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Abstract 

The paradigm in drug discovery has shifted from magic bullets targeting a single protein 
involved in a disease process to a systems level approach considering the inherent 
binding promiscuity of biopharmaceuticals. Multi-target drugs hold the promise to 
expand therapeutic possibilities including polypharmacology and drug repurposing, and 
to provide a better control over side-effects. Nonetheless, drug-protein interaction 
networks are not only far more complicated than originally anticipated, but also sparsely 
and non-uniformly covered by experimental data. On that account, known interactions 
are often complemented by those predicted with high-throughput computational methods 
at the proteome scale. In this chapter, we describe the Protein-Drug Interaction Database 
(PDID), a new resource located at http://biomine.cs.vcu.edu/servers/PDID/ that 
comprehensively covers experimental and putative drug-protein interactions. The PDID 
builds on annotations generated by three state-of-the-art predictors, eFindSite, SMAP, 
and ILbind, offering molecular level details for interacting molecules. This unique 
catalogue of biologically relevant interactions can be used to support a variety studies 
related to network pharmacology. 
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1 Introduction 

Drugs produce biological effects via interactions with target molecules that include 
proteins, DNA, RNAs and membrane components (Yang et al., 2016). While a 
comprehensive mapping of the drug targets remains an open challenge (Santos et al., 
2017), numerous studies have shown that well over 90% of the marketed drug targets are 
proteins (Hopkins & Groom, 2002; Mathias Rask-Andersen, Almén, & Schiöth, 2011; M. 
Rask-Andersen, Masuram, & Schioth, 2014; Santos et al., 2017). The knowledge of drug-
protein interactions (DPIs) is essential for a diverse set of applications, including 
screening drug candidates to target specific proteins (Schneider, 2010; Tseng & 



Tuszynski, 2015), repurposing of drugs (Chong & Sullivan, 2007; Haupt & Schroeder, 
2011; J. Li et al., 2016), and identifying side-effects related to interactions with off-
targets (G. Hu et al., 2014; Lounkine et al., 2012; J. Wang, Li, Qiu, Wang, & Cui, 2012). 
This information is also essential to elucidate the druggable human proteome/genome 
defined as the complement of human proteins interacting with drugs (Cimermancic et al., 
2016; Hopkins & Groom, 2002; G. Hu, Wu, Wang, Uversky, & Kurgan, 2016; M. Rask-
Andersen et al., 2014; Russ & Lampel, 2005).  
 
The above-mentioned studies are assisted by a number of databases currently offering 
access to large collections of DPIs (X. Chen et al., 2016; Glaab, 2016). Two arguably 
most popular databases of experimentally determined DPIs include DrugBank (Wishart et 
al., 2018; Wishart et al., 2006) and Therapeutic Target Database (TTD) (Xin Chen, Ji, & 
Chen, 2002; Y. H. Li et al., 2018). DrugBank includes biochemical and pharmacological 
data for over 10,000 drugs including 3,254 FDA-approved compounds, 5,124 
experimental compounds and their 5,020 protein targets. TTD covers over 23,000 drugs, 
including close to 15,000 experimental drugs, 2,360 protein targets, and links this 
information to about 900 diseases. Other similar resources include PDSP Ki (Roth, 
Lopez, Patel, & Kroeze, 2000), KEGG DRUG (Kanehisa, Furumichi, Tanabe, Sato, & 
Morishima, 2017; Kanehisa, Goto, Furumichi, Tanabe, & Hirakawa, 2009), Matador 
(Günther et al., 2008), and PROMISCUOUS (von Eichborn et al., 2011). Table 1 lists 
their release dates, numbers of drugs and targets they cover, addresses of their websites, 
and key statistics comprising the total number of DPIs and an average number of DPIs 
per drug. These resources have already been available for about a decade or more, are 
constantly upgraded and updated, and include data on thousands of interactions. There 
are also numerous databases that expand beyond the drug molecules to cover interactions 
with many more small, drug-like ligands. These databases include BRENDA (Placzek et 
al., 2017; Schomburg, Hofmann, Baensch, Chang, & Schomburg, 2000), BindingDB (Xi 
Chen, Liu, & Gilson, 2001; Gilson et al., 2016), GLIDA (Okuno et al., 2008; Okuno, 
Yang, Taneishi, Yabuuchi, & Tsujimoto, 2006), SuperTarget (Günther et al., 2008; 
Hecker et al., 2012), STITCH (Kuhn, von Mering, Campillos, Jensen, & Bork, 2008; 
Szklarczyk et al., 2016) and ChEMBL (A. Gaulton et al., 2012; Anna Gaulton et al., 
2017). The largest of these databases are ChEMBL that covers over 14 million 
interactions between over 2.1 million chemical compounds and about 11 thousand protein 
targets, and STITCH that contains 1.6 billion interactions between about 0.5 million 
chemicals and 9.6 million proteins coming from over 2000 species. One caveat of the 
latter repository is that it stores many low quality, putative and indirectly inferred 
annotations. Another group of relevant databases is dedicated to drugs that target protein-
protein interactions. These include TIMBAL (Alicia P. Higueruelo, Jubb, & Blundell, 
2013; Alícia P. Higueruelo et al., 2009), 2P2Idb (Basse, Betzi, Morelli, & Roche, 2016; 
Bourgeas, Basse, Morelli, & Roche, 2010), and iPPI-DB (Labbé et al., 2016; Labbé, 
Laconde, Kuenemann, Villoutreix, & Sperandio, 2013). 
 
The above-mentioned databases primarily focus on the already known drug targets. 
However, drugs typically interact not only with the therapeutic targets that they were 
designed for but also with often unidentified and numerous off-targets. Comprehensive 
identification and cataloguing of the off-targets is crucial to fully understand how drugs 



work. Although interactions with off-targets may result in adverse events or side-effects, 
they may also present an opportunity to repurpose drugs for diseases that they were not 
originally intended for (Peters, 2013). Studies have shown that drugs interact with on 
average 6.3 proteins (Y. Hu & Bajorath, 2013; J. Mestres, E. Gregori-Puigjane, S. 
Valverde, & R. V. Sole, 2008) and this number is likely much higher given that the 
current information on DPIs is likely highly incomplete (J. Mestres et al., 2008; Peters, 
2013). Experimental screening of drugs is limited to a relatively small panel of protein 
targets (Lavecchia & Giovanni, 2013; Jordi Mestres, Elisabet Gregori-Puigjane, Sergi 
Valverde, & Ricard V. Sole, 2008). Example panels used by pharmaceutical companies 
include anywhere between 15 and 48 proteins (Bendels S, 2013; Bowes et al., 2012; 
Urban, 2012; X. Y. Wang & Greene, 2012). The high levels of drug promiscuity and the 
relatively low coverage of the experimental screening motivate the development of high-
throughput computational methods that predict DPIs on the druggable-genome and even 
whole-genome scale (X. Chen et al., 2016; Ding, Takigawa, Mamitsuka, & Zhu, 2014; 
Ezzat, Wu, Li, & Kwoh, 2018; Hao, Bryant, & Wang, 2018; Lavecchia & Cerchia, 2016). 
The availability of these computational tools has also spurred the development of 
databases providing access to putative DPIs. The release of these databases is primarily 
motivated by the often high computational cost of running these predictions and the 
ability to query these predictions across multiple drugs and thousands of protein targets. 
Table 1 summarizes the details about the two databases that directly focus on the putative 
DPIs: BioDrugScreen (L. Li et al., 2010) and PDID (Protein-Drug Interaction Database) 
(C. Wang et al., 2016). BioDrugScreen is based on results of docking of about 1,600 
small drug-like molecules against 1,589 human proteins targets that were collected from 
DrugBank and HCPIN (Huang et al., 2008) databases. The molecular docking was 
performed for nearly 2000 surface pockets in these proteins, producing about 3 million 
putative compound-protein complexes. However, this resource is no longer available. 
PDID is based on predictions that rely on structural similarity between a large database of 
structures of drug-protein complexes and a query protein and its binding sites for a given 
query drug. These predictions complement the contents of the BioDrugScreen database. 
PDID also provides access to the annotations of experimental DPIs that are linked to their 
sources: PDB (Berman et al., 2000; Rose et al., 2017), DrugBank and BindingDB. 
Importantly, PDID offers molecular level details for DPIs, in terms of coordinates of the 
location of the drugs in the structures of their predicted and experimental protein targets. 
We also acknowledge the Dr. PIAS database of putative druggable protein-protein 
interactions (Sugaya & Furuya, 2011; Sugaya, Kanai, & Furuya, 2012). These 
interactions were predicted with the help of machine learning algorithms and they cover 
over 83 thousand protein-protein interactions in human, mouse, and rat. However, they 
lack associations with specific drugs. 
 



Table 1. Summary of the databases of drug-protein interactions (DPIs). The databases are divided into two groups that offer access to 
experimental vs. putative data. They are sorted chronologically by the date of their release. We collected these dates from the release notes or 
time stamps recorded on the database websites, if available, and we use the date of the first publication otherwise. 

Type Database Release date 
Number of 

drugs 
Number of 

targets 
Key statistics URL 

Experimental 
annotations 

PDSP Ki 11/01/1999 11,569 1,673 
63,619 DPIs 

5.5 DPIs per drug 
https://pdsp.unc.edu/databases/kidb.php  

TTD 01/01/2002 23,486 3,036 
33,467 DPIs 

1.4 DPIs per drug 
http://bidd.nus.edu.sg/BIDD-Databases/TTD/

KEGG DRUG 07/01/2005 5,045 1,061 
14,222 DPIs 

2.8 DPIs per drug 
http://www.genome.jp/kegg/drug/ 

DrugBank 01/01/2006 10,562 5,020 
23,380 DPIs 

2.2 DPIs per drug 
http://www.drugbank.ca 

Matador 10/16/2007 801 2,901 
15,843 DPIs 

19.8 DPIs per drug 
http://matador.embl.de 

PROMISCUOUS 11/10/2010 5,000 6,500 
21,500 DPIs 

4.3 DPIs per drug 
Unavailable (no longer supported) 

Putative 
annotations 

BioDrugScreen 11/18/2009 1,592 1,589 3,066,192 predictions Unavailable (no longer supported) 

PDID 10/01/2014 51 3,746 
1,088,789 predictions

16,800 DPIs and 
100 DPIs per drug 

http://biomine.cs.vcu.edu/servers/PDID/ 



This chapter focuses on the only currently available resource that comprehensively 
covers the experimental and putative DPIs, the PDID database. We describe the 
algorithms that are used to make predictions that are stored in PDID, briefly comment on 
the predictive quality of these algorithms, summarize and analyze content of a current 
version of PDID, and discuss how to access and use this resource. 

2 Development and outline of the PDID database 

The fundamental principle behind the predictors that are used to implement PDID is to 
transfer binding sites from known drug-protein complexes to a protein that is known to 
interact with the input drug and that is structurally similar to these known drug-
complexed proteins. There are two ways to measure similarity between the input protein 
structure and the known drug-protein complexes. The first quantifies similarity of the 
corresponding protein folds. The corresponding methods include eFindSite (M. Brylinski 
& Feinstein, 2013; Feinstein & Brylinski, 2014) and its predecessor FINDSITE (Michal 
Brylinski & Skolnick, 2008; J. Skolnick & Brylinski, 2009). The second way exploits 
similarity of binding sites, with example algorithms that include SMAP (Xie & Bourne, 
2007, 2008; Xie, Xie, & Bourne, 2009) and IsoMIF (Chartier, Adriansen, & 
Najmanovich, 2016; Chartier & Najmanovich, 2015). We also developed the ILbind 
(inverse ligand binding) method that combines these two types of approaches to improve 
predictive performance (G. Hu et al., 2012).  
 
The PDID database provides convenient access to query and retrieve results generated by 
three predictors: eFindSite, SMAP, and ILbind. They represent each of the two types of 
approaches and their ensemble. These putative annotations are combined with 
experimental data collected from the DrugBank and BindingDB resources. Figure 1 
overviews the approach used to populate the PDID database with data. The following 
subsections explain details of the three predictors that are shown in Figure 1 using the 
blue boxes. 
 



 

 

Figure 1. Flowchart of the approach used to populate the PDID database with data. Blue boxes represent the three predictors that were 
used to generate putative DPIs. Black cylinders represent databases that are used directly to derive the PDID resources. The dashed 
lines denote sources that were used indirectly to develop the directly used databases. The green lines indicate how the drugs covered in 
PDID were utilized to generate the putative data. The red cubes signify the fact that PDID provides approximate location of the DPI 
sites. 
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2.1 eFindSite 

eFindSite makes predictions using template protein(s) which have structure(s) in complex with a given 
input drug. The template proteins come from a database of templates, typically defined as a set of non-
redundant high-quality structures of drug-protein complexes curated from the PDB database. eFindSite 
also accepts putative structures modelled computationally with TASSER (Y. Zhang, Arakaki, & 
Skolnick, 2005; Y. Zhang & Skolnick, 2004a, 2004b), MODELLER (Martí-Renom et al., 2000; Šali & 
Blundell, 1993) or PROSPECTOR3 (Jeffrey Skolnick, Kihara, & Zhang, 2004). The eFindSite’s 
predictive protocol includes four steps: 
1. A meta-threading algorithm, eThread (M Brylinski & Feinstein, 2012; M. Brylinski & Lingam, 

2012), is used to find similar template proteins for the protein that is in complex with the input drug. 
eThread applies Naïve Bayes classifier to build a consensus threading alignment from ten individual 
threading algorithms. This algorithm recognizes template proteins which likely have similar 
structural folds when compared to the input protein based on sequence alignment and predicted 
secondary structure, given the sequence of the input protein. The identified template proteins are 
supposed to be structurally similar to the input protein, irrespective of whether or not they have high 
sequence similarity to the input protein. 

2. Those template proteins complexed with the input drug are selected from the template set which is 
obtained by the threading alignment. Then the template set is expanded by including homologous 
proteins of the current templates. Consequently, we collect a set of template proteins that interact 
with the input drug, have known three-dimensional structures of drug-protein complex, are likely 
structurally similar to the input protein, and are possibly remotely homologous to the input protein. 

3. A clustering algorithm, Affinity Propagation (Frey & Dueck, 2007), is utilized to group the structures 
of template drug-protein complexes based on structural similarities between templates computed with 
fr-TM-align (Pandit & Skolnick, 2008). The clustered template structures are superimposed into the 
structure of input protein.  

4. Finally, the resulting superimposed locations of drug from each clustered template constitute the 
predicted position of the input drug, which in turn can be used to annotate putative binding sites in 
the input protein structures. These predicted binding sites are ranked by the number of templates from 
the corresponding cluster where each binding site (cluster center) comes from. 

2.2 SMAP 

SMAP works by generating potential binding pockets in the input protein structure and then finding 
whether these pockets are similar to the known binding pockets in the template drug-protein complexes 
(Xie & Bourne, 2007, 2008; Xie et al., 2009). It employs a geometric representation of protein structure 
to characterize binding sites (Xie & Bourne, 2007) and a sequence profile alignment to compare 
binding sites (Xie & Bourne, 2008). The predictive protocol of SMAP algorithm includes the following 
five steps: 
1. SMAP reduces the representation of an input protein structure by using only the coordinates of alpha 

carbon (Cα)	atoms which are the first carbon atoms attached to the carboxyl group of an amino acid. 
The Cα	atoms are represented as vertices in a graph. A convex hull algorithm, Delaunay tessellation, 
is applied to partition the Cα	atoms into tetrahedra (triangular pyramids) that are defined by the graph 
edges (Xie & Bourne, 2007). 

2. The Delaunay tessellation is constrained by removing those tetrahedra including edges (atomic 
distances) longer than 30Å because such distance indicates an open binding pocket on the molecular 
surface, rather than an enclosed sphere. The outside layer of the remained convex hull defines an 
environmental boundary which surrounds the input protein and its binding pockets. Next, the 
tetrahedra larger than 7.5Å are removed. This cut-off length is related to the average radius between 



two amino acids that are in contact with each other. The remaining tetrahedra on the outside of the 
structure form a protein boundary. The removed tetrahedra which are the tetrahedra located between 
the protein boundary and the environmental boundary, make up the possible positions where drugs 
could be located. 

3. The distance and orientation of each Cα	atom to the protein boundary and environmental boundary is 
used to compute a geometric potential with specific formulas listed in ref. (Xie & Bourne, 2007) for 
each Cα	atom. The geometric potential quantifies the positions of a Cα	atom and its neighboring atoms 
relative to the environmental boundary, and the relative positions between this Cα	 atom and its 
neighbor Cα	atoms. 

4. The possible positions of drugs obtained in step 2) are clustered based on their overlap in 
circumscribed spheres of the corresponding tetrahedron. The cluster centers represent the predicted 
potential positions of the drugs that could bind to the given protein. If a Cα	atom is located within 
10Å from the predicted potential positions and the edge between these two atoms are not cut by other 
circumscribed spheres, then this Cα	atom (representing a drug-binding amino acid) is predicted as a 
part of a binding site. This way the amino acids that make up specific binding pockets are defined. 

5. The predicted potential positions of drugs generated in step 4) represent a candidate drug-binding 
position but without specifying for which specific drug. SMAP uses a sequence order independent 
profile-profile alignment (SOIPPA) method to align the candidate drug-binding sites (the 
corresponding amino acids) in the input protein to the known binding sites in the template proteins 
that are in complex with the input drug in the PDB database (Xie & Bourne, 2008). Next, a candidate 
binding site is mapped to a known binding site of the specific input drug if the SOIPPA alignment 
shows that these two sites are similar. The SOIPPA algorithm is designed to compare and align two 
subgraphs that are extracted from the geometric representations of the input protein and the template 
protein. The computation of the alignment uses the geometric potential scores computed in step 3). 
The binding sites from the template protein are aligned and superimposed as the candidate sites in 
the input protein. An alignment score is computed based on the position specific score matrix 
(Altschul et al., 1997) to measure the similarity of these binding sites. 

2.3 ILbind 

ILbind is an ensemble predictor that uses a machine learning algorithm to predict drug-binding sites for 
a specific input drug (G. Hu et al., 2012). This meta-approach exploits the fact that FINDSITE and 
SMAP use complementary approaches to provide predictions for a wide range of drugs and 
nutraceuticals. ILbind uses selected outputs generated by FINDSITE and SMAP as its inputs. First, a 
dataset of ~150 drugs was clustered into three structurally similar groups. These clusters were 
represented by three drugs that correspondingly have diverse structures: N-Acetyl-D-glucosamine 
(NAG), Adenosine-5'-Diphosphate (ADP), and Palmitic Acid (PLM) (G. Hu et al., 2012). Structures of 
five randomly chosen complexes of proteins with each of these three drugs were used to design ILbind, 
resulting in total of 15 configurations. Correspondingly, 15 Support Vector Machine (SVM) models 
were custom designed using a training dataset. Outputs generated by FINDSITE and SMAP were 
ranked by their average AUC values on the training set. Next, a wrapper-based best-first search was 
applied to select the best subset of FINDSITE and SMAP outputs for each configuration using cross-
validation tests on the training dataset. Given an input drug and the structure of an input protein, ILbind 
works in two steps: 
1. Compute predictions with the 15 SVM models using the selected outputs of FINDSITE and SMAP 

as the inputs. 
2. Use a consensus (average) of the 15 SVM predictions as the predicted propensity for binding to the 

input drug. 



Since ILbind does not predict the putative position of the center of the input drug, these positions are 
taken directly from the outputs of FINDSITE and SMAP. 
 
A webserver and a standalone version of the ILbind method are available at 
http://biomine.cs.vcu.edu/servers/ILbind/. This is particularly useful for the users who would like to 
collect predictions for compounds that extend beyond the 51 drugs that are currently covered by PDID.  
 

2.4 Predictive quality of ILbind, eFindSite and SMAP 

Predictive quality of outputs generated by ILbind, eFindSite and SMAP was recently evaluated 
empirically based on a dataset that covers interactions between 25 representative drugs and a 
representative collection of human proteins (C. Wang et al., 2016). The test drugs represent 25 clusters 
of chemically similar drug structures resulting in a broad sampling of the drug structure space that is 
included in PDB. The evaluation follows a protocol from (G. Hu et al., 2014). In short, the native DPIs 
for the 25 drugs that were collected from PDB, BindingDB and DrugBank are compared against the 
predictions from the three methods in the structural human proteome (collection of all structures of 
human proteins in PDB). AUCs values for eFindSite, SMAP and ILbind that are averaged over the 25 
drugs are 0.63, 0.74 and 0.76, respectively. These are reasonably good results given that the AUC 
values range between 0.5 and 1. As expected, ILbind outperforms the other two methods, but this 
advantage is not universal. The empirical tests reveal that eFindSite provides the highest AUC for 5 
drugs, SMAP for 6 drugs, and ILbind for the remaining 14 drugs. About 40% of the native drug targets 
are predicted within the top 4% of predictions from ILbind and SMAP and among the top 14% of 
predictions from eFindSite. Moreover, the results are better for medium sized drugs (molecular weight 
between 200 and 400 Da) when compared to either small (< 200 Da) or large drugs (> 400 Da) drugs. 
More specifically, the best overall method ILbind secures AUCs for the small, medium, and large drugs 
that equal 0.70, 0.86, and 0.59, respectively. To sum up, the empirical results show that the three 
algorithms offer practical levels of predictive performance. More details concerning the evaluations of 
these three tools can be found in (G. Hu et al., 2012; G. Hu et al., 2014; C. Wang et al., 2016). 

3 Content of the PDID database 

The current release 1.1 of the PDID database covers 51 drugs, 3,746 protein targets that are represented 
by 9,652 structures, 1,088,789 predicted DPIs and 730 experimental annotations of DPIs. Several other 
key statistics are summarized in Table 2. PDID is linked to the relevant drug and protein databases. In 
particular, PDID links drugs and native drug target annotations to the corresponding PDB, DrugBank 
and BindingDB entries while the protein targets are linked to their UniProt and PDB records. 
Importantly, PDID also provides approximate location of the drug molecules relative to the structures 
of their protein targets for each of the 16,800 putative interactions and many of the 730 experimentally 
determined interactions.  
  



Table 2. Key statistics of the current release of the PDID database. 

Number of drugs 51 
Number of proteins (protein structures) 3,746 (9,652) 
Number of predictions of interactions 1,088,789 
Number of experimentally determined protein targets 730 
ILbind 
predictions  

Number of putative targets  5,172 
Median number of putative targets per drug 31 

SMAP 
predictions 

Number of putative targets  7,184 
Median number of putative targets per drug 23 

eFindSite 
predictions 

Number of putative targets  4,444 
Median number of putative targets per drug 30 

 
 

 

Figure 2. Number of experimental and putative protein targets for the 51 drugs included in PDID. The 
numbers at the base of the plot show the total number of unique protein targets across all experimental 
and putative annotations. The bars represent the number of targets generated by each methodology 
(experiment, ILbind, SMAP, and eFindSite) where multiple methods can annotate the same target. 
Drugs are sorted by the number of experimentally determined targets. Each protein target could be 
represented by multiple structures that are stored in PDID. 

 
Figure 2 shows a breakdown of the number of protein targets across the drugs that are covered in 
PDID. The gray bars denote the number of experimental annotations that are included in PDID and 
which are linked to PDB, DrugBank and BindingDB. Erlotinib features the largest number of 
experimentally annotated targets at 216 while the median number of targets per drug equals 8. The 
colored bars represent the numbers of putative targets generated by ILbind (orange), SMAP (green) and 
eFindSite (blue). The largest number of predictions was generated by SMAP (7,184), followed by 
ILbind (5,172) and eFindSite (4,444). The corresponding median number of targets per drug generated 
by SMAP, ILbind and eFindSite is 23, 31 and 30, respectively. Moreover, the number at the base of the 
bars shows the total number of experimentally and computationally annotated unique targets, in 
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contrast to the bars where some of the targets are annotated multiple times by different tools. More 
specifically, the total number of experimental and putative annotations of drug-target interactions 
across the 51 drugs equals 17,530 while the number of unique drug-target interactions is 13,791. This 
means that a substantial number of interactions are annotated by two or more methods. We caution the 
reader that some of the putative interactions in PDID could be false positives and thus the above-
mentioned statistics should be taken as a ceiling for the actual number of interactions. 
 
 

 
Figure 3. Breakdown of annotations for all possible drug-protein pairs in the PDID database. Each pair 
is categorized by the number and types of methods used to annotate it as a potential drug-protein 
interaction. Black shading denotes pairs that are annotated as non-interacting. Gray is for drug-protein 
pairs that have experimental annotation of interaction which could be also accompanied by a 
computational prediction. Orange represents pairs that feature putative computational annotation of 
interactions. 
 
Figure 3 further explores the issue of the multiple annotation of interactions for the same drug-protein 
pairs. We categorize each of the 191,046 possible drug-protein pairs by the number and types of 
methods used to annotate it as a potential drug-protein interaction. About 7% of these pairs are 
predicted and/or known to interact. Figure 3 reveals that the majority of drug-protein pairs are 
annotated as interacting by a single method (10,278 out of 13,791) and 96% of these 10,278 
annotations are putative (gray vs. orange bars in Figure 3). There are 2,934 pairs that are predicted by 
two methods with 97% of them relying solely on the computational predictions. However, the 
proportion of the putative interactions substantially decreases for those drug-protein pairs annotated by 
three methods. Only 17% of the drug-protein pairs predicted by three methods are putative. Finally, 
PDID includes 33 drug-protein pairs that are annotated experimentally to interact and are also predicted 
as such by the three predictors. This suggests that targets annotated by multiple predictors are more 
likely to be accurately predicted.  
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Figure 4. The main page of the PDID database. 

4 Use of the PDID database 

The end users need only an Internet connection and a modern browser to use the PDID resource. The 
resource is part of a larger computational platform located at http://biomine.cs.vcu.edu/ that includes a 
variety of popular tools such as PPCpred (Mizianty & Kurgan, 2011), fDETECT (Meng, Wang, & 
Kurgan, 2018; Mizianty, Fan, et al., 2014), MFDp (Mizianty et al., 2010; Mizianty, Uversky, & 
Kurgan, 2014), MoRFpred (Disfani et al., 2012; Yan, Dunker, Uversky, & Kurgan, 2016), hybridNAP 
(J. Zhang, Ma, & Kurgan, 2017), DRNApred (Yan & Kurgan, 2017), DisoRDPbind (Peng & Kurgan, 



2015; Peng, Wang, Uversky, & Kurgan, 2017), and DFLpred (Meng & Kurgan, 2016). Upon landing 
on the main PDID page at http://biomine.cs.vcu.edu/servers/PDID/ the users are presented with the 
page shown in Figure 4. Starting at the top of the entry page, the “About” link leads to a webpage that 
includes information about data sources and methods that are used to derive data that are stored in 
PDID. The “Help and Tutorial” link provides access to a tutorial page that explains layout and details 
of all webpages that are available in PDID, including the main page and the query result pages. The 
latter pages are organized around queries for a specific drug and for a specific protein target that can be 
found either by the PDB identifier or by the sequence. The “Search the Database for 
Drug/Protein/Sequence” field offers the three corresponding options: 
1. The “Search by drug name“ allows selection of the desired drug with the help of a pull-down menu. 

After clicking “Search”, a new window with the detailed information about experimental and putative 
interactions of the selected drug will be opened. This page includes links to the protein structures and 
sequences and results from the three predictors. Example is shown in Figure 5.  

2. The “search by PDB identifier of target structure” option is for users who would like to search for 
specific protein target. The identifier is in the PDB format that includes 4 characters followed by one 
character that denotes chain identifier (e.g., 12CA_A). Example page that is generated by such query 
is given in Figure 6.  

3. The “search by protein sequence” option is directed toward users who would like to identify their 
protein of interest using the sequence. PDID uses BLAST (McGinnis & Madden, 2004) to align the 
query sequence to the sequences of all proteins targets included in PDID to find the closest match. 
Correspondingly, user is asked to enter the query protein sequence in the FASTA format and select 
E-value threshold for BLAST alignment using a pull-down menu. The search returns the drug binding 
details for the most similar protein in PDID which is required to have better than the threshold 
similarity to the query protein. The resulting page is similar to the Figure 6, with the addition of a 
pairwise alignment which is shown at the top.  

The “Materials” section at the bottom of the main PDID webpage provides access to the list of proteins 
and drugs that are included in PDID, and a complete database file in the MySQL database format. The 
option at the very bottom of Figure 4 can be used to download a text-based file with coordinates of the 
predicted locations of drugs; these coordinates are relative to the structure of the corresponding targets 
proteins. Finally, the “?” symbol indicates availability of a help page that explains particular details of 
the interface. These links are also available for the query result pages. 
 



 

Figure 5. Results of a query for a specific drug, salicylic acid. 

 
Figure 5 gives the PDID’s webpage that summarizes results for a selected query drug. This page 
includes links to relevant pages in PDB, DrugBank and BindingDB, and tabulated detailed information 
concerning the known and putative interactions (or lack of them) between the selected drug and each of 
the human proteins included in PDID. Proteins in this table are sorted by default in the descending 
order using the likelihood that they interact with the selected drug quantified with the ILbind score (the 
most accurate predictor included in PDID). The table includes the following columns: 
1. The “PDB ID” column gives identifiers that are linked to the corresponding record in PDB.  
2. The “Protein name {synonym(s)}” column is linked to the page that describes results per protein 

target (Figure 6).  
3. The “Sequence file (FASTA)” and “Structure file (PDB)” columns provide links to the files with the 

protein sequence (using the FASTA format) and protein structure (using the Protein Data Bank 
format). 

4. The “Type of binding annotation” column provides information whether a given protein is: 
 Known to bind the selected drug (denoted as “in complex” or “known to bind“). The former means 
that the protein-drug complex was solved structurally and is available in PDB (the adjacent column 
provides link to this structure), while the latter means that this DPI was deposited into the DrugBank 
or BindingDB (the adjacent column provides link to the corresponding record in the DrugBank and/or 
BindingDB). 
 Predicted to bind the selected drug (denoted as “predicted to bind”). This is based on the 
prediction from the ILbind method, i.e., this method has to provide sufficiently high score (>0.75) 
that is shown in the last column and color-coded in green. The ILbind scores are used to make these 
annotations since this predictor was found to outpeforms the other two methods: SMAP and 
eFindSite. 
 Predicted not to bind the selected drug (denoted as “no interaction“). This means that this protein 
is not known and was not predicted to bind the selected drug. Note that some of these protein targets 



may have high prediction scores (shown in the last column and color-coded in green) from the SMAP 
and/or eFindSite methods, which indicates that it is possible that this interaction occurs. 

5. The “Source” column provides links to the information from the Protein Data Bank (PDB), DrugBank 
and BindingDB for proteins that are known to bind the selected drug. 

6. The “Sequence similarity to known target [%]” column gives the sequence similarity measured with 
BLAST between the protein identified in the first column by the PDB identifier and the protein 
identified in the BindingDB, DrugBank, or PDB databases which were used to annotate the 
experimental protein-drug interactions. Higher value of similarity denotes a more accurate match. 

7. The “Predicted binding propensity” column gives scores generated by ILbind, SMAP, and eFindSite. 
Among several scores that ILbind and SMAP generate, we provide one score (binding propensity for 
ILbind and raw score for SMAP) that was empirically shown to provide the best predictive 
performance  (G. Hu et al., 2012). The eFindSite tool generates only one propensity score. We note 
that the results can be sorted by each of the three scores by using links located at the top of this 
column. 

 

Figure 6. Results of a query for a specific protein target, human serum albumin (PDB identifier: 
3SQJ_A). Structure of the protein target is shown using gray trace of the backbone. The positions of 
ligands complexed with this protein are shown as blue sticks (these ligands are included in the PDB 
structure file). The predicted centers of the drug molecule are visualized with red balls, and the 
corresponding positions are given in the “Binding to drugs” table. Visualization of the structure uses 
the JSmol plugin from http://sourceforge.net/projects/jsmol/. The structure can be manipulated (rotated, 
zoomed, redrawn) using a mouse. 

 



Figure 6 is an example of the PDID webpage that provides information concerning the known and 
putative DPIs for a selected protein target. This page includes links to the corresponding protein 
sequence and structure files, visualization of the protein structure in complex with drugs that are known 
and predicted to bind the selected protein, and tabulated detailed information concerning the known 
and putative DPIs. The drugs in the table are sorted by the likelihood that they interact with the selected 
proteins, starting with the drugs that are known to interact and following with the drugs predicted to 
interact, from higher to lower likelihood of interaction. Only the drugs that are known to interact or are 
predicted by at least one method to interact are shown. The table shown at the bottom of Figure 6 has 
the following key columns: 
1. The two “Annotated as Known Target” columns identify drugs that are known to interact with the 

selected target protein. Two types of interactions are possible: “In Complex” that corresponds to the 
fact that the protein-drug complex was solved structurally and it is available in the PDB database (the 
adjacent column provides link to this structure), and “Known to Bind” meaning that this protein-drug 
interaction was deposited into the DrugBank and/or BindingDB (the adjacent column provides link 
to the corresponding record in the DrugBank or BindingDB). 

2. The three “Predicted as Target” columns give the selected scores generated by ILbind, SMAP, and 
eFindSite.  

3. The “Predicted Coordinates” column provides coordinates (in the coordinates system based on the 
structure file that is linked at the top of the page) of the predicted positions of the centers of the drug 
molecules. These coordinates are shown using red balls in the structure shown in the top of the page. 

4. The two “Binding Summary” columns show whether a given drug is know to interact with the 
selected protein target, and how many prediction methods (out of 3) predict a given interaction. 

 
Overall, the navigation of the PDID database is fairly straightforward and intuitive. Users can query 
this resource in three ways and can easily navigate between the corresponding three types of screens 
with results. The results are color-coded to ease the interpretation and they incorporate both the 
experimental and putative annotations. Users can also effortlessly link to the structures and sequences 
of protein targets and the source records of the drugs.  

5 Summary 

The key challenge in pharmacology has shifted from the study of single molecules to the exhaustive 
exploration of biologically relevant molecular interactions at the level of complete proteomes. Adopting 
a systems-level approach can help comprehend the underlying principles of the cellular networks of 
interacting molecules, with practical applications in the discovery of new biopharmaceuticals and 
repurposing of current drugs. Nonetheless, a relatively low coverage of DPIs by the experimental data 
necessitates augmenting the existing databases with putative interactions annotated by across-proteome 
computational modeling. To meet this demand, we recently developed the PDID, a new resource 
comprising over one million PDIs confidently inferred based on the structural similarity between query 
proteins and a large database of drug-protein complexes. PDID combines interaction data generated by 
three state-of-the-art predictors: eFindSite, SMAP, and ILbind. A unique feature of this resource is that 
it contains the molecular level details for DPIs, such as the location of binding sites in target structures. 
Encouragingly, the analysis of putative interactions included in the PDID indicates that the majority of 
them are likely to be accurately predicted. The database was designed to be user-friendly and easily 
accessible via any modern web browser. Online materials include a full documentation and tutorials 
explaining how to query the PDID with either a drug or a target protein and interpret the results. The 
PDID has a wide range of applications including the identification of novel targets for pharmacotherapy, 
the development of safer drugs with reduced side-effects, repurposing existing therapeutics to treat new 



diseases, and the design of polypharmacological agents simultaneously targeting multiple proteins in 
complex disorders. 
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