Predicting functions of disordered proteins with MoRFpred
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Summary

Intrinsically disordered proteins and regions are involved in a wide range of cellular functions and they
often facilitate protein-protein interactions. Molecular recognition features (MoRFs) are segments of
intrinsically disordered regions that bind to partner proteins, where binding is concomitant with a
transition to a structured conformation. MoRFs facilitate translation, transport, signaling and regulatory
processes and are found across all domains of life. A popular computational tool, MoRFpred, accurately
predicts MoRFs in protein sequences. MoRFpred is implemented as a user-friendly webserver that is
freely available at http://biomine.cs.vcu.edu/servers/MoRFpred/. We describe this predictor, explain
how to run the webserver, and show how to interpret the results it generates. We also demonstrate the
utility of this webserver based on two case studies, focusing on the relevance of evolutionary
conservation of MoRF regions.
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1 Introduction

Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are incompetent in forming stable
three dimensional structure, yet perform varied and vital biological functions [1-4]. The lack of the
prerequisite of a stable structure for function creates several challenges in the study of IDPs and IDRs,
both experimental and computational [3]. The crux of these challenges on the computational side is the
lack of conservation in many IDRs relative to structured proteins. Without the need to maintain rigid
structures many IDRs diverge drastically, even in closely related species [5]. Lack of conservation
confounds established methods for function annotation that rely on sequence similarity to transfer
functional annotations. Lack of conservation is not universal in IDRs; many IDRs may be conserved, or
more commonly conserved in portions of their sequences [5].

One mechanism of IDP function is short functional elements within IDRs. The evolutionary origin of
these functional elements is seemingly idiosyncratic, where some examples have been found to be



evolutionarily conserved [6-8], and others have been proposed to be emergent sequence features
[9,10]. A common function of these short functional elements is binding to molecular partners, often
other proteins [11,12]. These types of features are likely common across many biological processes [13],
such as cell cycle regulation, modulation of cellular structure, and apoptosis.

One model of these functional elements is known as molecular recognition features (MoRFs) [14]. It
models functional elements within IDRs as short regions of increased structural propensity within longer
regions of intrinsic disorder [13]. Examples of these types of functional regions can readily be inferred
from protein structures and sequence properties [11]. Several predictors of MoRFs have been
developed [13-17]. Initial predictors relied on direct interpretation of the MoRF model, by scanning for
patterns in prediction of intrinsic disorder and employing a second level of prediction over patterns of
interest [13,15]. The most recent MoRF predictors, including MoRFpred, relax the strict reliance on
disorder prediction patterns while still directly considering disorder predictions [17]. Several other
methods of MoRF prediction have been independently developed [13,14,18,16,19,20,15,21]. In addition
to MoRFs, several other related models of functional elements with IDRs have been proposed.
Eukaryotic linear motifs (ELMs) model these elements as short sequence motifs which can be predicted
by pattern matching and filtering spurious matches [22]. Though they are very different models, MoRF
and ELM predictions are frequently coincident [23]. Further, several generalized models of binding
regions within IDRs have been developed [24-27]. Relative to other methods, MoRFpred was developed
on a well-defined dataset with short functional elements that bind to other proteins within larger
regions of intrinsic disorder. Like all methods of this type, the specificity is difficult to assess exactly, but
this predictor features a good estimated sensitivity [17]. MoRFpred is useful for gaining insight into the
function of novel IDPs.

MoRFpred is available as a user-friendly webserver at http://biomine.cs.vcu.edu/servers/MoRFpred/.

This server was been extensively used by the community since it was released in early 2012. Usage data
collected with the Google Analytics platform reveals that MoRFpred was utilized close to 9000 times by
over 2700 unique users from 711 cities and 71 countries. The article that introduces this computational
tool was already cited 175 times (source: Google Scholar on June 29, 2018).

2 Materials and Methods

2.1 Datasets

For training of MoRFpred, a set of MoRFs was constructed beginning with known binding regions from
Protein Data Bank (PDB) [28]. Bound peptides from PDB were carefully filtered for clear binding to a
longer protein chain and mapped back to their source proteins. This procedure resulted in a dataset of
842 MoRFs. To avoid training and testing on similar proteins, these MoRFs were grouped into 427
clusters and divided into testing and training sets. This gave a training and testing sets with 421 and 419
MOoRFs, respectively, with no protein more than 30% identical between the two sets (see Note 1).

A set of negative examples that do not contain MoRFs with near certainty was constructed from protein
chains that have been completely structurally characterized by X-ray crystallography at a high-
resolution. The chance of intrinsic disorder in the negative set was minimized by only selecting



monomeric proteins without large co-factors that contained no missing residues due to lack of electron
density. Further, any protein with a significant amount of predicted intrinsic disorder, >30% of residues,
was discarded. Filtering for proteins with less than 30% identity resulted in a set of 28 proteins.

Figure 1. Architecture of MoRFpred. The input sequence is used to generate sequence properties, from which
input features are derived by windowed averaging. A support vector machine predicts MoRFs based on these
input features. The SVM prediction is merged with similarity based predictions to produce the final MoRFpred
score, where scores above 0.5 are predicted MoRFs (M) and those less than 0.5 are predicted non-MoRFs (n).
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2.2 Architecture

MoRFpred is a support vector machine (SVM) over a rich feature space merged with a sequence
similarity-based prediction (Fig. 1). Features considered for the linear kernel SVM predictor included 5
disorder prediction methods [29-32], relative solvent accessible surface prediction [33], B-factor
prediction [34], PSI-BLAST generated position specific scoring matrices (PSSMs), and amino acid
propensity scales from AAindex [35]. Two broad sets of features were used from each of these methods:



(1) per-residue over a window of 25 residues and (2) values aggregated over a window. Aggregation
methods included taking the difference over a window of 25 residues and a smaller window, which
captures the features found to be useful for previous MoRF predictors. For example, previous MoRF
predictors relied on elevated predicted disorder surrounding a predicted MoRF, but depressed values
for the MoRF region itself. Indeed, the corresponding difference-based aggregation was found to be
one of the strongest MoRF features.

Feature selection for the SVM predictor was based on a best-first iterative addition of ranked features.
Features were ranked based on a combination of biserial correlations [36] and single feature predictive
performance, where poorly correlated or performing features were removed from consideration.
Iterative addition of features was based on a modified 5-fold cross validation procedure, where a
feature was only added if it improved prediction performance by at least 1%.

Similarity-based predictions were done using a PSl-blast search against MoRF containing proteins in the
training set. PSl-blast matches were selected based on an e-value threshold. An e-value = 0.5 was
selected based on optimization of performance of the merged predictor. MoRF annotations from the
training set are transferred to the query protein based on the PSI-BLAST alignment. These transferred
annotations are merged with SVM-based prediction by adding one to the SVM-prediction result and
dividing by two, which ensures that the merged prediction for transferred annotations will be over the
0.5 threshold.

2.3 Predictive Quality

Prediction performance was assessed in the MoRFpred publication [17], using the true positive and false
positive rates, overall accuracy (ACC), area under the ROC curve (AUC), and the success rate. Success
rate is a per-sequence measure of performance, where a sequence is considered successfully predicted
if the MoRF residues have a higher average prediction score than the non-MoRF residues.

MoRFpred performance was assessed in comparison to ANCHOR and previously developed MoRF
predictors. MoRFpred had ACC = 94.7% and the highest performance by success rate and AUC
evaluations, with values of 71.8% and 67.3%, respectively. The original MoRF predictor had a very low
false positive rate, which artificially inflated its ACC value due to the large proportion of non-MoRF
residues in the data set. Adjusting the MoRFpred threshold to an equally low false positive rate results
in nearly double the true positive rate of the original MoRF predictor.

2.4 Webserver
The MoRFpred webserver is freely available at http://biomine.cs.vcu.edu/servers/MoRFpred/. The

server can be accessed with an internet connection and any modern web browser. All computations that
are needed to complete predictions are performed on the server side.

On our webserver, sequences submitted for prediction will be returned within 20-minutes of submission
(see Note 2). The runtime of MoRFpred is dominated by the PSI-BLAST prediction, whose runtime varies
with protein length and database similarity.



The main server page is where proteins are submitted for prediction. The webserver only requires
FASTA sequences of the proteins of interest to preform MoRFpred predictions. Up to 5 FASTA formatted
protein sequences may be entered into the large text entry field per submission. An email address is
required for each submission. All required programs for generating prediction features, including PSI-
BLAST, and disorder, RSA, and B-factor predictions, are run automatically by scripts on the server. Upon
completion of predictions for each submission, the server will send an email notification with links to the
prediction results.

Figure 2. Primary MoRFpred page, for submission of sequences for prediction. Red numbers indicate the sequence
of steps required to submit a prediction.

MoOLECULAR RECOGNITION FEATURE PREDICTOR (MORFPRED) - WEB SERVER

MATERIALS | REFERENCES | ACKNOWLEDGMENTS | DISCLAIMER | BIOMINE

The server is designed for protein Molecular Recognition Feature (MoRF) prediction.

Please follow the three steps below to make predictions:

1. Enter protein sequence(s)

Please enter each protein in a new line (FASTA ForMAT) - up to 5 proteins allowed

Example || Reset sequence(s) |

2. Provide your e-mail address: | | 2

3. Predict: | Run MoRFpred! 3

2.5 Running MoRFpred
From the main server page, three steps are required to submit sequences to obtain the MoRFpred’s
predictions (Fig. 2, steps are highlighted with red numbers corresponding to the step):

1. Copy your FASTA formatted sequence (see Note 3) from its source file or webpage and paste it
into the text box (see Notes 4 and 5).
Enter an email address. This is the address to which links to the prediction results will be sent.
Click “Run MoRFpred!”. This submits the sequences to our server for MoRFpred predictions.

Once sequences are submitted for prediction, the browser is redirected to a status page that gives the
current position of the submission in the server queue. This page will be automatically redirected to the



results page when predictions are completed. The queue on the server is first come first serve, and if
there is a large number of submission, predictions may be delayed. Even if the web page is closed at this
point, links to predictions will still be received through email (see Note 6).

Figure 3. MoRFpred prediction results page. Red numbers correspond to the primary features of the results page.

MORFPRED RESULTS PAGE

Results for MoRFPRED webserver.

Use this link to download the results as a CSV file: RESULTS.CSV 1
Results format

The first line displays the query sequence followed by predictions which are shown in two rows

o the first row annotates Mclecular Recognition Feature (MoRF) (M) and non-MoRF (n) residues 2

o the second row gives prediction scores (the higher the score the more likely it is that a given residue is MoRF)
P21513 3 4 SLAGSYLVLMPNNPRAGGISRRIEGDDRTELKEALASLELPEGM(
MoRFpred

2.6 MoRFpred Results

The results page includes a link to the raw results (Fig. 3, red 1) as well as a color-coded text display of
MoRFpred results (Fig. 3, red 2). The raw results (results.csv) file gives results for each submitted
sequence, each in three lines, which are comma delimited:

e The input sequence: the FASTA header followed by each residue of the input sequence.

e Binary MoRFpred predictions: the string ‘MoRFpred’ followed by one character for each
residue in the input sequence — ‘O’ for non-MoRF residues and ‘D’ for MoRF residues.

e The raw prediction output: the string ‘prob’ followed by one floating point number between 0
and 1 for each residue of the input sequence. Predicted MoRF residues correspond to values
greater than 0.5.

The color-coded text display of MoRFpred predictions includes the FASTA header of each input
sequence (Fig. 3, red 3), and several aligned rows. The rows are aligned by residue from N-terminus to
C-terminus. The rows are, from top to bottom, are the input sequence (Fig. 3, red 4), binary MoRFpred
results (Fig. 3, red 5) indicating non-MoRF residues (green ‘n’) and MoRF residues (red ‘M’) and the raw
prediction value (Fig. 3, red 6) multiplied by 10 and rounded, with alternating residues in black and
white.

The notification email contains links both to the results page (Fig. 4, red 1) and to the raw results file
(Fig. 4, red 2). This email can be saved to access results at a later time.



Figure 4. Notification email. Red numbers correspond to links to prediction results.
Predictions for MoRFpred job id: 20171009045915 are ready.
Upon the usage the users are requested to use the following citations:

Miri Disfani F, Hsu WL, Mizianty MJ, Oldfield C, Xue B, Dunker AK, Uversky VN, Kurgan LA, 2012. MoRFpred, a computational
tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins.
Bioinformatics, 28(12): i75-i83.

Thank you for using our webserver,
Biomine group

3 Case Studies

As subjects of the case studies we selected two proteins of different origin, human p53 (a 393 residue-
long protein) and RNase E from E.coli (a 1,061 residue-long protein). These two proteins have very
different biological functions, are characterized by different levels of intrinsic disorder, and possess
different numbers of MoRFs.

3.1 Case Study: p53

Because of its crucial biological roles in regulation of apoptosis, genomic stability, and inhibition of
angiogenesis, as well as many mechanisms of anticancer activity, cellular tumor antigen p53 is one of
the most studied proteins. The p53 signaling pathway is activated in response to a variety of stress
signals. Activated p53 is accumulated in the nucleus, where it’s binding to specific DNA results in the
induction or inhibition of a realm of different genes [37,38], many of which are involved in apoptosis,
growth arrest, or senescence [39-42]. In the unstressed mammalian cells, continuous ubiquitination of
the non-phosphorylated p53 by double minute-2 ubiquitin ligase (MDM2) [43] and subsequent
proteasomal degradation ensure short life-time and low levels of p53. There is also a negative feedback
between the p53 and Akt pathways [44], where Akt is activated in cells exposed to various stimuli
ranging from hormones to growth factors, and to extracellular matrix components [45] and controls the
MDM2-mediated targeting of p53 for degradation [46]. Loss of p53 function due to mutations in this
protein or some other alterations in the pathways leading to its activation and regulation, is a common
feature in the majority of human cancers [47]. Such mutations account for ~90% of cancer-related
mutations in the TP53 gene and are found in 50% of human cancers [48]. For example, up to 50% of
advanced-stage prostate cancers contain mutations in p53 [49], and progression of prostate cancer to
metastatic disease is characterized by the loss of p53 [50]. Furthermore, p53 levels may have prognostic

value in urological oncology [51].



There are three major functional domains in human p53, the intrinsically disordered N-terminal
regulatory domain (residues 1-92), the ordered central DNA binding domain (DBD, residues 94-292) [52-
54], and the intrinsically disordered C-terminal oligomerization and regulatory domain (residues 293-
393) [55]. The regulatory domains can be further subdivided into functional subdomains/regions, such
as transactivation domain 1 (TAD1) (residues 1-40), TAD2 (residues 40-60), and a proline-rich region, PR
(residues 64-92), in the N-terminal regulatory domain, and tetramerization or oligomerization domain
(OD; residues 325-356), and a regulatory C-terminal domain (CTD; residues 356-393) in the C-terminal
regulatory domain [55,56]. The N-terminal and C-terminal regulatory domains show exceptional binding
promiscuity. Some of the illustrative examples of proteins interacting with the N-terminal
transactivation region of p53 include CBP/p300, CSN5/Jab1, MDMZ2, RPA, TFIIH, and TFIID [57], whereas
the CTD of p53 is engaged in interaction with 14-3-3, GSK3B, hGcn5, PARP-1, S100Bgg, TAF, TAF1, TRRAP,
to name a few [57]. Importantly, despite their crucial role in biological activities of p53, the regulatory
regions of this protein are characterized by relatively poor evolutionary conservation, whereas the
central DBD domain is highly conserved among different species. Irrespective of the general lack of
conservation, there are four MoRFs in human p53 that overlap with or are included into the known
binding sites of this protein (see Figure 5).

Figure 5. Case study: p53. The correspondence between intrinsic disorder predictions (red line), sequence
conservation (blue line), binding regions (orange boxes), and predicted MoRF regions (green boxes) is show.
Binding regions are discussed in the text. Sequence conservation is calculated from a set of p53 orthologs
(OrthoDB) as the relative profile entropy over maximum entropy weighted sequence (large values indicate greater
conservation).
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The first MoRF (see Figure 5, box A) coincides with the MDM2 binding site of p53. MDM2 is the E3
ubiquitin-protein ligase that is known as an important oncogene due to its overexpression in many
human cancers, such as breast, colon, and prostate cancers, as well as hematologic malignancies and
sarcomas [58]. MDM2 is most famous for its vital role in the p53 regulation via binding to a short stretch
(residues 13-29) of the p53 TAD1 that prevents p53-driven activation or inhibition of various genes, via
the MDM2-mediated p53 ubiquitination that targets this protein for the proteasomal degradation, and
via active p53 transport out of the nucleus due to the presence of a nuclear export signal in MDM2
[59,60]. Therefore, alteration of the p53-MDM?2 interaction pathway considered as a promising target



for cancer therapy [58]. X-ray crystallographic studies of the p53-MDM2 complex revealed that the
MDM?2 binding region of p53 forms an a-helical structure bound to a deep groove on the surface of the
N-terminal domain of MDM2 (residues 17-125) [61].

The second MoRF (see Figure 5, box B) is included into the p53N fragment (residues 33-60) responsible
for the p53 interaction with the N-terminal domain of the single-stranded DNA (ssDNA)-binding protein,
replication protein A (RPA) [62]. This RPA70N domain is characterized by an oligonucleotide/
oligosaccharide-binding fold typical for the ssDNA-binding domains, whereas the p53N fragment, which
is disordered in isolation, forms two amphipathic helices, H1 and H2, following RPA70N binding [62].
Also, unlike other MoRFs in this protein, this MoRF displays a large amount of sequence conservation
(see Figure 5, conservation score).

The third MoRF (see Figure 5, box C) is a part of the p53 tetramerization domain (325-356), structure of
which represents a short B-strand (residues 326—333) followed by an a-helix (residues 335—-355). These
two structural elements are connected by a sharp turn facilitated by a conserved glycine residue
(Gly334). Two monomers of the p53 tetramerization domain associate to form an antiparallel double-
stranded sheet and the antiparallel association of their helices forms a two-helical bundle. Four chains
form a tetramer that can be described as a dimer of primary dimers [63].

The fourth MoRF (see Figure 5, box D) is a part of the highly promiscuous C-terminal binding region of
p53 (residues 374-388) that can bind to cyclin A [64], sirtuin [65], CBP [66], or S100BB [67]. It was
pointed out that upon interaction with different partners, this binding region of p53 displays all three
major secondary structure types in the four complexes [68], where its core fragment becomes an a-helix
when bound to S100BB [67], a B-strand when bound to sirtuin [65], and a coil with two distinct
backbone trajectories when bound to CBP [66] and cyclin A2[64].

MoRFpred correctly identifies the four MoRF regions in p53 (see Figure 5, green boxes), in spite of the
significantly different conservation profiles of the four MoRF regions (see Figure 5, blue lines). We note
the relatively low conservation of the first, third and fourth MoRF region and much higher conservation
values for the second region. Interestingly, the red lines that identify the putative propensities for
disorder, which were generated with VSL2B [69], correctly identify both termini of p53 as intrinsically
disordered. However, they also register dips where the MoRFs are located. These dips are a by-product
of the fact that MoRF regions become structured upon interacting with the protein partner, reducing
the inherent propensity of these amino acids to be intrinsically disordered.

3.2 C(Case Study: RNase E

Endoribonucleases are hydrolytic enzymes that catalyze the endonucleolytic cleavage of RNA, have
various specificities, are universally present in all organisms, and typically operate under tight cellular
regulation. Endoribonucleases are involved in the maturation, modification, and degradation of different
RNAs [70]. There are at least five endoribonucleases in E. coli (RNases I*, Ill, E, G, P). Among various
activities attributed to RNase E are processing of transfer RNA, 9S ribosomal RNA, the catalytic RNA of



RNase P, the transfer/messenger RNA (t/mRNA) that rescues stalled ribosomes [71-73], and general
mMRNA decay [74].

Figure 6. Case study: RNase E. The correspondence between intrinsic disorder predictions (red line), sequence
conservation (blue line), binding regions (orange boxes), and predicted MoRF regions (green boxes) is show.
Binding regions are discussed in the text. Sequence conservation is calculated from a set of RNase E orthologs
(OrthoDB) as the relative profile entropy over maximum entropy weighted sequence (large values indicate greater
conservation).

RNA binding - .
Binding regions @ [1]
0

Predicted MoRFs

1.0 - 30 ¢
o | S
8 w
7} 20 €
b | ©
U 05 ‘ =
'E 1 (14
] ! 10 €
& | . | ; : o !J. . o
a J Wm-um W | _;"ﬁiﬁ&wl "y bkad I mw i <

0.0+ ; ; . ; ; . : , ' . g 000

450 500 550 600 650 700 750 800 850 900 950 1,000 1,050

Residue index

Being one of the larger E. coli proteins, RNase E consists of 1,061 amino acid residues [75,76]. There are
two functionally different domains in this protein, the catalytic N-terminal domain (NTD; residues 1-
498) and the regulatory C-terminal domain (CTD; residues 499-1,061) [77-79]. Although the NTD is
relatively conserved and has numerous homologues [80], there is little sequence conservation in the
CTD [81], which is also characterized by low sequence complexity. The purified CTD was shown to be
mostly disordered by a set of biophysical techniques, such as limited proteolysis, SDS—PAGE, SAXS, and
far-UV CD [82]. Despite being highly disordered, the CTD was shown to interact with other degradosome
components and with structured RNA [82]. In agreement with these experimental data, computational
analysis clearly indicated that the NTD of RNase E was expected to be mostly structured, whereas the
CTD had characteristics of a highly disordered protein [82].

The CTD is highly disordered, which is in agreement with the high values of the putative propensities for
disorder generated for this protein with VSL2B [69] (see Figure 6, red line). CTD is also characterized by
the presence of four regions of increased structural propensity (labeled as segments A, B, C, and D,
respectively), which correspond to MoRFs. The four MoRF were correctly identified by the MoRFpred
method (green boxes). Importantly, all these segments are related to various biological activities of
RNase E, such as membrane targeting and CTD self-association (segment A corresponding to residues
565-585) or interactions with the components of the RNA degradosome, helicase (segment B, which is a
portion of the arginine-rich domain (residues 628—843)) [79,83], enolase (segment C (residues 833-
850),) [82], and polynucleotide phosphorylase PNPase (segment D, RNase E residues 1021-1061) [82].
Like in the case of p53, some of the MoRF regions (see Figure 6, segments C and D) are concomitant



with a substantial decrease in the putative propensity for disorder (red line), but the remaining two
regions do not register these dips. However, MoRFpred is still capable of identifying these MoRF regions,
in spite of their high propensity for disorder and lack of conservation (blue line).

4 Notes

1. The datasets can be downloaded from http://biomine.cs.vcu.edu/servers/MoRFpred/
To partially compensate for the long runtime of the algorithm, up to five sequences can be
submitted simultaneously to the webserver. As soon as the results for one batch of up to five
sequences are returned, another set of sequences can be submitted.

3. In FASTA format, each sequence is prefixed by a line beginning with ‘>’ followed by some
identifying text. The sequence should begin on the following line. For example: ...

4. Up to 5 sequences can be submitted at a time. Ensure that each sequence has its own ‘FASTA
header’, which is a separate line beginning with >’

5. The maximum length of each submitted sequence is 1000 residues.
It is advised to store or bookmark the link at this point. Predictions are stored on the server for at
least three months, and keeping the link will allow return to the results pages. It also protects
against lost predictions, in the case that an incorrect notification email address was entered.
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