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Abstract. In this chapter we first define the field of inductive machine learning 
and then describe Michalski’s basic AQ algorithm. Next, we describe two of 
our machine learning algorithms, the CLIP4: a hybrid of rule and decision tree 
algorithms, and the DataSqeezer: a rule algorithm. The development of the lat-
ter two algorithms was inspired to a large degree by Michalski’s seminal paper 
on inductive machine learning (1969). To many researchers, including the au-
thors, Michalski is a “father” of inductive machine learning, as Łukasiewicz is 
of multivalued logic (extended much later to fuzzy logic) (Łukasiewicz, 1920), 
and Pawlak of rough sets (1991). Michalski was the first to work on inductive 
machine learning algorithms that generate rules, which will be explained via 
describing his AQ algorithm (1986).  

1   Introduction 

Machine learning (ML) is meant that machines/computers perform the learning in-
stead of humans. The broadest definition of ML algorithms concerns the ability of a 
computer program to improve its own performance, in some domain, based on the 
past experience. Another, more specific, definition of ML is an ability of a program to 
generate a new data structure, different from the structure of the original data, such as 
a (production) IF… THEN… rule generated from numerical and/or nominal data 
(Kodratoff, 1988; Langley, 1996; Mitchell, 1997, Cios et al., 2007).  ML algorithms 
are one of many data mining tools used for building models of data. However, the 
advantage of inductive ML algorithms is that they are one of only a few tools capable 
of generating user-friendly models. Namely, they generate models of the data in terms 
of the IF…THEN… rules that can be easily analyzed, modified, and used for train-
ing/learning purposes. This is in contrast to “black box” methods, such as neural  
networks and support vector machines, which generate models that are virtually  
impossible to interpret. Therefore, inductive ML algorithms (and their equivalent: 
decision trees) are preferred over other methods in fields where a decision maker 
needs to understand/accept the generated rules (like in medical diagnostics).  

                                                           
* Professor  Michalski, after delivering talk on artificial intelligence at the University of Toledo, 

Ohio, in 1986, at the invitation of the first author, explained the origin of his second name: 
Spencer. Namely, he used the right of changing his name while becoming a United States 
citizen and adopted it after the well-known philosopher Herbert Spencer. 
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Michalski was involved in the development of algorithms that address both the su-
pervised and unsupervised learning. Here we are concerned mainly with the  
supervised learning, although we also briefly comment on his work on clustering (the 
key unsupervised method). The supervised learning, also known as learning from 
examples, happens when the user/teacher provides examples (labeled data points) that 
describe concepts/classes.  Thus, any supervised learning algorithm needs to be pro-
vided with a training data set, S, that consists of M training data pairs, belonging to C 
classes: 

S = {(xi, cj) | i = 1,...,M; j = 1,...,C} 

where xi is an n-dimensional pattern vector, whose components are called fea-
tures/attributes, and cj  is a known class.  

The mapping function f: c = f(x), is not known and a learning algorithm aims at 
finding/approximating this function. The training set represents information about 
some domain with the frequently used assumption that the features represent only 
properties of the examples but not relationships between the examples. A supervised 
ML algorithm searches the space of possible hypotheses, H, for the hypothesis (one or 
more) that best estimates the function f. The resulting hypotheses, or concept descrip-
tions, are often written in the form of IF… THEN… rules.  

The key concept in inductive ML is that of a hypothesis that approximates some 
concept.  An example of a concept is, say, the concept of a hybrid car. We assume 
that only a teacher knows the true meaning of a concept and describes it by means of 
examples given to a learner (in our case a ML algorithm) whose task is to generate 
hypotheses that best approximate the concept. The concept of a hybrid car can be 
provided in terms of input-output pairs such as (gas&electric engine, hybridcar), (very 
low gas consumption, hybridcar), etc.  We often assume that the terms concept and 
hypothesis are equivalent (which is not quite correct since the learner receives from a 
teacher only a finite set of examples that describe the concept so the generated hy-
potheses can only approximate it). Since hypotheses are often described in terms of 
rules we also use the term rule (and Michalski’s notion of a cover, defined later) to 
denote the hypothesis.   

Any supervised inductive ML process has two phases: 

− Learning phase, where the algorithm analyzes training data and recognizes simi-
larities among data objects to build a model that approximates f, 

− Testing phase, when the generated model (say, a set of rules) is verified by  
computing some performance criterion on a new data set, drawn from the same 
domain.   

Two basic techniques for inferring information from data are deduction and induc-
tion. Deduction infers information that is a logical consequence of the information 
present in the data. It is provably correct if the data/examples describing some domain 
are correct. Induction, on the other hand, infers generalized information/knowledge 
from the data by searching for some regularities among the data. It is correct for the 
data but only plausible outside of the given data. A vast majority of the existing ML 
algorithms are inductive. Learning by induction is a search for a correct rule, or a set 
of rules, guided by training examples. The task of the search is to find hypotheses that 
best describe the concept. We usually start with some initial hypothesis and then 
search for one that covers as many input data points (examples) as possible. We say 
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that an example is covered by a rule when it satisfies all conditions of the IF… part of 
the rule.  Still another view of inductive ML is one of designing a classifier, i.e., find-
ing boundaries that encompass only examples belonging to a given class. Those 
boundaries can either partition the entire sample space into parts containing examples 
from one class only, and sometimes leave parts of the space unassigned to either of 
the classes (a frequent outcome).  

A desirable characteristic of inductive ML algorithms is their ability (or inability) 
to deal with incomplete data. The majority of real datasets have records that include 
missing values due to a variety of reasons, such as manual data entry errors, incorrect 
measurements, equipment errors, etc. It is common to encounter datasets that have up 
to half of the examples missing some of their values (Farhanghfar et al., 2007). Thus, 
a good ML algorithm should be robust to missing values as well as to data containing 
errors, as they often have adverse effect on the quality of the models generated by the 
ML algorithms (Farhanghfar et al., 2008).  

The rest of the chapter contains a review of Michalski’s work in supervised learn-
ing and a review of our algorithms, which were inspired by his work, but first we 
briefly comment on Michalski’s work in unsupervised learning. A prime example of 
unsupervised learning is clustering. However, there is a significant difference between 
the classical clustering and clustering performed within the framework of ML. The 
classical clustering is best suited for handling numerical data. Thus Michalski intro-
duced the concept of conceptual clustering to differentiate it from classical clustering 
since conceptual clustering can deal with nominal data (Michalski, 1980; Fisher and 
Langley, 1986; Fisher, 1987). Conceptual clustering consists of two tasks: clustering 
itself which finds clusters in a given data set, and characterization (which is super-
vised learning) which generates a concept description for each cluster found by  
clustering. Conceptual clustering can be then thought of as a hybrid combining unsu-
pervised and supervised approaches to learning; CLUSTER/2 by Michalski (1980) 
was the first well-known conceptual clustering system.  

Table 1. Set of ten examples described by three features (F1-F3) drawn from two categories (F4) 

S F1 F2 F3 F4 
decision attribute 

e1 1  1 2 1 
e2 1  1 1 1 
e3 1 2 2 1 
e4 1 2  1 1 
e5 1 3 2 1 
e6 3 4 3 2 
e7 2 5 3 2 
e8 3 1 3 2 
e9 2 2 3 2 
e10 2 3 3 2 
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2   Generation of Hypotheses 

The process of generating hypotheses is instrumental for understanding how inductive 
ML algorithms work. We first illustrate this concept by means of a simple example 
from which we will (by visual inspection) generate some hypotheses and later de-
scribe ML algorithms that do the same in an automated way. Let us define an  
information system (IS):  

>=< fVQSIS ,,,  

where 

- S is a finite set of examples, },...,,{ 21 MeeeS = and M is the number of examples 

- Q is a finite set of features, },...,,{ 21 nFFFQ = and n is the number of features 

- 
jFVV ∪=  is a set of feature values  where 

jFV  is the domain of feature QFj ∈  

- 
jFi Vv ∈  is a value of feature jF  

    - VQSf →×= is an information function satisfying 
jFii VFef ∈),( for every 

Sei ∈  and QFj ∈  

The set S is known as the learning/training data, which is a subset of the universe 
(that is known only to the teacher/oracle); the latter is defined as the Cartesian product 
of all feature domains 

jFV (j=1,2…n). 

Now we analyze the data shown in Table 1 and generate a rule/hypothesis that 
describes class1 (defined by attribute F4): 

IF F1=1 AND F2=1 THEN class1 (or F4=1) 

This rule covers two (e1 and e2) out of five positive examples. So we generate another 
rule: 

IF F1=1 AND F3=2 THEN class1 

This rule covers three out of five positive examples, so it is better than the first rule; 
rules like this one are called strong since they cover a majority (large number) of 
positive (in our case class1) training examples.  To cover all five positive examples 
we need to generate one more rule (to cover e4): 

IF F1=1 AND F3=1 THEN class1 

While generating the above rules we paid attention so that none of the rules describ-
ing class1 covered any of the examples from class2. In fact, for the data shown in 
Table 1, this made it more difficult to generate the rules because we could have gen-
erated just one simple rule:   

IF F1=1 THEN class1 

that would perfectly cover all class1 examples while not covering the class2 exam-
ples. The generation of such a rule is highly unlikely to describe any real data where 
hundreds of features may describe thousands of examples; that was why we have 
generated more rules to illustrate typical process of hypotheses generation.  
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As mentioned above, the goal of inductive ML algorithms is to automatically 
(without a human intervention) generate rules (hypotheses). After learning, the gener-
ated rules must be tested on unseen examples to assess their predictive power. If the 
rules fail to correctly classify (to calculate the error we assume that we know their 
“true” classes) a majority of the test examples the learning phase is repeated by using 
procedures like cross-validation. The common disadvantage of inductive machine 
learning algorithms is their ability to, often almost perfectly, cover/classify training 
examples, which may lead to the overfitting of data. A trivial example of overfitting 
would be to generate five rules to describe the five positive examples; the rules would 
be the positive examples themselves. Obviously, if the rules were that specific they 
would probably perform very poorly on new examples. As stated, the goodness of the 
generated rules needs to be evaluated by testing the rules on new data. It is important 
to establish a balance between the rules’ generalization and specialization in order to 
generate a set of rules that have good predictive power. A more general rule (strong 
rule) is one that covers more positive training examples. A specialized rule, on the 
other hand, may cover, in an extreme case, only one example.  

In the next section we describe rule algorithms also referred to as rule learners. 
Rule induction/generation is distinct from the generation of decision trees. While it is 
trivial to write a set of rules given a decision tree it is more complex to generate rules 
directly from data. However, the rules have many advantages over decision trees. 
Namely, they are easy to comprehend; their output can be easily written in the  
first-order logic format, or directly used as a knowledge base in knowledge-based 
systems; the background knowledge can be easily added into a set of rules; and they 
are modular and independent, i.e., a single rule can be understood without reference  
to other rules.  Independence means that, in contrast to rules written out from decision 
trees, they do not share any common attributes (partial paths in a decision tree).  
Their disadvantage is that they do not show relationships between the rules as  
decision trees do.  

3   Rule Algorithms  

As already said, Michalski was the first one to introduce an inductive rule-based ML 
algorithm that generated rules from data. In his seminal paper (Michalski, 1969) he 
framed the problem of generating the rules as a set-covering problem. We illustrate 
one of early Michalski’s algorithms, the AQ15, in which IF…THEN…rules are ex-
pressed in terms of variable-value logic (VL1) calculus (Michalski, 1974; Michalski 
et al. 1986). The basic notions of VL1 are that of a selector, complex, and cover. A 
selector is a relational statement:  

(Fi  #  vi ) 

where # stands for any relational operator and vi is one or more values from domi  of 
attribute Fi.   

A complex L is a logical product of selectors: 

L =  ∩  (Fi # vi) 

The cover, C, is defined as a disjunction of complexes: 

C  =  ∪  Li 

and forms the conditional part of a production rule covering a given data set.  
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Two key operations in the AQ algorithms are the generation of a star G( ei | E2 )  and 
the generation of a cover G( E1| E2 ), where ei ∈ E1 is an element of a set E1, and E2 is 
another set such that  E1   ∪  E2  =  S, where S is the entire training data set.  

We use data shown in Table 1 to illustrate operation of the family of AQ  
algorithms.    

First, let us give examples of information functions for data shown in Table1: 

F1 = 1 
F3 = 1 OR 2 OR 3. 

The full form of the first information function is:  

(F1 = 1) AND (F2 = 2 OR 3 OR 4 OR 5 OR 1) AND (F3 = 1 OR 2 OR 3) 

Similarly the second information function can be rewritten as: 

(F1 = 1 OR 2 OR 3) AND (F2 = 2 OR 3 OR 4 OR 5 OR 1) AND (F3 = 1OR 2 OR 3) 

A function covers an example if it matches all the attributes of a given example, or, 
in other words, it evaluates to TRUE for this example. Thus, the information function 
(F1 = 1) covers the subset {e1, e2, e3, e4, e5}, while the function (F3= 1 OR 2 OR 3) 
covers all examples shown in Table 1. 

The goal of inductive machine learning, in Michalski’s setting, is to generate  
information functions while taking advantage of a decision attribute (feature F4 in 
Table 1).  The question is whether the information function, IFB, generated from a set 
of training examples will be the same as a true information function, IFA (Kodratoff, 
1988).  In other words, the question is whether the ML algorithm (B) can learn what 
only the teacher (A) knows. To answer the question let us consider the function:      

IFA  :  (F1 = 3 OR 2) AND (F2 = 1 OR 2) 

that covers subset {e8, e9}.  Next, we generate, via induction, the following informa-
tion function: 

IFB  :  (F1 = 3 OR 2) AND (F2 = 1 OR 2) AND (F3 = 3) 

which covers the same two examples, but IFB is different from IFA. IFB can be rewrit-
ten as:  

IFB = IFA AND (F3 = 3) 

We say that IFB is a specialization of IFA (it is less general).  So in this case the learner 
learned what the teacher knew (although in a slightly different form). Note that fre-
quently this is not the case.  

In order to evaluate the goodness of the generated information functions we use 
criteria such as the sparseness function, which is defined as the total number of exam-
ples it can potentially cover minus the number of examples it actually covers. The 
smaller the value of the sparseness function the more compact the description of ex-
amples. Let us assume that we have two particular information functions IF1 and IF2, 
such that IF1 covers subset E1 and the other covers the remaining part of the training 
data, indicated by subset E2.  If the intersection of sets E1 and E2 is empty then we say 
that these two functions partition the training data. The goal of AQ algorithms, as 
well as all ML algorithms, is to find such partitions. Assuming that one part of the 
training data represents positive examples, and the remaining part represents negative 
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examples, then IF1 becomes the rule (hypothesis) covering all positive examples. To 
calculate the sparseness of a partition the two corresponding information sparsenesses 
can be added together and used for choosing among several generated alternative 
partitions (if they exist). Usually we start with the initial partition in which subsets E1 
and E2 intersect and the goal is then to come up with information functions that result 
in the partition of training data. The task of the learner is to modify this initial parti-
tion so that all intersecting elements are incorporated into “final” subsets, say E11 and 
E22, which form a partition: 

E11  ∩  E22 = ∅   and E11  ∪  E22  =  S 

Michalski et al. (1986) proposed the following algorithm.  

Given: Two disjoint sets of examples 

1. Start with two disjoint sets E01 and E02. Generate information functions, IF1 and 
IF2 from them and generate subsets, E1 and E2, which they cover. 

2.   If sets E1 and E2 intersect then calculate differences between sets E1 and E2 and 
the intersecting set 

 Ep  = E1  - E1 ∩ E2 
 En  = E2  - E1 ∩ E2 

 and generate corresponding information functions, IFp  and IFn; otherwise we 
have a partition; stop. 

3.  For all examples ei  from the intersection do:  
 create sets Ep  ∪ ei    and   En  ∪ ei and generate information functions for each, IFpi 

and IFni   
4.  Check if (IFp, IFni) and (IFn, IFpi) create partitions of S 
 a) if they do, choose the better partition, say in terms of sparseness (they become 

new E1 and E2), go to step 1 and take the next example ei from the intersection 
 b) if not, go to step 2 and check another example from the intersection 

Result: Partition of the two sets of examples. 
This algorithm does not guarantee that all examples will be assigned to one of the 

two subsets if a partition is not found.  
We illustrate this algorithm using data from Table 1.   

1. Assume that the initial subsets are {e1, e2, e3, e4, e5, e6} and {e7, e8, e9, e10}.   

Notice that we are not as yet using a decision attribute/feature F4. We will use it 
later for dividing the training data into subsets of positive and negative examples. We 
only try to illustrate how to move the intersecting examples so that the resulting sub-
sets create a partition.  

The information functions generated from these two sets are: 
 

IF1 :   (F1 = 1 OR 3) AND (F2 = 1 OR 2 OR 3 OR 4) AND (F3 = 1 OR 2 OR 3) 
IF2 :   (F1 = 3 OR 2) AND (F2 = 5 OR 2 OR 1 OR 3) AND (F3 = 3) 
 

Function IF1 covers set E 1 = {e1, e2, e3, e4, e5, e6, e8 } and function IF2 covers set E2 = 

{e7, e8, e9, e10}.  
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2. Since E1 ∩ E2  = {e8}, which means that they intersect, hence we calculate: 

Ep  = E1 – {e8} = {e1, e2, e3, e4, e5, e6} 
En  =  E2 - {e8} = {e7, e9, e10} 
 

and generate two corresponding information functions: 
 

IFp  : (F1 = 1 OR 3) AND (F2 = 1 OR 2 OR 3 OR 4) AND (F3 = 1 OR 2 OR 3) 
IFn   :  (F1 = 2) AND (F2 = 5 OR 2 OR  3 AND (F3 = 3) 
 

Note that IFp is exactly the same as IF1 and thus covers E1, while IFn covers only En. 

3. Create the sums Ep  ∪  ei   =  E1  and  En  ∪ ei   =  E2  , where ei = e8, and  generate 
the  corresponding information functions. The result is IFpi = IF1 and IFni = IF2. 

 

4. Check if pairs (IFp, IF2) and (IFn, IF1) create a partition.   
 

The first pair of information functions covers the subset {e1, e2, e3, e4, e5, e6, e8} and 
subset {e7, e8, e9, e10}. Since the two subsets still intersect, this is not a partition yet. 
The second pair covers the subsets {e7, e9, e10} and {e1, e2, e3, e4, e5, e6, e8 }; since they 
do not intersect, and sum up to S, this is a partition.  

Note that in this example we have chosen the initial subsets arbitrarily and our task 
was just to find a partition. In inductive supervised ML, however, we use the decision 
attribute to help us in this task. We observe that we have generated information func-
tions not by using any algorithm, but by visual inspection of Table 1. 

The AQ search algorithm (as used in AQ15) is an irrevocable top-down search 
which generates a decision rule for each class in turn. In short, the algorithm at each 
step starts with selecting one positive example, called a seed, and generates all com-
plexes (a star) that cover the seed but do not cover any negative examples. Then by 
using criteria such as the sparseness and the length of complexes (shortest complex 
first) it selects the best complex from the star, which is added to the current (partial) 
cover. The pseudocode, after Michalski et al. (1986), follows. 

Given: Sets of positive and negative training examples  
While partial cover does not cover all positive examples do: 

1.     Select an uncovered positive example (a seed)      
2. Generate a star, that is determine maximally general complexes covering the 

seed and no negative examples 
3. Select the best complex from the star, according to the user-defined criteria  
4. Add the complex to the partial cover 

While partial star covers negative examples do: 

1. Select a covered negative example 
2. Generate a partial star (all maximally general complexes) that covers the seed 

and excludes the negatie example 
3. Generate a new partial star by intersecting the current partial star with the partial 

star generated so far 
4. Trim the partial star if the number of disjoint complexes exceeds the predefined 

threshold, called  maxstar  (to avoid exhaustive search for covers which can 
grow out of control)  

Result: Rule(s) covering all positive examples and no negative examples 
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Now we illustrate the generation of a cover using the decision attribute, F4. How-
ever, we will use only a small subset of the training data set consisting of four exam-
ples: two positive (e4 and e5) and two negative (e9 and e10), to be able to show all the 
calculations. The goal is to generate a cover that covers all positive (class 1) examples 
(e4 and e5) and excludes all negative examples (e9 and e10). Thus, we are interested in 
generating a cover properly identifying subset E1 = {e4, e5} and rejecting subset E2 = 
{e9, e10}; such a cover should create a partition of S = {e4, e5, e9, e10}.  

Generation of a cover involves three steps: 
For each positive example ei ∈ E1 , where E1 is a positive set: 
 

1. Find G( ei | ej ) for each ej ∈ E2 , where E2 is a negative set 
2. Find a star G(ei | E2). It is THE conjunction of G( ei | ej ) terms found in step 1. 

When there is more than one such term (after converting it into a disjunctive 
form) select the best one according to some criteria, like the sparseness. 

3.    Finding a cover of all positive examples against all negative examples   
G( E1 | E2 ). It is the disjunction of stars found in step 2. The final cover covers all 
positive examples and no negative examples. 

 

Let us start with finding G( e4 | e9 ). It is obtained by comparing the values of the 
features in both examples, skipping those which are the same, and making sure that 
the values of features in e9 are different from those of e4, and putting them in disjunc-
tion. Thus, 

G( e4 | e9 ) = (F1 ≠ black) OR (F3 ≠ large) 

Note that it is the most general information function describing e4 since it makes 
sure that only example e9  is not covered by this function.   

Next, we calculate the star G(ei  | E2), for all ei ∈ E1, against  all ej from E2. A star 
for ei is calculated as the conjunction of all G(.)s and constitutes a cover covering ei   

G(ei  | E2)  =  ∩  G(ei  | ej)   for all  ej  ∈   E2 

Since we started with ei  = e4  we will obtain a cover of e4 against e10, and combine it 
using the conjunction with the previous cover; this results in 

G( e4  |  E2 ) =  ((F1 ≠ 2) OR (F3 ≠ 3)) AND ((F1 ≠ 2) OR (F2 ≠ 3) OR (F3 ≠ 3))  

The expression is converted into the disjunctive form:  

G(e4  |  E2) =  ((F1 ≠ 2) AND (F1 ≠ 2) OR ((F1 ≠ 2) AND (F2 ≠ 3)) OR 
((F1 ≠ 2) AND (F3 ≠ 3)) OR ((F3 ≠ 3) AND (F1 ≠ 2)) OR 

((F3 ≠ 3) AND (F2 ≠ 3)) OR((F3 ≠ 3) AND (F3 ≠ 3))  

Next, by using various laws of logic it is simplified into:  

G(e4  |  E2) =  (F1 ≠ 2)     OR   (28) 
((F1 ≠ 2) AND (F2 ≠ 3)) OR   (23) 
((F1 ≠ 2) AND (F3 ≠ 3)) OR   (18) 
 ((F3 ≠ 3) AND (F2 ≠ 3)) OR   (23) 

((F3 ≠ 3)      

and after calculating the sparseness (shown in parentheses) the best is kept: 

G(e4  |  E2) =  (F1 ≠ 2)  AND (F3 ≠ 3)   
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Then we repeat the same process for G( e5  | E2 ): 

G( e5 |  E2 ) =  ((F1 ≠ 2) OR (F2 ≠ 2) OR (F3 ≠ 3)) AND((F1 ≠ 2) OR  (F3 ≠ 3))  

which is next converted into the disjunctive form: 

G(e5  |  E2) =  ((F1 ≠ 2) AND (F1 ≠ 2) OR ((F1 ≠ 2) AND (F3 ≠ 3)) OR 
((F2 ≠ 2) AND (F1 ≠ 2)) OR ((F2 ≠ 2) AND (F3 ≠ 3)) OR 

((F3 ≠ 3) AND (F1 ≠ 2)) OR ((F3 ≠ 3) AND (F3 ≠ 3))  

and simplified to: 

G(e5  | E2) =  (F1 ≠ 2) AND (F3 ≠ 3) 

Finally in step 3 we need to combine the two stars (rules) into a cover: 

G(E1  | E2) = (F1 ≠ 2) AND (F3 ≠ 3) 

From the knowledge of the feature domains we can write the final cover, or rule, 
covering all positive examples as: 

G(E1 | E2) =  (F1 = 1 OR 3) AND (F3 = 1 OR 2) 

The cover is actually written as: 

<F1 ≠ 2 > <F3 ≠ 3> 

which reads 

IF (F1 = 1 OR 3) AND ( F3 = 1 OR 2)  THEN class positive 

As one can see the generation of a cover is computationally very expensive. In terms 
of a general set covering problem creating a cover G( E1 | E2), while using the ≥ opera-
tors in the description of selectors,  means that we are dividing the entire space, into 
subspaces in such a way that in one subspace we will have all the positive examples 
while all the negative examples will be included in another, nonintersecting subspace.  

A substantial disadvantage of AQ algorithms is that they handle noise outside of 
the algorithm itself, by rule truncation.  

4   Hybrid Algorithms 

After reviewing Michalski’s rule algorithms we concentrate on the description of our 
hybrid algorithm, the CLIP4 (Cover Learning (using) Integer Programming). The 
CLIP4 algorithm is a hybrid that combines ideas (like its predecessors the CLILP3 
and CLIP2 algorithms) of Michalski’s rule algorithms and decision trees. More 
precisely, CLIP4 uses a rule-generation schema similar to Michalski’s AQ algorithms, 
as well as the tree-growing technique to divide training data into subsets at each level 
of a (virtual) decision tree similar to decision tree algorithms (Quinlan, 1993). The 
main difference between CLIP4 and the two families of algorithms is CLIP4’s 
extensive use of our own algorithm for set covering (SC), which constitutes its core 
operation. SC is performed several times to generate the rules. Specifically, the SC 
algorithm is used to select the most discriminating features, to grow new branches of 
the tree, to select data subsets from which CLIP4 generates the least overlapping 
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rules, and to generate final rules from the (virtual) tree leaves, which store subsets of 
the data. An important characteristic that distinguishes CLIP4 from the vast majority 
of ML algorithms is that it generates production rules that involve inequalities. This 
results in generating a small number of compact rules, especially in domains where 
attributes have large number of values and where majority of them are associated with 
the target class. In contrast, other inductive ML algorithms that use equalities would 
generate a large number of complex rules for these domains.  

CLIP4 starts by splitting the training data in a decision-tree-like manner. However, 
it does so not by calculating any index of “good” splitting, like entropy, but it selects 
features and generates rules by solving an Integer Programming (IP) model.  CLIP4 
uses the training data to construct an IP model and then uses a standard IP program to 
solve it. CLIP4 differs from the decision tree algorithms is that it splits the data into 
subsets in several ways, not just in one “best” way. In addition, there is no need to 
store the entire decision tree in CLIP4. It keeps only the leaf nodes of the "tree" (the 
tree, in fact, does not exist). This results in the generation of simpler rules, a smaller 
number of rules, and a huge memory saving.  Another advantage is that the solution 
of the IP model for splitting the data is relatively quick, as compared to the 
calculation of entropies. The solution returned from the IP model indicates the most 
important features to be used in the generation of rules. IP solutions may include 
preferences used in other machine learning algorithms (Michalski and Larson, 1978), 
like the largest complex first where IP solution can generate features that cover the 
largest number of positive examples. Or, the background knowledge first, where any 
background knowledge can be incorporated into the rules by including user-specified 
features, if it is known that they are crucial in describing the concept. 

4.1   Our Set Covering Algorithm 

As we mentioned above, several key operations performed by CLIP4 are modeled and 
solved by the set covering algorithm, which is a simplified version of integer pro-
gramming (IP). IP is used for function optimization that is subject to a large number 
of constraints. Several simplifications are made to the IP model to transform it into 
the SC problem: the function that is the subject of optimization has all its coefficients 
set to one; their variables are binary, xi={0,1}; the constraint function coefficients are 
also binary; and all constraint functions are greater than or equal to one. The SC prob-
lem is NP-hard, and thus only an approximate solution can be found.  First, we trans-
form the IP problem into the binary matrix (BIN) representation that is obtained by 
using the variables and constraint coefficients. BIN’s columns correspond to variables 
(features/attributes) of the optimized function; its rows correspond to function  
constraints (examples), as illustrated in Figure 1. CLIP4 finds the solution of the  
SC problem in terms of selecting a minimal number of columns that have the  
smallest total number of 1’s. This outcome is obtained by minimizing the number of 
1’s that overlap among the columns and within the same row. The solution consists of 
a binary vector composed of the selected columns. All rows for which there is a  
value of 1 in the matrix, in a particular column, are assumed to be “covered” by this 
column. 
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Fig. 1. A simplified set-covering problem and its solution (on the left); in the BIN matrix form 
(on the right) 

To obtain a solution we use our SC algorithm, which is summarized as follows.  
 

Given: BINary matrix. Initialize: Remove all empty (inactive) rows from the BINary 
matrix; if the matrix has no 1’s, then return error. 

1. Select active rows that have the minimum number of 1’s in rows – min-rows 
2. Select columns that have the maximum number of 1’s within the min-rows – 

max-columns 
3. Within max-columns find columns that have the maximum number of 1’s in all 

active rows – max-max-columns. If there is more than one max-max-column, go 
to Step 4., otherwise go to Step 5. 

4. Within max-max-columns find the first column that has the lowest number of 1’s 
in the inactive rows 

5. Add the selected column to the solution 
6. Mark the inactive rows. If all the rows are inactive then terminate; otherwise go 

to Step 1. 

Result: Solution to the SC problem. 
In the above pseudocode, an active row is a row not covered by a partial solution, 

and an inactive row is a row already covered by a partial solution. We illustrate how 
the SC algorithm works in Figure 2 using a slightly more complex BIN matrix that the 
one shown in Figure 1. The solution consists of the second and fourth columns, which 
have no overlapping 1’s in the same rows. 

Before we describe the CLIP4 algorithm in detail, let us first introduce a necessary 
notation. The set of all training examples is denoted by S. A subset of positive exam-
ples is denoted by SP and the subset of negative examples by SN. SP

 and SN are repre-
sented by matrices whose rows represent examples and whose columns correspond to 
attributes. The matrix of positive examples is denoted as POS and their number by 
NPOS. Similarly for the negative examples, we have matrix NEG and number NNEG. The 
following properties are satisfied for the subsets:  

SP ∪ SN=S,    SP ∩ SN=∅,     SN ≠ ∅, and     SP ≠ ∅ 



 Machine Learning Algorithms Inspired by the Work of Ryszard Spencer Michalski 61 

 

 

Fig. 2. Solution of the SC problem using the SC algorithm 
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The examples are described by a set of K attribute-value pairs: 

]#[1 jj
K
j vae =∧=  

where aj denotes the  jth attribute with value vj ∈ dj, and # is a relation (≠, =, <, ≈, ≤, 
etc.), where K is the number of attributes. An example e consists of a set of selec-
tors ][ jjj vas ≠= . 

The CLIP4 algorithm generates rules in the form:  

IF (s1∧…∧sm)      THEN class = classi 

where all selectors are only in the form si = [aj ≠ vj], that is they use only inequalities. 
The positive examples from the matrix POS are described by a set of values 

posi[j], where j=1,…,K  is the column number and i is the example number (the row 
number in the POS matrix). The negative examples are described similarly by a set 
of negi[j] values. CLIP4 uses binary matrices (BIN) that are composed of K columns, 
filled with either 1 or 0 as values. Each element of the BIN matrix is denoted by 
bini[j], where i is a row number and j is a column number. These matrices are the 
result of operations performed by CLIP4 which are modeled and solved using the SC 
algorithm described above. The pseudocode of the CLIP4 algorithm is provided in 
Figure 3. 

The algorithm consists of three key phases that are explained below:  

Phase I: The POS data is partitioned into subsets of similar data in a decision-tree-
like manner. Each node represents a data subset. Each level of the tree is built using 
one negative example to find selectors that distinguish between all positive examples 
and the negative example. The selectors are used to create new branches of the tree. 
During the tree growth, we use pruning to eliminate noise from the data (described 
later) and to avoid excessive growth, which reduces execution time.  

The tree is grown in a top-down manner. At the ith tree level, Ni subsets, repre-
sented by matrices POSi,j (j=1,…,Ni), are generated using Ni-1 subsets from the pre-
vious tree level and the single negative example negi. Each subset, represented by 
the matrix POSi,j (examples that constitute this matrix’s elements are denoted  
as posi,j), is transformed into a BIN matrix of the same size as the POSi,j matrix, 
using the negi example, and then modeled and solved using the SC method. The 
solution is used to generate subsets for the next tree level, represented by the POSi+1,j 
matrices. 

CLIP4 grows a virtual “tree”, since any iteration consists of only one level: the 
most recent bottom tree level. Moreover, this tree is pruned so that even the one level 
that is kept has at most a few nodes.  This results in a high memory efficiency. The 
data splits are made by generating not just one “best” division, based on some “best” 
feature (say in terms of the highest information gain, as in decision trees), but a set of 
divisions based on any feature that distinguishes between the positive and the one 
negative example. This mechanism of partitioning data assures generation of the (pos-
sibly) most general rules. 
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N0=1; Create POS0,1 consisting of entire SP; Create NEG consisting of entire SN  // Initialize 

1 for negi, i=1 to NNEG do {       // PHASE I STARTS 

2 for j=1 to Ni-1 do {       //for each POSi-1,j matrix 
3 for k=1 to K do {       //create new BINj matrix 
4 for l=1 to number of POSi-1,j rows do { 

5 if posl
i-1,j

[k] = negi[k] then binl
j
[k] = 0; 

6 if posl
i-1,j[k] ≠ negi[k] then binl

j[k] = 1; 

7 if posl
i-1,j[k] = ‘*’ then binl

j[k] = 0;     // missing value encountered 
8 if negi[k] = ‘*’ then binl

j[k] = 0; }}     // missing value encountered 
9 SOLj = SolveSCProblem(BINj);} 

10 PruneMatrices(POSi-1,j , SOLj , j=1,…,Ni-1);  

11 ApplyGeneticOperators(POSi-1,j , SOLj , j=1,…,Ni-1); 

12 Ni=1;        //counter for POSi+1 matrices 

13 for j=1 to Ni-1 do {       //for each POSi,j matrix 
14 if POSi-1,j was not pruned or redundant then { 

15 for k=1 to K do {       //through entire solution vector 
16 if SOLj[k]=1 then {      //then create new POSi,Ni matrix 

17 for l=1 to number of POSi-1,j rows do { 

18 if posl
i-1,j[k]≠negi[k] then add posl

i-1,j to POSi,Ni matrix; }} 
19 Ni=Ni+1; }}} 

20 for j=1 to Ni do {   //for each POSi matrix check if it large enough to be not considered as a noise 

21 if number of rows of POSi,j < NoiseThreshold then { remove POSi,j from the tree; Ni=Ni-1;}} 
22 EliminateRedundantMatrices(POSi,j j=1,…,Ni); } 

23 Create BIN matrix that consist of 
NEGNN columns and NPOS rows, and fill with zeros // PHASE II STARTS 

24 for i=1 to 
NEGNN do {       // for all tree leaves 

25 for j=1 to NPOS do { 

26 for k=1 to number of rows of 
iN NEG

POS ,
 do { if posj

0,0 = 
iN

k
NEGpos , then binj[i]=1;}}} 

27 SOL = SolveSCProblem (BIN);      // select best leaf node subsets 
28 for i=1 to 

NEGNN  do {       // through entire solution vector 

29 create BINi=NEG; 

30 if SOL[i]=1 then {       // back-project POSNneg,i matrix 
31 for j=1 to K do { 

32 for k=1 to NNEG do { 

33 if negk[j]=’*’ then bink
i
[j]=0; else {     

34 for l=1 to number of rows of 
iN NEG

POS ,
 do { if ][

, jpos iN
l

NEG =negk[j] then bink
i[j]=0; }}}}} 

35 for j=1 to K do {       // convert BINi values to binary 
36 for k=1 to NNEG do { if bink

i
[j]≠0 then bink

i
[j]=0;}}  

37 SOLi = SolveSCProblem (BINi); 

38 for j=1 to K do {       // start generation of i-th rule 
39 if SOLi[j]=1 then {       // add selectors to the rule 

40 for k=1 to NNEG do { if bini
k[j]=1 then add “aj≠neg k[j]” selector to the Rulei; }}}} 

// PHASE III STARTS 
41 best#covered=0; previous_best#covered=0;     // holds # ex. covered by the rule 
42 while best#covered≥0 do {       //until best rules are accepted 
43 for i=1 to 

NEGNN  do {       // through all generated rules 

44 coversi=NPOS;       // # examples covered by Rulei 

45 for j=1 to NPOS do {       // for all examples in POS 

46 for k=1 to K do { 

47 for l=1 to number of selectors in Rulei do {   
48 if al=k and vk=posj

0,1[k] then { coversi=coversi –1; j=j+1; }}}}   // example not covered by Rulei 
49 if best#covered<coversi then best#covered=coversi; best_rule=Rulei; } 

50 NPOS = NPOS – best#covered; 

51 if NPOS<StopThreshold or NPOS=0 then STOP; 

52 POS0,1 = POS0,1 – examples covered by best_rule; 

53 if (best#covered<previous_ best#covered/2 and best#covered<NPOS/2) then best#covered=-1;         // multiple rules 

54 previous_best#covered_examples=best#covered_examples; }  

Fig. 3. Pseudocode of the CLIP4 algorithm 

Phase II: A set of terminal subsets (tree leaves) is selected using two criteria. First, 
large subsets are preferred over small ones (according to Occam’s razor which 
hopefully will result in the rules that are “strong” and more general), while the  
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accepted subsets (between them) must cover the entire POS data. Second, we want 
to use the completeness criterion. To that end, we first perform a back-projection of 
one of the selected positive data subsets using the entire NEG data, and then con-
vert the resulting matrix into a BIN matrix and solve it using the SC method. The 
solution is used to generate a rule, and the process is repeated for every selected 
positive data subset. Explanation of lines 24-41: 

NEGNN is the number of tree  

leaves. The binary BIN matrix is used to select the minimal set of leaves that covers 
the entire POS data. Back-projection results in a matrix BINi that has 1’s for  
the selectors that can distinguish between positive and negative examples. The 
back-projection generates one matrix for every terminal subset (

iN NEG
POS ,

).  

It is computed from the NEG matrix, by setting a value from NEG to zero if the 
same value appears in the corresponding column in the 

iN NEG
POS ,

 matrix;  

otherwise it is left unchanged. The ith rule is generated by solving the SC problem 
for BINi and adding a selector for every 1 that is in any column indicated by the 
solution. 

The rule induction generates a rule directly from two sets of data (NEG data and 
the selected subset of positive data). It does not require the use of logic or storing and 
traversing the entire tree, as in decision trees, but only a comparison of values be-
tween the two matrices. Thus, the only two data structures required to generate the 
rules are lists (vectors) and matrices. 

Phase III: A set of best rules is selected from the generated rules. Rules that cover 
the most POS examples are chosen as being possibly the most general. If there is a 
tie between the “best rules”, the rule that uses the minimal number of selectors is 
chosen.  

To find the number of examples covered by a rule, we first find examples not cov-
ered by the rule, and subtract these from the total number of examples. We do this 
because the rules consist of selectors involving inequalities. The variable called coversi 
records the number of positive examples covered by the ith rule. After a rule is ac-
cepted, the positive examples covered by it are removed from the POS matrix (line 53). 
In this phase, more than one rule can be generated. The rules are accepted in the order 
from the strongest to the weakest. We use a heuristic for accepting multiple rules, 
which states that the next rule is accepted when it covers at least half the number of 
examples covered by the previously accepted rule and at least half the number of 
positive examples not covered by any rule so far. CLIP4 generates multiple rules in  a 
single sweep through the data. The thresholds used in the pseudocode in Figure 3 are 
described later. We illustrate the high-level view of the process used by CLIP4 in 
Figure 4.   

The basic characteristics of the CLIP4 algorithm are its completeness (the gener-
ated set of rules describes all positive examples), consistency (rules do not describe 
any of the negative examples) and use of a minimal number of selectors in the  
generated rules. CLIP4 is memory-efficient (because it stores only the bottom level 
of the tree) and is robust to noisy and missing-value data, as shown later in the 
chapter. 
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Fig. 4. A different view of the process used by the CLIP4 algorithm 

4.2   Handling of Missing Values 

Data with the missing values of the attributes are often encountered in real-world 
situations. If the number of examples with missing values is small, i.e., only a small 
fraction of the data is affected, we can simply discard them in a preprocessing step. 
However, in many situations – for example, in medical data - the number of examples 
(records) with missing values can exceed 50% of the data (Kurgan et al., 2005). In 
such situations, we need to use all examples and all attributes with values and omit 
from our computations only these attributes with missing values. The CLIP4 algo-
rithm does not discard any examples with missing values nor does it fill them with 
any computed values. It simply takes advantage of the available values in the exam-
ples and ignores the missing values. 

Attributes with missing values influence the first two phases of the algorithm. They 
are removed from processing by filling in the corresponding cell in the BIN matrix cell 
with a 0 when the new branch of the tree in Phase I is generated, and when the back-
projection in Phase II is performed. The mechanism used in CLIP4 to deal with missing 
attribute values assures that they are not used in generated rules and that all existing 
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attribute values, even in examples with missing attributes, are used during the rule gen-
eration process. The advantage of this mechanism is that the user simply supplies data to 
the algorithm and obtains his or her without needing to use some statistical methods to 
calculate missing values. This approach works well under the assumption that the  
remaining (complete) portion of the data is sufficient to infer the correct model. 

Data shown in Table 2 is used to illustrate how CLIP4 deals with missing values. 
The missing values are denoted by * and class1 constitutes the positive class. 

Table 2. Data with missing values 

S F1 F2 F3 F4 Class 
e1 1 2 3 * 1 
e2 1 3 1 2 1 
e3 * 3 2 5 1 
e4 3 3 2 2 1 
e5 1 1 1 3 1 
e6 3 1 2 5 2 
e7 1 2 2 4 2 
e8 2 1 * 3 2 

 
CLIP4 generates two rules: 

IF  F1≠3 AND F1≠2 AND F3≠2  THEN class1 
IF  F2≠2 AND F2≠1   THEN class1 

The first rule covers examples 1, 2, and 5, while the second covers examples 2, 3, 
and 4. Between them they cover all positive examples, including those with missing 
values, and none of the negative examples. The rules overlap since both cover the 
second example. 

4.3   Classification 

CLIP4 classifies examples by using sets of rules generated for all classes. Two classi-
fication outcomes are possible: an example is assigned to a particular class, or it is left 
unclassified. To classify an example, two principles are used: 

− All rules that cover the example are found. If no rules cover the example then  
it remains unclassified. Such a situation may occur if the example has missing 
values for all attributes  used by the rules 

− For every class, goodness of the rules describing a particular class and covering 
the example is summed up. The example is assigned to a class that has the high-
est summed value. If there is a tie, then the example is left unclassified. For each 
generated rule, a goodness value, equal to the percentage of the positive training 
examples that it covers, is calculated. For instance, if an example is covered by 
two rules from class 1 with corresponding goodness values of 15% and 20%, but 
the example is also covered by two rules from class 2 with goodness values 50% 
and 10%, then it would be classified to Class 2 (the sum of goodness values for 
Class 1 is 35% vs. 60% for Class 2). 
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4.4   Thresholds  

CLIP4 uses three thresholds to perform tree pruning and to remove “noisy” examples: 

Noise Threshold determines which nodes (possibly containing noisy positive exam-
ples) are pruned from the tree grown in Phase 1. The threshold prunes every node that 
contains fewer examples than its value. 

Pruning Threshold is used to prune nodes from the generated tree. It uses a goodness 
value, identical to the fitness function described later, to perform selection of the 
nodes. The threshold selects the first few nodes with the highest fitness value and 
removes the remaining nodes from the tree. 

Stop Threshold stops the algorithm when fewer than the threshold number of posi-
tive examples remains uncovered. CLIP4 generates rules by partitioning the data into 
subsets containing similar examples, and removes examples covered by already gener-
ated rules. This approach has the advantage of eliminating small subsets of positive 
examples (which contain examples different than the majority already covered) from the 
subsequent rule generation process. If the user were to know the amount of noise in the 
data then the threshold could be set to this value (e.g., 5%). The noise and stop thresh-
olds are specified as a percentage of the size of positive data and thus are easily scalable. 

4.5   Use of Genetic Operators to Improve Accuracy on Small Training Data 

CLIP4 uses genetic algorithms to improve the accuracy of generated rules. Its genetic 
module works by exploiting a single loop through a number of evolving populations. 
The loop consists of establishing the initial population of individuals and then select-
ing the new population from the old population, altering and evaluating the new popu-
lation, and replacing the old one with the new. These operations are performed until a 
termination criterion is satisfied. CLIP4 uses the GA in Phase I to enhance the parti-
tioning of the data and to obtain more “general” leaf node subsets. The components of 
the genetic module are as follows: 

− Population and individual 
An individual/chromosome is defined as a node in the tree and consists of the 
POSi,j matrix (the jth matrix at the ith tree level) and SOLi,j (the solution to the SC 
problem obtained from the POSi,j matrix). A population is defined as a set of nodes 
at the same level of the tree. 

− Encoding and decoding scheme 
There is no need for encoding using the individuals defined above since GA 
operators are used on the binary SOLi,j vector. 

− Selection of the new population 
The initial population is the first tree level that consists of at least two nodes. 
CLIP4 uses the following fitness function to select the most suitable individuals 
for the next generation:  

leveltreeiatPOSfromgeneratedbewillthatsubsetsofnumber

POSconstitutethatexamplesofnumber
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The fitness value is calculated as the number of rows of the POSi,j matrix divided 
by the number of 1’s from the SOLi,j vector. The fitness function has high values for 
the tree nodes that consist of a large number of examples with a low branching factor. 
These two properties influence the generalization ability of the rules and the speed of 
the algorithm.  

The mechanism for selecting individuals for the next population is as follows: 

−  All individuals are ranked using the fitness function 
−  Half of the individuals with the highest fitness are automatically selected for  the 

next population (they will branch to create nodes for the next tree level) 
−  The second half of the next population is generated by matching the best with the 

worst individuals (the best with the worst, the second best with the second worst, 
etc.) and applying GA operators to obtain new individuals (new nodes in the 
tree). This mechanism promotes the generation of new tree branches that contain 
large number of examples. 

An illustration of the selection mechanism used in the CLIP4 algorithm is shown in 
Figure 5. 

 

Fig. 5. Selection mechanism performed by the GA module 

The GA module uses the crossover and mutation operators. Both are applied only 
to the SOLi,j vectors. The resulting ChildSOLi,j vector, together with the POSi,j matrix 
of the parent with the higher fitness value, constitutes the new individual. The selec-
tion of the SOLi,j matrix assures that the resulting individual is consistent with 
CLIP4’s  way of partitioning data. The crossover operator is defined as  

ChildSOLi = max (Parent1SOLi, Parent2SOLi) 

where Parent1SOLi and Parent2SOLi are the ith values of SOLi,j vectors of the two 
parent nodes. 

CLIP4 uses the mutation with 10% probability to flip a value in the ChildSOL vec-
tor to 1, regardless of the existing value. For particular data, the probability of muta-
tion can be established experimentally. Each 1 in the ChildSOL generates a new 
branch, except for 1’s taken from the SOLi.j of the parent with higher fitness value, 
which are discarded because they would generate branches redundant with the 
branches generated by the parent.  

The termination criterion checks whether the bottom level of the tree has been 
reached. The entire evolution process of the GA module is shown in Figure 6. 
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Fig. 6. The evolution process performed by the GA module 

The GA module of the CLIP4 algorithm is used when a small data set covering a 
small portion of the search space is available; the reason is that then CLIP4 will gen-
erate rules that potentially cover a not yet described portion of the state space. 

4.6   Pruning 

CLIP4 uses prepruning to prune the tree during its process of tree generation. The 
prepruning stops the learning process even if some positive examples have still not 
been covered and while some negative examples are still covered. More precisely, 
CLIP4 prunes the tree grown in Phase 1 as follows:  

− First, it selects a number (defined by the pruning threshold) of best nodes on the 
ith tree level. The selection is performed based on the goodness criterion identical 
to the fitness function described later. Only the selected nodes are used to branch 
into new nodes, and are passed to the (i+1)th tree level. 

− Second, all redundant nodes that resulted from the branching process are 
removed. Two nodes are redundant if one mode contains positive examples that 
are identical to each other , or forms a subset of positive examples of the other 
node. The node with the smaller number of examples is pruned first. 

− Third, after the redundant nodes are removed, each new node is evaluated using 
the noise threshold. If the node contains fewer examples than the number 
specified by the noise threshold, then the node is pruned. 

The prepruning method used in the CLIP4 algorithm avoids some disadvantages of 
classical prepruning. Namely, it never allows negative examples to be covered by the 
rules, and it ensures the completeness condition of the rule generation process. This 
type of prepruning increases the accuracy of the generated rules and lowers the com-
plexity of the algorithm.  

4.7   Feature and Selector Ranking 

The CLIP4 algorithm not only generates a data model in terms of rules but also ranks 
attributes and selectors. This aspect of the algorithm can be used for feature selection, 
which is defined as a process of finding a subset of original features that is optimal 
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according to some defined criterion; in the case of classification, the criterion is to 
obtain the highest predictive accuracy. CLIP4 ranks attributes and selectors by assign-
ing to them a goodness value that quantifies their relevance to a particular learning 
task. These rankings provide additional insight into the information hidden in the data. 

The goodness of each attribute and selector is computed by means of a set of gen-
erated rules for a given class. All attributes with goodness value greater than zero are 
strongly relevant to the classification task. Strong relevancy means that the attribute 
cannot be removed from the attribute set without decreasing the accuracy of classifi-
cation. The other attributes can be removed from the data. The attribute and selector 
goodness values are computed in the following manner: 

− Each generated rule has a goodness value equal to the percentage value of the 
positive training examples it covers. Recall that each rule consists of one or more 
(attribute, value of the selector) pairs.  

− Each selector has a goodness value equal to the goodness of the rule from which 
it comes. The goodness of the same selectors from different rules is summed, and 
then scaled to the (0,100) range; with 100 being the highest. Scaling of the good-
ness values is necessary because otherwise the summed goodness for a particular 
selector can grow to over 100, while only the ratio to the goodness’s of other  
selectors is important. 

− For each attribute, the sum of the scaled goodness of all attribute selectors is 
computed and then divided by the number of attribute values to obtain the good-
ness of the attribute. 

The feature and selector ranking performed by CLIP4 algorithm can be used to: 

- select only relevant attributes (features) and discard irrelevant ones; the user can 
discard all attributes that have a goodness of 0 and still have   an equally accurate 
model of the data, and  

- provide additional insight into data properties. The selector ranking can help in 
analyzing the data in terms of the relevance of the selectors to the classification 
task. 

5   DataSqueezer Algorithm 

The DataSqueezer algorithm was first published in (Kurgan 2003; Kurgan et al., 
2006) and later it was incorporated into a larger data mining system called Me-
taSqueezer (Kurgan and Cios, 2004). The latter system was recently successfully used 
in analysis of clinical data concerning patients with cystic fibrosis (Kurgan et al., 
2005); it was able to discover clinical information that is implicated in stabilization or 
improvement of patient’s health. The DataSqueezer induces a set of production rules 
from a supervised training data by utilizing a very simple data reduction procedure via 
prototypical concept learning, inspired by the Find S algorithm (Mitchell, 1997). The 
main advantages of this method are its log-linear complexity resulting in very fast 
generation of the rule-based classification models and robustness to missing values. 
DataSqueezer is also relatively simple to implement.  
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Let us denote a training dataset by D, consisting of s examples and k attributes. The 
training dataset is divided into two disjoint subsets, DP that consists of positive exam-
ples and DN that includes the negative examples. Figure 7 shows the pseudocode of the 
algorithm. Vectors and matrices are denoted by capital letters, while elements of vec-
tors/matrices are denoted with the same name but use small letters. The matrix of posi-
tive/negative examples is denoted as POS/NEG and their number as NPOS/NNEG. The 
examples are represented by rows, and features/attributes by columns. Positive exam-
ples, POS, and negative examples, NEG, are denoted in the DataReduction procedure 
by di[j] values, where j=1,…,k is the column number, and i is the example number (row 
number in matrix D, which denotes either POS or NEG). The algorithm also uses ma-
trices that store intermediate results (GPOS for the POS, and GNEG for the NEG), which 
have k columns. Each cell of the GPOS matrix is denoted by gposi[j], where i is a row 
number and j is a column number; and similarly for the GNEG matrix each cell is de-
noted by gnegi[j]. The GPOS stores a reduced subset of the data from the POS matrix, 
and the GNEG stores a reduced subset of the data from the NEG matrix. The GNEG and 
GPOS matrices have an additional (k+1)th column that stores the number of examples 
from the NEG and POS matrices, described by a particular row in the GNEG and GPOS, 
respectively. For example, gpos2[k+1] stores the number of examples from the POS 
that are described by the second row in the GPOS matrix. 

DataSqueezer works in two steps. In step 1 it performs data reduction to generalize 
information stored in the original data. Data reduction is performed via the use of a 
prototypical concept learning procedure. This is performed for both positive and 
negative data and it results in generation of the GPOS and GNEG matrices. This reduction 
 

 
Given: POS, NEG, k (number of attributes), s (number of examples) 

Step1. 

1.1 GPOS = DataReduction(POS, k); 

1.2 GNEG = DataReduction(NEG k); 

Step2. 

2.1 Initialize RULES = []; i=1;    // where rulesi denotes ith rule stored in RULES
2.2 create LIST = list of all columns in GPOS  

2.3 within every GPOS column that is on LIST, for every non missing value a from selected column j compute sum, 

saj, of values of gposi[k+1] for every row i, in which a appears and multiply saj, by the number of values the 

attribute j has 

2.4 select maximal saj, remove j from LIST, add “j = a” selector to rulesi

2.5.1 if rulesi does not describe any rows in GNEG

2.5.2       then remove all rows described by rulesi from GPOS, i=i+1; 

2.5.3          if GPOS is not empty go to 2.2, else terminate 

2.5.4    else go to 2.3 

Output: RULES describing POS

 DataReduction (D, k)    // data reduction procedure for D=POS or D=NEG 

DR.1 Initialize G = []; i=1; tmp = d1; g1 = d1; g1[k+1]=1; 

DR.2.1 for j=1 to ND     // for positive/negative data; ND is NPOS or NNEG  

DR.2.2     for kk = 1 to k     // for all attributes
DR.2.3       if (dj[kk] ≠ tmp[kk] or dj[kk] = ‘∗’) 

DR.2.4          then tmp[kk] = ‘∗’;    // ‘∗’ denotes missing” do not care” value
DR.2.5    if (number of non missing values in tmp ≥ 2) 

DR.2.6          then gi = tmp; gi[k+1]++; 

DR.2.7       else i++; gi = dj; gi[k+1]=1; tmp =  dj; 

DR.2.8 return G;  
 

Fig. 7. Pseudocode of the DataSqueezer algorithm 
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is related to the least generalization in the FindS method. The main difference is that 
FindS performs the least generalization multiple times for the entire positive set 
through a beam-search strategy, while the DataSqueezer performs it only once in a 
linear fashion by generalizing consecutive examples. It also generalizes the negative 
data. In step 2 the DataSqueezer generates rules by a greedy hill-climbing search on 
the reduced data. A rule is generated by using the search procedure starting with an 
empty rule, and adding selectors until the termination criterion is satisfied. The rule 
that is being generated consists of selectors generated using the GPOS, and is checked 
against the GNEG. If the rule covers any data in the GNEG, a new selector is added to 
make it more specific, and thus better able to distinguish between positive and nega-
tive data. The maximum depth of the search is equal to the number of features. Next, 
the examples covered by the generated rule are removed, and the process is repeated.  

When applied to dataset given in Table 1 the DataSqueezer algorithm generates 
two rules: 

If F1 = 1 THEN Class = 1 
If F3 = 3 THEN Class = 2 

Note that each rule was generated separately, i.e., the first rule was generated by 
using class 1 as positive and class 2 as negative, while the second rule was generated 
by using class 2 as positive and class 1 as negative. This means that each of these 
rules can be used independently to classify the data shown in Table 1. When applied 
to the Table 1 data, each of these rules perfectly separates the two classes.  

The DataSqueezer algorithm handles data with missing values very well. Similarly 
to CLIP4, it uses all available information while ignoring missing values during the 
induction process, i.e., the missing values are handled as "do not care" values. The 
algorithm is robust to a very large number of missing values and was shown to suc-
cessfully generate rules even from data that have more than half of missing values 
(Kurgan et al., 2005). DataSqueezer, like the other algorithms covered in this chapter 
handles only discrete-valued numerical and nominal attributes (the latter are automati-
cally encoded into numerical values). We note that continuous attributes can be con-
verted into discrete-values attributes using a discretization algorithm (Kurgan and Cios, 
2004). The generated rules are independent of the encoding scheme because during the 
rule induction process no distances are calculated between the feature values.  

DataSqueezer uses two thresholds that can be set by the user. By default these 
thresholds are set to zero. The pruning threshold is used to prune very specific rules, 
i.e., rules that cover only a few examples. The rule generation process is terminated if 
the first selector added to rulei has saj value equal to or smaller than the threshold’s 
value. The algorithm induces rules by selecting maximal saj values (selectors that 
cover most of the POS examples) and removes examples that have already been cov-
ered. This approach has the benefit of leaving small subsets of positive examples that 
store different examples from the majority already covered. These potential outliers 
can be filtered out using this threshold. The generalization threshold is used to allow 
for rules that cover a small amount of negative data. It relaxes the requirement from 
line 2.5.1 (Figure 7) and allows for acceptance of rules that cover negative examples; 
the number is equal to or smaller than this threshold. It is a useful mechanism in the 
case of data with overlapping classes, or in the case of inconsistent examples present 
in the training dataset (examples that should have been but were not eliminated during 
preprocessing). Both thresholds should be set to small values preferably expressed as 
percentages of the POS data size. 
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6   Conclusions 

The works of Michalski undoubtedly provided solid foundations and a strong motiva-
tion for many of the subsequent works on rule-based inductive ML algorithms. Some of 
our own methods, including the CLIP family of algorithms and DataSqueezer, were 
inspired by his work. We believe that ours and future generations of computer scientists 
will continues this line of research, which is fueled by an increasing demand for scalable 
methodologies that can generate human-readable models for current and future datasets. 
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