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Abstract

Over the last two decades, neural networks (NNs) gradually became one of the indispensable

tools in bioinformatics. This was fueled by the development and rapid growth of numerous

biological databases that store data concerning DNA and RNA sequences, protein sequences

and structures, and other macromolecular structures. The size and complexity of these data

require the use of advanced computational tools. Computational analysis of these databases

aims at exposing hidden information that provides insights which help with understanding

the underlying biological principles. The most commonly explored capability of neural net-

works that is exploited in the context of bioinformatics is prediction. This is due to the

existence of a large body of raw data and the availability of a limited amount of data that are

annotated and can be used to derive the prediction model. In this chapter we discuss and

summarize applications of neural networks in bioinformatics, with a particular focus on

applications in protein bioinformatics. We summarize the most often used neural network

architectures, and discuss several specific applications including prediction of protein second-

ary structure, solvent accessibility, and binding residues.
1 Introduction

The term ‘‘bioinformatics’’ was coined relatively recently, that is, it did not appear in the

literature until 1991 (Boguski 1998). However, the first studies that concerned the field of

bioinformatics appeared already in the 1960s when the first protein and nucleic acid sequence

database was established. The National Institutes of Health (NIH) defines bioinformatics as

‘‘research, development, or application of computational tools and approaches for expanding

the use of biological, medical, behavioral, or health data, including those to acquire, store,

organize, archive, analyze, or visualize such data’’ (NIH Working Definition of Bioinformatics

and Computational Biology 2000). We note that bioinformatics is usually constrained to

molecular genetics and genomics. In a review by Luscombe et al. (2001), this term is defined as

‘‘conceptualizing biology in terms of macromolecules (in the sense of physical chemistry) and

then applying ‘informatics’ techniques (derived from disciplines such as applied math,

computer science, and statistics) to understand and organize the information associated

with these molecules, on a large-scale.’’ The key observations concerning the above definition

are that bioinformatics research is interdisciplinary, that is, it requires knowledge of physics,

biochemistry, and informatics, and that it concerns large-scale analysis, that is, only scalable

computational methods can be used. Since bioinformatics spans a wide variety of research

areas, that is, sequence analysis, genome annotation, evolutionary biology, etc., we are not able

to discuss all these research topics. Instead, we concentrate on the approaches concerning

protein bioinformatics, that is, the scope of this chapter is limited to the application of

bioinformatics in protein-related topics.

The last two decades observed an increased interest in the application of machine learning

techniques, and particularly artificial neural networks (NNs), in protein bioinformatics. The

most common application of the NNs is prediction; we assume that prediction concerns

targets that are both discrete and real valued. The popularity of NNs stems from two key

advantages that distinguish them from many other machine-learning methods. First, after the

NN model is trained, the use of the model to perform prediction is very efficient, that is,

computations are fast. This allows for a high throughput prediction of massive amounts of
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data, which is an inherent feature of a significant majority of bioinformatics projects. Second,

NN-based models provide high-quality results for many prediction tasks, for example, the

leading methods in protein secondary structure prediction and protein solvent accessibility

prediction are based on NNs. These successful applications raised the profile of NNs, which are

currently being applied in dozens of other prediction tasks.

First, we introduce the relevant biological background. Next, we summarize the

most popular NN architectures that are applied in protein bioinformatics and the key

prediction methods that utilize NNs. Finally, we provide a more detailed analysis of NN-based

solutions for the prediction of protein secondary structure, solvent accessibility, and binding

residues.
2 Biological Background

Proteins are essential elements of virtually all living organisms. They participate in every

process within cells. For instance, some proteins serve as enzymes that catalyze biochemi-

cal reactions which are vital to metabolism. Proteins are also important in cell signaling,

immune responses, cell adhesion, and the cell cycle, to name just a few of their functions.

They are large polymeric organic molecules which are composed of amino acids (also called

residues). Amino acid (AA) is a small molecule that includes an amino (�NH2) (except the

proline amino acid) and a carboxyl (�COOH) group that are linked to a carbon atom. The

AA formula, NH2CHRCOOH, where N, H, C, and O are the nitrogen, hydrogen, carbon,

and oxygen atoms, respectively, also incorporates R which denotes an organic substituent

(so-called side chain), see > Fig. 1 (Panel A). There are a total of 20 AAs that make up all

proteins. They all share the same NH2CHCOOH group and have different R-group. The side

chains determine physiochemical properties, such as charge, weight, and hydrophobicity, of
. Fig. 1

Panel A shows the chemical structure of AAs; the side chain (R-group) differentiates

the structure of different AAs. Panel B shows a protein chain (linear sequence) composed of AAs

where each circle represents one AA.
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individual AAs. AAs are abbreviated using either three-letter or one-letter encoding. In the

one-letter case, the 20 AAs are encoded as A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,

and Y. The AAs are joined together in a linear form through chemical bonds between the

carboxyl group and the amino groups of two adjacent AAs, see > Fig. 1 (Panel B).

The protein structure is defined at four levels, which include the primary, secondary,

tertiary, and quaternary structures, see > Fig. 2:

� Primary structure is the linear order of AAs, also called amino acid sequence. The AA

sequence is translated from genes (DNA).

� Secondary structure is defined as regular and repetitive spatially local structural patterns in

the protein structure. The secondary structure is stabilized by hydrogen bonds. The most

common secondary structures are helix, strand, and coil. Secondary structures are present

in different regions of the same and different protein molecules.
. Fig. 2

Examples of different levels of protein structure. Panels A, B, and C show the structure of a

globular domain of the human prion protein. Panel A shows the AA sequence (using one-letter

encoding) and the corresponding secondary structure for each AA (using encoding in

which H, E, and C stand for helix, strand, and coil, respectively) and also a graphical format where

the horizontal line denotes the coil, waves denotes helices, and arrows denotes strands. Panel B

shows a cartoon representation of the spatial arrangement of the secondary structures. Helices

are shown in red, strands in yellow, and coils as black lines. Panel C shows the tertiary structure of

the protein in which individual atoms are represented using spheres. Panel D shows the

quaternary structure of amicrotubule, which is assembled froma-tubulin (dark gray spheres) and

b-tubulin (light gray spheres) proteins. The tubulin is assembled into a hollow cylindrical shape.
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� Tertiary structure defines the overall three-dimensional shape of a single protein molecule.

It concerns the spatial arrangement of the secondary structures and is represented by the

coordinates of all atoms in the protein. It is generally believed that the tertiary structure of

a given protein is defined by its primary sequence and that each protein has a unique

tertiary structure.

� Quaternary structure is the arrangement of multiple protein structures in a multi-subunit

complex. The individual proteins are assembled into a larger molecule usually with a given

geometrical shape, for example, protofilament or a spherical shape. For instance, a

microtubule is the assembly of a-tubulin and b-tubulin proteins which takes the form of

a hollow cylindrical filament.

While as of January 2009 the primary structure is known for over 6.4 million nonredundant

proteins, the corresponding structure is known for only about 55,000 proteins. We emphasize

that knowledge of the structure is of pivotal importance for learning and manipulating a

protein’s function, which for instance is exploited in modern drug design. The significant and

widening gap between the set of known protein sequences and protein structures motivates

the development of machine learning models that use the known structures to predict

structures for the unsolved sequences.
3 Neural Network Architectures in Protein Bioinformatics

Although more than a dozen NN architectures have been developed and adopted, one of the

first and simplest architectures, the feedforward neural network (FNN), is the most frequently

applied in protein bioinformatics. Besides FNN, the recurrent neural network (RNN) and the

radial basis function neural network (RBF) architectures also found several applications in the

prediction of bioinformatics data.

A common feature of all prediction applications in protein bioinformatics is the necessity

to convert the input (biological) data into the data that can be processed by the NN. This

usually involves encoding of the biological data into a fixed-size feature vector. For instance,

the primary protein structure is represented as a variable length string of characters with an

alphabet of 20 letters (AAs), see > Fig. 2 (Panel A). This sequence is converted into a vector

of numerical features that constitutes the input to the NN. For instance, the vector could

include 20 counts of the occurrence of the 20 amino acids in the sequence. The following

discussion assumes that the input data are already encoded into the feature vector.
3.1 Feedforward Neural Networks

The FNN architecture usually consists of three layers, an input layer, a hidden layer, and an

output layer. The input layer accepts the input feature vector and the output layer generates

the predictions. The hidden layer is responsible for capturing the prediction model. Each layer

consists of a number of nodes and each node in a given layer connects with every other node in

the following layer, see > Fig. 3. The connections are associated with weights vij and wij

between the ith node in one layer and the jth node in the next layer. The nodes process the

input values, which are computed as the weighted sum of values passed from the previous

layer, using activation functions. The two most frequently used activation functions are:



. Fig. 3

Architecture of FNN. The input layer contains n nodes (which equals the number of features in

the input feature vector), the hidden layer contains m nodes and the output layer contains k

nodes. The weight between the ith node of the input layer and the jth node of the hidden layer is

denoted by vij. The weight between the ith node of the hidden layer and the jth node of the

output layer is denoted by wij.
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fðviÞ ¼ tanhðviÞ
fðviÞ ¼ ð1þ e�vi Þ�1

where vi is the weighted sum of the inputs. The values of the former hyperbolic tangent

function range between�1 and 1, while the values of the latter logistic function range between

0 and 1. Some applications also utilize radial basis activation functions.

Learning using the FNN-based prediction model is performed by adjusting the connection

weight values to minimize the prediction error on training data. For a given input feature

vector {xi}, the observations (the prediction outcomes) are denoted as {yi}. The goal of the

FNN is to find a function f: X!Y, which describes the relation between inputs X and

observations Y. The merit of function f is measured with a cost function

C ¼ E½ð f ðxiÞ � yiÞ2�. For a training dataset with n samples, the cost function is

C ¼
Xn

i¼1

½ f ðxiÞ � yi�2
n

Based on the amount of error associated with the outputs of the network in comparison with

the expected result (cost function), the adjustment of the connection weights is carried out

using a backpropagation algorithm. The n input feature vectors are fed multiple times (each

presentation of the entire training dataset is called an epoch) until the weight values do not

change or a desired value of the cost function is obtained.

FNN is the most widely applied among the NN architectures in protein bioinformatics.

The applications include:

� Prediction of the secondary structure of protein (Jones 1999; Rost et al. 1994; Dor and

Zhou 2007a; Hung and Samudrala 2003; Petersen et al. 2000; Qian and Sejnowski 1988).

The aim of these methods is to predict the secondary structure state (helix, strand, or coil)

for every AA in the input protein sequence.

� Prediction of relatively solvent accessibility of protein residues (Rost and Sander 1994;

Garg et al. 2005; Adamczak et al. 2005; Ahmad et al. 2003; Dor and Zhou 2007b; Pollastri
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et al. 2002a). The solvent accessibility is defined as a fraction of a surface area of a given AA

that is accessible to the solvent. The AAs with high solvent accessibility are usually on the

protein surface.

� Prediction of binding residues (Jeong et al. 2004; Ahmad and Sarai 2005; Zhou and Shan

2001; Ofran and Rost 2007). The binding residues are those AAs in a given protein that are

involved in interactions with another molecule. The interactions could concern other

proteins, DNA, RNA, ions, etc., and they usually implement protein functions.

� Prediction of transmembrane regions (Gromiha et al. 2005; Natt et al. 2004; Jacoboni et al.

2001). Some proteins are embedded into cell membranes and they serve as pumps,

channels, receptors, and energy transducers for the cell. The goal of this prediction method

is to find which AAs in the input protein sequence are embedded into the membrane.

� Prediction of subcellular location of proteins (Zou et al. 2007; Cai et al. 2002; Reinhardt

and Hubbard 1998; Emanuelsson et al. 2000). These methods predict the location of the

proteins inside a cell. The locations include cytoplasm, cytoskeleton, endoplasmic reticu-

lum, Golgi apparatus, mitochondrion, nucleus, etc.

3.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a modification to the FNN architecture. In this case, a

‘‘context’’ layer is added, and this layer retains information across observations. In each

iteration, a new feature vector is fed into the input layer. The previous contents of the hidden

layer are copied to the context layer and then fed back into the hidden layer in the next

iteration, see > Fig. 4.

When an input feature vector is fed into the input layer, the RNN processes are as follows:

1. Copy the input vector values into the input nodes.

2. Compute hidden node activations using net input from input nodes and from the nodes in

the context layer.

3. Compute output node activations.

4. Compute the new weight values using the backpropagation algorithm.

5. Copy new hidden node weights to the context layer.
. Fig. 4

Architecture of RNN. Like FNN, RNN also contains an input layer, a hidden layer, and an output

layer. An additional context layer is connected to the hidden layer.
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Since the trainable weights, that is, weights between the input and hidden layers and between

the hidden and output layers, are feedforward only, the standard backpropagation algorithm is

applied to learn the weight values. The weights between the context and the hidden layers play

a special role in the computation of the cost function. The error values they receive come from

the hidden nodes and so they depend on the error at the hidden nodes at the t th iteration.

During the training of the RNN model we consider a gradient of a cost (error) function which

is determined by the activations at both the present and the previous iterations.

The RNN architecture was successfully applied in the prediction of:

� Beta-turns (Kirschner and Frishman 2008). Beta turns are the most frequent subtypes of

coils, which are one of the secondary protein structures.

� Secondary structure of proteins (Chen and Chaudhari 2007).

� Continuous B-cell epitopes (Saha and Raghava 2006). B-cell epitopes are the antigenic

regions of proteins recognized by the binding sites of immunoglobulin molecules. They

play an important role in the development of synthetic vaccines and in disease diagnosis.

The goal of this prediction method is to find AAs that correspond to the epitopes.

� Number of residue contacts (Pollastri et al. 2002b), which is defined as the number of

contacts a given AA makes in the three-dimensional protein molecule. The knowledge of

the contacts helps in learning the tertiary protein structure.
3.3 Radial Basis Function Neural Networks

Radial basis function (RBF) neural networks also incorporate three layers: an input layer, a

hidden layer with a nonlinear RBF activation function, and a linear output layer, see > Fig. 5.

During the process of training the RBF model:

1. The input vectors are mapped onto each RBF in the hidden layer. The RBF is usually

implemented as a Gaussian function. The Gaussian functions are parameterized, that is,

values of the center and spread are established, using the training dataset. The commonly
. Fig. 5

Architecture of RBF neural network. The network is fully connected between the input and

the hidden layers (each node in the input layer is connected with all nodes in the hidden layer),

and all the weights are usually assumed to be equal to 1. The nodes in the hidden layer are fully

connected with a single node in the output layer, and the weight values are optimized to

minimize the cost function.
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used methods include K-means clustering or, alternatively, a random subset of the training

vectors can be used as the centers.

2. In regression problems (the prediction outcomes are real values), the output layer is a

linear combination of values produced by the hidden layer, which corresponds to the mean

predicted output. In prediction problems (the prediction outcomes are discrete), the

output layer is usually implemented using a sigmoid function of a linear combination of

hidden layer values, representing a posterior probability.

RBF networks are faster to train when compared with FNN and RNN. They also have an

advantage of not suffering from local minima in the same way as FNN, that is, the FNN may

not be able to find globally best solution, but it may get stuck in a local minimum of the cost

function. This is because the only parameters that are adjusted in the learning process of the

RBF network are associated with the linear mapping from the hidden layer to the output layer.

The linearity ensures that the error surface is quadratic and therefore it has a single, usually

relatively easy to find, minimum. At the same time, the quality of the prediction is usually

higher when using a properly designed and trained FNN.

RBF networks were utilized in several applications that include:

� Prediction of inter-residue contact maps (Zhang and Huang 2004). The contact maps

include binary entries that define whether a given AA is or is not in contact with any other

AA in the tertiary structure. The knowledge of contacts helps in the reconstruction of the

tertiary protein structure.

� Prediction of protease cleavage sites (Yang and Thomson 2005). Protease cleavage is

performed by enzymes, which are proteins that catalyze biological reactions. Knowledge

of how a given protease cleaves the proteins is important for designing effective inhibitors

to treat some diseases. This prediction method aims at finding AAs in the protein sequence

that are involved in this interaction.

� Prediction of targets for protein-targeting compounds (Niwa 2004). This method aims at

the prediction of biological targets (proteins) that interact with given chemical com-

pounds. This has applications in drug design where large libraries of chemical compounds

are screened to find compounds that interact with a given protein and which, as a result,

modify (say, inhibit) the protein’s function.

One of the important parameters in the design of any of the three abovementioned architectures,

that is, FNN, RNN, and RBFNN, is the number of nodes. The number of input nodes usually

equals the number of input features. Most commonly, there is only one output node that

corresponds to the predicted outcome, although in some cases NNs are used to generatemultiple

outcomes simultaneously, that is, prediction of the protein secondary structure requires three

outcomes. The number of nodes in the hidden layer is chosen by the designer of the network. This

number depends on the application and the desired quality of the prediction.
4 Applications of Neural Networks in Protein Bioinformatics

NNs are used in a variety of protein bioinformatics applications. They can be categorized into:

� Prediction of protein structure including secondary structure and secondary structure

content, contact maps, structural contacts, boundaries of structural domains, specific

types of local structures like beta-turns, etc.
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� Prediction of binding sites and ligands, which includes prediction of binding residues and

prediction of various properties of the binding ligands.

� Prediction of protein properties such as physicochemical proteins, localization in the host

organism, etc.

Specific applications include prediction of a number of residue contacts (Pollastri et al. 2002),

protein contact maps (Zhang and Huang 2004), helix-helix (Fuchs et al. 2009) and disulfide

contacts (Martelli et al. 2004), beta and gamma turns (Kirschner and Frishman 2008; Kaur and

Raghava 2003, 2004), secondary structure (Jones 1999; Rost et al. 1994; Dor and Zhou 2007a;

Hung and Samudrala 2003; Petersen et al. 2000; Qian and Sejnowski 1988; Chen and

Chaudhari 2007), domain boundaries (Ye et al. 2008), transmembrane regions (Gromiha

et al. 2005; Natt et al. 2004; Jacoboni et al. 2001), binding sites and functional sites (Jeong et al.

2004; Ahmad and Sarai 2005; Zhou and Shan 2001; Ofran and Rost 2007; Yang and Thomson

2005; Lin et al. 2005; Lundegaard et al. 2008; Blom et al. 1996; Ingrell et al. 2007), residue

solvent accessibility (Rost and Sander 1994; Garg et al. 2005; Adamczak et al. 2005; Ahmad

et al. 2003; Dor and Zhou 2007b; Pollastri et al. 2002), subcellular location (Zou et al. 2007;

Cai et al. 2002; Reinhardt and Hubbard 1998; Emanuelsson et al. 2000), secondary structure

content (Muskal and Kim 1992; Cai et al. 2003; Ruan et al. 2005), backbone torsion angles

(Xue et al. 2008; Kuang et al. 2004), protein structural class (Chandonia and Karplus 1995; Cai

and Zhou 2000), signal peptides (Plewczynski et al. 2008; Sidhu and Yang 2006), continuous

B-cell epitopes (Saha and Raghava 2006), binding affinities, toxicity, and pharmacokinetic

parameters of organic compounds (Vedani and Dobler 2000), biological targets of chemical

compounds (Niwa 2004), and prediction of spectral properties of green fluorescent proteins

(Nantasenamat et al. 2007). We observe a growing interest in applying NNs in this domain, see
> Fig. 6. The NN-based applications in protein bioinformatics were published in a number of
. Fig. 6

Number of journal publications (y-axis) concerning the applications of NNs in protein

bioinformatics in the last two decades. The included publications do not constitute an

exhaustive list of corresponding studies, but rather they provide a set of the most significant and

representative developments.
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high-impact scientific journals such as (in alphabetical order) Bioinformatics; BMC Bioin-

formatics; Gene; IEEE/ACM Transactions on Computational Biology and Bioinformatics;

Journal of Computational Chemistry; Journal of Computer-Aided Molecular Design; Journal

of Medicinal Chemistry; Journal of Molecular Biology; Nucleic Acids Research; PLoS Compu-

tational Biology; Protein Science; Proteins; and Proteomics. The number, scope, and quality of

the above venues strongly indicate the important role of this research.

The prediction of the secondary structure, residue solvent accessibility, and binding sites

attracted the most attention in the context of the NN-based solutions. Therefore, the following

sections concentrate on these three topics.
4.1 Prediction of Protein Secondary Structure with Neural Networks

Protein secondary structure is defined as a regular and repetitive spatially local structural

pattern in protein structures. Several methods are used to define the protein secondary

structure from a protein’s three-dimensional structure. The most commonly used method is

the Dictionary of Protein Secondary Structure (DSSP) (Kabsch and Sander 1983), which

assigns eight types of secondary structures based on hydrogen-bonding patterns. These types

include 3/10 helix, alpha helix, pi helix, extended strand in parallel and/or antiparallel b-sheet
conformation, isolated b-bridge, hydrogen bonded turn, bend, and coil. The eight-state second-

ary structure is often aggregated into a three-state secondary structure. The first three types are

combined into the helix state, the following two types into the strand state, and the last three

types into the coil state. Most of the existing computational methods predict the three-

state secondary structure instead of the eight-state structure. The main goal of these methods

is to obtain the secondary structure using only AA sequences of the protein as the input.
> Figure 2 shows the AA sequence, the corresponding secondary structure for each AA, the

spatial arrangement of the secondary structure, and the overall three-dimensional structure of

the human prion protein. This protein is associated with several prion diseases such as fatal

familial insomnia and Creutzfeldt–Jakob disease.

The first study concerning the prediction of protein secondary structure using an NN

appeared in 1988 (Qian and Sejnowski 1988). This model is a typical three-layer FNN in which

the input layer contains 13 � 21 = 273 nodes representing a stretch of 13 continuous AAs in

the sequence, and the output layer contains three nodes representing the three secondary

structure states. Each AA in the sequence is encoded using 21 binary features indicating the

type of the AA at a given position in the sequence. This early method was trained using a very

small dataset of 106 protein sequences, which limited its quality.

One of the most successful and commonly used models for the prediction of protein

secondary structure, named PSIPRED, was proposed by Jones in 1999 (Jones 1999). It is a two-

stage NN that takes a position-specific scoring matrix (PSSM), which is generated from the

protein sequence using the PSI-BLAST (Position Specific Iterated Basic Local Alignment

Search Tool) algorithm (Altschul et al. 1997) as the input. The architecture of PSIPRED is

summarized in > Fig. 7.

In the first stage, the input protein sequence is represented by the PSSM using a window of

size 15 which is centered over the predicted AA. PSSM includes 20 dimensions for each AA,

which correspond to substitution scores for each of the 20 AAs. The scores quantify which AAs

are likely to be present/absent at a given position in the sequence in a set of known sequences

that are similar to the sequence being predicted. This is based on the assumption that



. Fig. 7

Architecture of PSIPRED algorithm. The algorithm is two-stage and includes two 3-layer FNNs,

where the output of the first stage network feeds into the input to the second stage network. In

the first stage, a window of 15 positions over the PSSM profile generated by the PSI-BLAST

program from the input protein sequence is used. Each position in the input is represented

by a vector of 21 values (the ith AA in the window is represented as mi,1mi,2 . . . mi,21). The

21 � 15 values are fed into the input layer. The output layer in the first stage NN contains three

nodes that represent the probabilities of forming helix, strand, and coil structures (the predicted

probabilities for the central AA in the window are represented as y8,1, y8,2, and y8,3). These

probabilities, using a window of 15 positions, are fed into the second-stage NN. The output from

the second-stage NN is the final prediction that represents the probabilities of three types of the

secondary structure: z8,1, z8,2, and z8,3.

576 18 Neural Networks in Bioinformatics
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similarity in the sequence often implies similarity in the structure. The positive scores indicate

that a given AA substitution occurs more frequently than expected by chance, while negative

scores indicate that the substitution occurs less frequently than expected. The 20 scores from

the PSSM together with a single feature that indicates the terminus of the sequence are fed into

the input layer of the first-stage NN. As a result, the input layer contains 15 � 21 = 315 nodes.

The hidden layer contains 75 nodes and the output layer contains three nodes which indicate

the probabilities of the three secondary structure states.

In the second stage, the predicted probabilities of the secondary structures from the first

stage for a window of 15 AAs centered over the position being predicted are fed into the input

layer. The second layer exploits the fact that secondary structures form segments in the protein

sequence, see > Fig. 2a, and thus information about the structure of the AAs in the adjacent

positions in the sequence is helpful to determine the structure of a given AA. The input layer

contains 4 � 15 = 60 nodes (the value indicating the terminus of the sequence is also

included), the hidden layer contains 60 nodes, and the output layer contains three nodes. The

PSIPRED method can be accessed, as a web server, at http://bioinf.cs.ucl.ac.uk/psipred/.

Interested users can also download a stand-alone version of this popular prediction method.

One of the recently proposed NN-based methods performs the prediction of the second-

ary structure using a cascaded bidirectional recurrent neural network (BRNN) (Chen and

Chaudhari 2007). Similar to the PSIPRED design, the first BRNN (sequence-to-structure

BRNN) predicts the secondary structure based on the input AA sequences. The second BRNN

(structure-to-structure BRNN) refines the raw predictions from the first BRNN. The learning

algorithm used to develop this method is based on the backpropagation.

The last two decades observed the development of several methods based on NN for the

prediction of protein secondary structure. The performance of the methods mainly depends

on the representation of the protein sequence and the size of the training dataset. Since the

beta-sheets (strands adjacent in the tertiary structure) are established between AAs that are far

away in the sequence, the window-based methods (including all present methods for the

prediction of protein secondary structure) are inherently incapable of grasping the long-range

interactions, which results in a relatively poor result for strands.
4.2 Prediction of Binding Sites with Neural Networks

A protein performs its function through interactions with other molecules, called ligands,

which include another protein, DNA, RNA, small organic compounds, or metal ions. Knowl-

edge of the binding sites, which are defined as the AAs that directly interact with the other

molecules, is crucial to understand the protein’s function. More specifically, an AA is a part of

the binding site if the distance from at least one atom of this AA to any atom of the ligand

is less than a cutoff threshold D. The values of D vary in different studies and they usually

range between 3.5 and 6 Å (Zhou and Shan 2001; Ofran and Rost 2007; Ahmad et al. 2004;

Kuznetsov et al. 2006).

In one of the recent works by Jeong and colleagues, the FNN architecture is used for the

prediction of RNA-binding sites (Jeong et al. 2004). Each AA in the input protein sequence is

encoded by a vector of 24 values, of which 20 values indicate the AA type (using binary

encoding), one value represents the terminus of the sequence, and the remaining three values

correspond to the probabilities of three types of the secondary structure predicted using

the PHD program. Using a window of size of 41 residues, the corresponding design includes

http://bioinf.cs.ucl.ac.uk/psipred/.
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24� 41 = 984 input nodes. The hidden layer includes 30 nodes and the output layer consists of

a single node that provides the prediction.

In another recent study by Ahmad and Sarai, a three-layer FNN is utilized for the

prediction of DNA-binding sites (Ahmad and Sarai 2005). The architecture of this model is

relatively simple, that is, 100 nodes in the input layer, 2 nodes in the hidden layer, and 1 node

in the output layer. The input layer receives values from the PSSM computed over the input

protein sequence with the window size of 5, which results in 100 features per AA.

Prediction of protein–protein interaction sites uses designs that are similar to the designs

utilized in the prediction of DNA/RNA-binding sites. Zhou and Shan proposed a three-layer

FNN to predict the protein–protein interaction sites (Zhou and Shan 2001). In their design,

the PSSM and solvent-accessible area generated by the DSSP program (Kabsch and Sander

1983) for the predicted AAs and the 19 spatially nearest neighboring surface AAs make up the

input. As a result, the input layer contains 21 � 20 = 420 nodes. The hidden layer includes 75

nodes. This method predicts the protein–protein interaction sites from the protein’s three-

dimensional structure, since this information is necessary to compute the relative solvent

accessibility values and to find the 19 spatially nearest AAs. In a recent study by Ofran and

Rost, a classical FNN model is used for the prediction of protein–protein interaction sites from

the protein sequence (Ofran and Rost 2007). In this case, AAs in the input protein sequence are

represented using PSMM, predicted values of solvent accessibility, predicted secondary struc-

ture state, and a conservation score. The window size is set to include eight AAs surrounding

the position that is being predicted, and the above-mentioned information concerning these

nine amino acids is fed into the input layer.

NNs were also applied for prediction of metal-binding sites (Lin et al. 2005), binding sites

for a specific protein family, that is, the binding sites of MHC I (Lundegaard et al. 2008), and

prediction of functional sites, that is, the cleavage sites (Blom et al. 1996) and phosphorylation

sites (Ingrell et al. 2007).
4.3 Prediction of Relative Solvent Accessibility with Neural Networks

Relative solvent accessibility (RSA) reflects the percentage of the surface area of a given AA

in the protein sequence that is accessible to the solvent. RSA value, which is normalized to the

[0, 1] interval, is defined as the ratio between the solvent accessible surface area (ASA) of

an AA within a three-dimensional structure and the ASA of its extended tripeptide (Ala-X-

Ala) conformation:

RSA ¼ RSA in 3D structure

RSA in extended tripeptide conformation

The first study that concerned prediction of RSA from the protein sequence was published

in 1994 by Rost and Sander (Rost and Sander 1994). In this work, the AA is encoded by

the percentage of the occurrence of each AA type at this position in the sequence in multiple

sequence alignment, which is similar to the values provided in the PSSM matrix. The input

to the two-layer FNN is based on a window of size 9 which is centered on the AA that is

being predicted and is used, which results in 9 � 20 features, together with the

AA composition of the entire protein sequence, length of the sequence (using four values),

and distance of the window from two termini of the sequence (using four values for each

terminus). As a result, the network has a total of 180 + 20 + 4 + 8 = 212 nodes in the input
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layer. The output layer contains one node representing the predicted RSA value and no hidden

layer is used in this model.

The past decade observed the development of several NN-based methods for the prediction

of RSAvalues (Garg et al. 2005; Adamczak et al. 2005; Ahmad et al. 2003; Dor and Zhou 2007b;

Pollastri et al. 2002). These methods share similar architectures and therefore we discuss one

representative model proposed by Garg et al. (2005). Thismethod is a two-stage design inwhich

both stages are implemented using FNNs. Two sources of information are used to generate inputs

for the NNs from the protein sequence, the PSSM profile, and the secondary structure predicted

with the PSIPRED algorithm. The input features are extracted using awindow of size 11 centered

on the AA that is being predicted. The values from PSSM in the window are fed into the first NN.

This results in the input layer with 11� 21 = 231 nodes. The hidden layer contains ten nodes and

the output layer has one node. In the second stage NN, the predicted RSAvalues of the AAs in the

window and the predicted probabilities of the three secondary structure types predicted by

PSIPRED in the samewindow are fed into the input layer. This results in 11� 4 = 44 nodes in the

input layer. The hidden layer includes ten nodes and the single node in the output layer

corresponds to the final prediction. The architecture of this method is shown in > Fig. 8. The

second layer exploits the observation that information about the secondary structure and

solvent accessibility of the AAs in the adjacent positions in the sequence is useful in determining

the solvent accessibility of a given AA. We observe that a similar design is used to implement the

PSIPRED method.
5 Summary

We summarized the applications of neural networks (NN) in bioinformatics, with a

particular focus on protein bioinformatics. We show that numerous applications that aim

at predictions of a variety of protein-related information, such as structure, binding sites,

and localization, are designed and implemented using NNs. The most popular architecture

used in these methods is a simple three-layer feedforward NN, although other architectures

such as RBF and recurrent NNs are also applied. Some of the protein bioinformatics

applications use multilayered designs in which two (or more) NNs are used in tandem.

We show that the popularity of the NN-based designs has been growing over the last decade.

Three applications that enjoy the most widespread use are discussed in greater detail.

They include protein secondary structure prediction, prediction of binding sites, and

prediction of relative solvent accessibility. We contrast and analyze the architectures of

the corresponding NN models. We conclude that the extent and quality of the applications

that are based on NNs indicate that this methodology provides sound and valuable results

for the bioinformatics community.

We acknowledge several other useful resources that discuss the applications of a broader

range of machine learning techniques in bioinformatics. Although none of these contributions is

solely devoted to NNs, some of them discuss NNs together with other similar techniques. A

survey by Narayanan and colleagues discusses applications of classification methods (nearest

neighbor and decision trees), NNs, and genetic algorithms in bioinformatics (Narayanan et al.

2002). Another survey contribution by Kapetanovic and coworkers concerns clustering

and classification algorithms, including NNs and support vector machines (Kapetanovic

et al. 2004). The most recent review by Fogel discusses a host of computational intelligence

techniques, including NNs, fuzzy systems, and evolutionary computation, in the context of



. Fig. 8

Architecture of the model proposed in Garg et al. (2005) for the prediction of relative solvent

accessibility. The method includes two stages implemented using FNNs. In the first stage, a

window of 11 AAs is used, and each AA is represented by a vector of 21 values. The vector is

taken from the PSSM profile generated by the PSI-BLAST algorithm. The output layer of the first

stage generates one value that represents the predicted RSA value, which is further refined using

the second stage. The predicted RSA values and the secondary structure probabilities predicted

using PSIPRED of the AAs in the window are fed into the second-stage FNN. The output from the

second-stage NN constitutes the final predicted RSA value.
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bioinformatics (Fogel 2008). Several other surveys that do not treat NNs but which focus on

the use of other related techniques in bioinformatics were published in recent years. They

include a paper by Byvatov and Schneider (2003) that concerns applications of support vector

machines; a contribution by Saeys et al. (2007) that discusses feature selection methods; a

survey concerning Bayesian networks by Wilkinson (2007); a review of supervised classifi-

cation, clustering, and probabilistic graphical models by Larranaga et al. (2006); and a recent

contribution by Miller et al. (2008) that focuses on clustering.
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