bicpu.edu.in/ 

 

3. Sequence-based predictors of linear B-cell epitopes 

Prediction of linear B-cell epitopes from the antigen sequences dates back to 1980s. The trailblazing 

methods were fairly simple and utilized a single propensity (flexibility, solvent accessibility, etc.) of 

the underlying chain or chain fragment (2, 30-35). A new generation of methods that combined 

multiple physicochemical propensities to predict B-cell epitopes has surfaced in 1990s. They 

include PREDITOP (36), PEOPLE (37), BEPITOPE (38), BcePred (39), and LEP-LP (40) 

predictors. Predictive quality of these approaches was questions in 2005 in a study by Blythe and 

Flower (41). They analyzed predictive performance of close to 500 amino acid propensity scales on 

50 antigens and determined that these propensities performed only slightly better than random. 

Since than this field has observed a revival that resulted in the development of more sophisticated 

knowledge-based methods, particularly in the context of the predictive models that they utilize. The 

considered models included a neural network in ABCpred (42); hidden Markov model in BepiPred 

(43); and naïve Bayes that was used in Epitopia (13, 14). The dominant model used in recent years 

is the Support Vector Machine (SVM), which was applied in a wide range of methods, such as AAP 

(44), BCPred (45), FBCPred (46), COBEpro (47), BayesB method (48), BROracle (49), LEPS (50), 

SVMTriP (51), and LBtope (52). These approaches differ in the formulation and scope of 

information extracted from the input antigen sequence, in the size of data that were used to compute 



the SVM model, and in the type of SVM kernel function used. Table 1 summarizes methods that 

were developed since 2005 and includes one representative older method, BEPITOPE (see Note 3). 

COBEpro can also predict conformational epitopes and thus it is discussed later in this chapter. 

Several predictors of linear B-cell epitopes are widely cited in the literature, relative to when they 

were published. Based on the Web of Knowledge as of June 2013, ABCpred and BepiPred that 

were published in 2006 were already cited 139 and 145, respectively. The AAP method that was 

published in 2007 was cited 106 times, and the newer articles for BCPred and Epitopia that were 

released in 2008 and 2008 already accumulated 54 and 47 (for the two publications combined) 

citations, respectively. Most of the abovementioned recent sequence-based linear B-cell epitope 

predictors, except BROracle, are available as convenient web servers that require the end user only 

to provide an input antigen sequence. Five methods, BepiPred, AAP, BCPred, FBCPred, and 

Epitopia can be also downloaded as standalone applications, which would appeal to the users who 

would like to incorporate such tools into their computational pipelines. Following, we summarize 

the 13 predictors from Table 1 in the chronological order. 

3.1 BEPITOPE 

BEPITOPE was published in 2003 by Pellequer’s group at the Centre de Marcoule at CEA in 

France (38). BEPITOPE utilizes a scoring function that combines information from over 30 selected 

physicochemical propensities including hydrophilicity, flexibility, propensity to form beta-turns, 

and surface accessibility. User can define sequence motifs to filter the predictions.  

Inputs: Protein sequence in FASTA format or accession number. 

Outputs: Numerical profile over the input chain where putative epitopes are indicated by peaks.  

Architecture: Scoring function. 

Availability: This program is available for free for academic use and has to be requested from the 

authors. User is required to sign a license agreement before receiving a copy of the software. Web 

server is not available. 



3.2 ABCpred 

ABCpred was developed in 2006 by Raghava’s group at the Institute of Microbial Technology 

Chandigarh in India (42). This method was one of the first to use a more sophisticated, machine 

learning-based prediction model. This model is a recurrent neural network that has a single hidden 

layer with 35 neurons. It utilizes a segment of 16 consecutive residues to perform prediction. 

Inputs: Amino acid sequence using since-letter encoding. User can also set values of several 

parameters including threshold to identify epitopes and segment length. Default values are used in 

case if user does not want to set parameter values. 

Outputs: Starting position and numeric score for predicted epitope(s). 

Architecture: Recurrent neural network. 

Availability: Web server at http://www.imtech.res.in/raghava/abcpred/.  

3.3 BepiPred 

BepiPred was created in 2006 by Lund’s group at the Technical University of Denmark (43). This is 

the first and so far the only method that utilizes hidden Markov model. This model combines 

multiple physicochemical propensities including antigenicity, hydrophilicity, hydrophobicity, 

solvent accessibility and secondary structure, which are pre-processed using a running mean 

window.  

Inputs: Protein sequence or a set of sequences (up to 2000) in FASTA format. Each sequence has to 

have at least 10 and no more than 6000 amino acids. User can also set value of threshold to identify 

epitopes; default value (0.35) is used otherwise. 

Outputs: Numeric score for each residue in the query protein sequence. The predicted epitope is 

composed of residues with scores higher than the threshold. 

Architecture: Hidden Markov model. 

Availability: Web server at http://www.cbs.dtu.dk/services/BepiPred/. Standalone version for UNIX 

platform is also available at this web site. 



3.4 AAP 

AAP (amino acid pair antigenicity) predictor was developed in 2007 at the Shanghai Jiaotong 

University in China (44). This is the first method that utilizes the SVM-based prediction model. The 

authors introduced antigenicity propensity scale, which was empirically shown to improve over 

previously used physicochemical propensities, that was utilized to convert the query sequence into 

numerical inputs for the SVM. 

Inputs: Amino acid sequence using since-letter encoding. User can also select the length of the 

epitope to be predicted, with default value set to 20 and allowed values of 12, 14, 16, 18, 20, and 

22.  

Outputs: Predicted epitope segments with the predefined length. 

Architecture: Support Vector Machine with RBF kernel. 

Availability: The authors do not provide the software. However, a web server that is a part of 

BCPREDS platform can be found at http://ailab.cs.iastate.edu/bcpreds/. Standalone version is also 

available at this web site. 

3.5 LEP-LP 

LEP-LP was released in 2008 by Tun-Wen Pai’s group at the National Taiwan Ocean University 

(40). The authors utilized mathematical morphology to extract local peaks from a numerical profile 

that implements combination of several weighted physicochemical propensity scales, such as 

hydrophilicity, solvent accessibility, polarity, flexibility, antigenicity, and secondary structure. 

Inputs: Amino acid sequence using since-letter encoding. 

Outputs: Ranked putative epitope segments with the associated numeric scores.  

Architecture: Scoring function based on mathematical morphology 

Availability: Web server at http://biotools.cs.ntou.edu.tw/lepd_antigenicity.php (currently 

unavailable). 



3.6 BCPred 

BCPred was published in 2008 at the Iowa State University (45). This is the second method that 

applied SVM-based prediction model, however this model is customized to use string kernel. The 

authors utilized a specific type of the string kernel, subsequence kernel, which considers a feature 

(input) space generated by a set of k-mer subsequences of the input chain.  

Inputs: Amino acid sequence using since-letter encoding. User can also select the length of the 

epitope to be predicted, with default value set to 20 and allowed values of 12, 14, 16, 18, 20, and 

22. 

Outputs: Predicted epitope segments with the predefined length and with the associated numeric 

scores. 

Architecture: Support Vector Machine with string kernel. 

Availability: Web server at http://ailab.cs.iastate.edu/bcpreds/. Standalone version is also available 

at this web site. 

3.7 FBCPred 

FBCPred was developed in 2008 at the Iowa State University (46). Similar to BCPred, this method 

also uses SVM model with the subsequence kernel. FBCPred targets prediction of linear B-cell 

epitopes of variable length, in contrast to BCPred that assumes fixed (user-defined) length. 

Inputs: Amino acid sequence using since-letter encoding. User can also select the length of the 

epitope to be predicted, with default value set to 14. 

Outputs: Predicted epitope segments with the predefined length and with the associated numeric 

scores. 

Architecture: Support Vector Machine with string kernel. 

Availability: Web server at http://ailab.cs.iastate.edu/bcpreds/. Standalone version is also available 

at this web site. 



3.8 Epitopia 

This predictor was published in 2009 by Tal Pupko group at the Tel Aviv University in Israel (13, 

14). Epitopia predicts linear B-cell epitopes from either a protein structure or sequence; here we 

focus on the sequence-based version. This method uses Naïve Bayes classifier by considering a 

small sliding window of 7 residues. The inputs for the classifier are generated from this window by 

using 14 physicochemical propensities including polarity, flexibility, antigenicity, hydrophilicity, 

solvent accessibility, secondary structure, and ratio between the frequency of selected amino acid in 

the window and the remaining part of the sequence.  

Inputs: Protein sequence in FASTA format and an email address of the user. 

Outputs: Numeric immunogenicity score and corresponding probability for each amino acid in the 

query protein sequence. The immunogenicity scores are used to derive a ranked list of epitope 

segments.  

Architecture: Naïve Bayes classifier. 

Availability: Web server at http://epitopia.tau.ac.il. Standalone version for LINUX platform is also 

available at this web site. 

3.9 BayesB 

This method was created in 2010 at the National University of Singapore (48). BayesB utilizes the 

SVM model and employs Bayes feature extraction that is based on differences in the frequency of 

occurrence of amino acid types at each position in a predefined (training) set of epitopes and 

non-epitope segments. 

Inputs: Protein sequence in FASTA format or using since-letter encoding. User can also select the 

length of the epitope to be predicted, with default value set to 20. 

Outputs: Predicted epitope segments with the predefined length. 

Architecture: Support Vector Machine with RBF kernel. 

Availability: Web server at http://www.immunopred.org/bayesb/. 



3.10 BROracle 

B-Cell Epitope Oracle (BROracle) method was developed in 2011 at the Dana-Farber Cancer 

Institute (49). This predictor is implemented using SVM model. The input to the model were 

generated from the sequence and a variety of sequence-derived characteristics including 

evolutionary information calculated from PSI-BLAST output (53), secondary structure predicted 

with PSI-PRED (54), solvent accessibility predicted with ACCpro (55), disorder predicted 

withVSL2 algorithm (56), and sequence complexity computed with SEG algorithm (57). 

Inputs: Protein sequence. 

Outputs: Unknown. 

Architecture: SVM classifier with polynomial kernel. 

Availability: Standalone program at https://sites.google.com/site/oracleclassifiers/ (currently 

unavailable). Web server is not available. 

3.11 LEPS 

LEPS (Linear Epitope prediction based on Propensities scale and SVM) was created in 2011 by 

Tun-Wen Pai’s group at the National Taiwan Ocean University (50). This method extends the 

LEP-LP predictor by the same group. First, candidate epitopes are predicted with LEP-LP. Next, 

SVM model is used to remove less probable candidates utilizing their amino acid sequences. 

Inputs: Protein sequence in FASTA format or using since-letter encoding. The user has an option to 

adjust 32 parameters related to the setup of the propensities considered in LEP-LP. Default 

parameter values are used in case if user does not want to set parameter values. 

Outputs: Ranked list of predicted epitope segments. 

Architecture: Support Vector Machine with RBF kernel. 

Availability: Web server at http://leps.cs.ntou.edu.tw. 



3.12 SVMTriP 

SVMTriP was created in 2012 by Chi Zhang’s group at the University of Nebraska, Lincoln (51). 

This predictor is based on SVM model that utilizes similarity, calculated with Blosum62 matrix, 

and frequency of tripeptides (3-mers) from the input antigen chain.  

Inputs: Protein sequence in FASTA format or using since-letter encoding. User can select the length 

of the epitope to be predicted, with default value set to 20. 

Outputs: Predicted epitope segments with the predefined length and with the associated numeric 

scores. 

Architecture: Support Vector Machine with string kernel. 

Availability: Web server at http://sysbio.unl.edu/SVMTriP. 

3.13 LBtope 

LBtope was published in 2013 by Raghava group at the Institute of Microbial Technology 

Chandigarh in India (52). This method converts the antigen chain into numerical features 

(descriptors) that are based on dipeptide (2-mer) profiles. These features are fed into the SVM 

model that predicts epitopes. 

Inputs: Protein sequence or a set of sequences, in FASTA format. User can also select model type, 

using fixed size epitope fragments (20 residues long) or variable length epitopes (user-defined 

between 5 and 30); default value (variable length with 15 residues segment) is used otherwise. 

Outputs: Predicted epitope segments with the predefined length and with the associated numeric 

scores. 

Architecture: Support Vector Machine with undisclosed type of kernel. 

Availability: Web server at http://crdd.osdd.net/raghava/lbtope/. 

 



4. Sequence-based predictors of conformational B-cell epitopes 

A few methods were recently developed to predict the conformational B-cell epitopes from protein 

chains. This is a challenging problem given the fact that the corresponding epitopic residues are 

potentially distributed over an entire protein chain, without necessarily being clustered into longer 

segments. The prediction methods score each amino acid in an input protein chain (using a numeric 

or binary value) to indicate whether it is part of an epitope. A drawback of this prediction is that 

these programs do not group the predicted epitopic residues into the corresponding epitopes, which 

could be an issue if a given chain contains more than one epitope. The sequence-based predictors of 

conformational epitopes, which are summarized in Table 2, include COBEpro that was designed to 

predict linear epitopes and extended to predict conformational epitopes (47), CBTOPE (58), BEST 

(15), and Bprediction (59) (see Note 4). The first three methods apply the SVM model, while the 

most recent Bprediction is based on the random forest model, which utilizes a set of decision trees. 

Based on the Web of Knowledge as of June 2013, the oldest sequence-based predictor of 

conformational B-cell epitopes, COBEpro, which was published in 2009, was already cited 30 times. 

The other methods are too recent to accumulate citations. COBEpro, CBTOPE, and Bprediction are 

available to the end users via web servers. Two of the methods, CBTOPE and BEST, are provided 

as standalone software that the end users would install and use on their computers. Next, we 

summarize these four predictors in the chronological order. 

4.1 COBEpro 

COBEpro was published in 2009 by Baldi’s group at the University of California (47). COBEpro 

has a two-tier architecture where the first layer applies SVM to predict short segments (5 to 18 

residues long) in the input chain utilizing information based on their similarity to epitopic segments 

in a training database, and secondary structure and solvent accessibility predicted with SSpro (60, 

61) and ACCpro (55), respectively. The second layer is used to combine the above predictions to 



calculate epitopic propensity score for each amino acid. This allows COBEpro to be used for the 

prediction of discontinuous B-cell epitopes. 

Inputs: Protein sequence or a set of sequences, using since-letter encoding, and an email address of 

the user. 

Outputs: Ranked (according to propensity) list of most likely predicted epitopes, including their 

predicted secondary structure and solvent accessibility, and numeric propensity scores for each 

amino acid in the query protein sequence.  

Architecture: Support Vector Machine with Gaussian kernel. 

Availability: COBEpro is incorporated into the SCRATCH web server suite at 

http://scratch.proteomics.ics.uci.edu/. 

4.2 CBTOPE 

CBTOPE was released in 2010 by Raghava’s group at the Institute of Microbial Technology 

Chandigarh in India (58). This method applies a sliding window (a segment of 19 residues that is 

moved along the input antigen sequence) to predict the epitopic score for the residues in the middle 

of a given window. CBTOPE computes amino acid composition, which is represented using a 

binary vector, of the residues in the window and these values are inputted into the SVM model that 

predicts epitopic propensity. 

Inputs: Protein sequence in FASTA format or using since-letter encoding. User can select a 

threshold for the output scores from the predictor, with a default value set to -0.3. Residues with 

scores above the threshold are assumed to be epitopic. 

Outputs: Numeric propensity scores for each amino acid in the query antigen chain. The scores are 

integers between 0 and 9, where higher value denotes a higher likelihood of a given residue to be in 

an epitope. 

Architecture: Support vector machine with Gaussian kernel. 

Availability: Web server at http://www.imtech.res.in/raghava/cbtope/. Standalone version for 

Windows operating system is also available at this web site. 



4.3 BEST 

BEST (B-cell Epitope prediction using Support vector machine Tool) was published in 2012 by 

Kurgan’s group at the University of Alberta in Canada (15). This method utilizes SVM model and a 

comprehensive set of sequence-derived characteristics of the antigen chain. BEST is implemented 

using a two-layer architecture, see Figure 2. In the first layer, the input antigen sequence is 

processed using sliding widows of 20 amino acids. Each 20-mer segment is encoded by a numerical 

feature vector that utilizes sequence conservation computed based on Weighted Observation 

Percentage (WOP) matrix generated with PSI-BLAST (53), similarity to training epitopes based on 

measure proposed in (47), and secondary structure and relative solvent accessibility predicted with 

SPINE (62, 63). This vector is inputted into SVM model and the predictions from SVM are 

combined to generate the epitopic propensities in the second layer. 

Inputs: Protein sequence or a set of sequences, in FASTA format. 

Outputs: Numeric propensity scores for each amino acid in the query protein sequence. 

Architecture: Support Vector Machine with RBF kernel 

Availability: Standalone software for Linux platform is available at 

http://biomine.ece.ualberta.ca/BEST/. Web server is not available. 

 

 

4.4 Bprediction 

Bprediction was made available in 2012 by Zhang’s group at the Wuhan University in China (59). 

This predictor has a two-level design and applies an ensemble of random forest models that take a 

set of numerical features computed from sliding windows of size 9 (9-mers) generated over the 

antigen chain as their inputs. The inputs are divided into nine set, where each set is utilized by a 

different random forest model, which include (1) physicochemical propensities including flexibility, 

hydrophilicity, solvent accessibility, polarity, and propensity for formation of beta-turns; (2) amino 



acid composition of the residues in the window represented using binary vectors and (3) real-valued 

vectors; (4) composition of amino acids sets defined based on their R-groups; (5) values from the 

Position Specific Scoring Matrix (PSSM) generated by PSI-BLAST (53); (6) composition of 

dipeptides (2-mers) in the window; and (7) secondary structure and (8) relative solvent accessibility 

predicted with SABLE (64). The second level generates the output propensity scores by computing 

weighted average of normalized, based on z-scores, values of predictions from these nine models, 

see Figure 3.  

Inputs: Protein sequence using since-letter encoding and an email address of the user. 

Outputs: Numeric propensity scores for each amino acid in the query protein sequence. 

Architecture: Ensemble of random forests. 

Availability: Web server at http://bcell.whu.edu.cn. 

 

 

The overall architectures of the two most recent conformational B-cell epitope predictors, BEST 

and Bprediction, are relatively similar (Figures 3 and 4). Both utilize the two-layered design and 

use multiple sequence alignments computed with PSI-BLAST and predictions of secondary 

structure and solvent accessibility. The main differences are in the fact that they use different 

prediction models (SVM vs. ensemble of decision forests) and several different inputs (similarity 

scores vs. physicochemical propensities and various amino acid compositions). In spite of utilizing 

these relatively sophisticated architectures, the predictive performance of these and other predictors 

of conformational epitopes is at modest levels (see Note 1). This calls for more research towards the 

development of more accurate methods (see Note 5). 

5. Notes 

(1) We sampled recent publications that evaluated predictive performance of the current B-cell 

epitope predictors. For simplicity we concentrate on the area under the ROC curve (AUC) 



measure (4). AUC values range between 0.5 and 1, with 0.5 denoting a random prediction and 

higher values corresponding to better predictive performance. Five methods that predict 

epitopes from antigen sequences were compared side-by-side in (15) and were shown to achieve 

AUC between 0.52 and 0.57 on a benchmark dataset consisting of 149 antigens. In another 

study, six and two methods that predict epitopes from antigen structures and sequences, 

respectively, were evaluated on a small dataset with 19 antigens; their AUC values were in the 

0.57 to 0.63 range (59). A recent review of predictors that utilize antigen structure demonstrates 

that AUC values for the prediction of conformational epitopes range between 0.57 and 0.64 (5). 

Overall, these results reveal that further research is needed to improve the currently modest 

levels of predictive performance. 

(2) One of reasons behind relatively low predictive performance of B-cell epitope predictors is a 

relatively small size of the currently available annotated data. Most of the current and more 

successful methods are knowledge-based, which means that they utilize annotated, with the 

location of epitopes, structures or sequences of antigens to calculate and optimize their 

predictive models. Availability of additional annotated data would likely results in an improved 

performance of predictors, as the data used to build them would be more representative of the 

complete population of epitopes. 

(3) When testing sequence-based predictors of linear B-cell epitopes we found that two of them, 

LEP-LP and BROracle, were no longer available. The web server implementations of the 

remaining methods allow predictions for a single chain. In case a user wants to predict a set of 

chains, (s)he has to supply and predict them one at the time. The two exceptions are BepiPred 

and LBtope that simultaneously process prediction of multiple chains, with a limit of up to 2000 

sequences for a single run of BepiPred. Moreover, the BayesB predictor cannot predict peptides 

shorter than 25 residues. 

(4) Three sequence-based predictors of conformational B-cell epitopes are available to the end 

users as web servers and two as standalone applications. Two of them, COBEpro and 



Bprediction, are limited in the sense that they can predict only one sequence at the time. The 

other two, BEST and CBTOPE, are capable of predicting multiple chains in a single run. A 

further limitation of COBEpro is that it can be used to predict chains shorter than 1500 residues. 

(5) There are potentially many ways to pursue the development of more accurate predictors of the 

B-cell epitopes. One possibility is to utilize a consensus of different predictors. Although 

Bprediction already implements a consensus approach, it is limited to the same predictive 

models and the same prediction flow. Instead, the consensus should consider combining outputs 

of multiple methods that use different models and flows, say BEST, Bprediction, BCTOPE and 

COBEpro. Similar attempts were shown to be successful for related prediction tasks, such as 

prediction of MHC class II peptide binding (65) and T-cell epitopes (66). Another potential 

direction is to find new and useful sources of information that are helpful in identifying epitopic 

regions. Examples include predicted disordered regions and flexible residues, predicted regions 

involved in protein-protein interactions, and results generated through homology modeling. 
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Figures 

 

 

Figure 1. Example linear and conformational epitopes. Panel A shows linear epitope for the B-lymphocyte 

antigen CD20 from H. sapiens (IEDB ID: 161083l; PDB ID: 3PP4:P). Panel B gives conformational epitope 

for the voltage-gated potassium channel from S. lividans (IEDB ID: 142362; PDB id: 1K4D:C). Annotations 

of epitopes were extracted from the Immune Epitope DataBase (IEDB) (8) and the protein structures were 

collected from the Protein Data Bank PDB (24). Red color denotes localization of the B-cell epitope on the 

surface of the antigen protein and red and bold font shows the epitope in the corresponding sequence. 

 

 

 

 

 

Figure 2. Architecture of the BEST predictor of conformational B-cell epitopes. SVM stands for support 

vector machine. 



 

 

Figure 3. Architecture of the Bprediction method for the prediction of conformational B-cell epitopes. FSi 

refers to ith feature set, where i = 1 (physicochemical propensities), 2 (binary amino acids composition), 3 

(real-valued amino acids composition), 4 (composition of amino acids sets), 5 (composition of dipeptides), 6 

(PSSM values), 7 (predicted secondary structure), 8 (predicted relative solvent accessibility). RF stands for 

random forest. 



Table Captions 

 

Table 1. Summary of sequence-based predictors of linear B-cell epitopes. The methods are sorted 

chronologically. 

 

Method Year Model Type1 Input2 Availability 

BEPITOPE 2003 Scoring function SP SC by contacting the authors 

ABCpred 2006 Neural network WS SC http://www.imtech.res.in/raghava/abcpred/ 

BepiPred 2006 Hidden markov model WS+SP MC http://www.cbs.dtu.dk/services/BepiPred/ 

AAP 2007 Support vector machine WS+SP SC http://ailab.cs.iastate.edu/bcpreds/ 

LEP-LP 2008 Scoring function  WS unknown http://biotools.cs.ntou.edu.tw/lepd_antigenicity.php
3 

BCPred 2008 Support vector machine WS+SP SC http://ailab.cs.iastate.edu/bcpreds/ 

FBCPred 2008 Support vector machine WS+SP SC http://ailab.cs.iastate.edu/bcpreds/ 

Epitopia 2009 Naïve Bayes WS+SP SC http://epitopia.tau.ac.il 

BayesB 2010 Support vector machine WS SC http://www.immunopred.org/bayesb/ 

BROracle 2011 Support vector machine SP unknown https://sites.google.com/site/oracleclassifiers/3 

LEPS 2011 Support vector machine WS SC http://leps.cs.ntou.edu.tw  

SVMTriP 2012 Support vector machine WS SC http://sysbio.unl.edu/SVMTriP 

LBtope 2013 Support vector machine WS MC http://crdd.osdd.net/raghava/lbtope/ 

 

1
 SP: standalone program; WS: web server 

2 SC: method predicts a single chain, i.e., prediction has to be restarted for each chain; MC: multiple chains 

can be predicted at the same time 

3
 a given predictor is currently unavailable 

 

 

 

 



Table 2. Summary of sequence-based predictors of conformational B-cell epitopes. The methods are sorted 

chronologically. 

 

Method Year Model Type1 Input2 Availability 

 

COBEpro 2009 Support vector machine WS SC http://scratch.proteomics.ics.uci.edu
 

CBTOPE 2010 Support vector machine WS+SP MC http://www.imtech.res.in/raghava/cbtope/ 

BEST 2012 Support vector machine SP MC http://biomine.ece.ualberta.ca/BEST/ 

Bprediction 2012 Random forest WS SC http://bcell.whu.edu.cn 

 

1 SP: standalone program; WS: web server 

2
 SC: method predicts a single chain, i.e., prediction has to be restarted for each chain; MC: multiple chains 

can be predicted at the same time 

 


