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Summary 

Many new methods for the sequence-based prediction of the secondary and supersecondary 
structures have been developed over the last several years. These and older sequence-based 
predictors are widely applied for the characterization and prediction of protein structure and 
function. These efforts have produced countless accurate predictors, many of which rely on 
state-of-the-art machine learning models and evolutionary information generated from multiple 
sequence alignments. We describe and motivate both types of predictions. We introduce 
concepts related to the annotation and computational prediction of the three-state and eight-
state secondary structure as well as several types of supersecondary structures, such as  
hairpins, coiled coils, and –turn– motifs. We review 34 predictors focusing on recent tools 
and provide detailed information for a selected set of fourteen secondary structure and three 
supersecondary structure predictors. We conclude with several practical notes for the end users 
of these predictive methods. 
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1.  Introduction 

Protein structure is defined at three levels: primary structure, which is the sequence of amino 
acids joined by peptide bonds; secondary structure, concerns regular local sub-structures 
including -helices and -strands that were first postulated by Pauling and coworkers [1,2]; 
and tertiary structure, which is the three-dimensional structure of a protein molecule. 
Supersecondary structure (SSS) bridges the two latter levels and concerns specific 
combinations / geometric arrangements of just a few secondary structure elements. Common 
supersecondary structures include -helix hairpins,  hairpins, coiled coils, Greek key, and –
–, –turn–,–loop–, and Rossmann motifs. The secondary and SSS elements are 
combined together, with help of various types of coils, to form the tertiary structure. An example 
that displays the secondary structures and the  hairpin supersecondary structure is given in 
Figure 1. 
 
In early 1970s Anfinsen demonstrated that the native tertiary structure is encoded in the primary 
structure [3] and this observation fueled the development of methods that predict the structure 
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from the sequence. The need for these predictors is motivated by the fact that the tertiary 
structure is known for a relatively small number of proteins, i.e., as of May 2018 about 140 
thousand structures for 44 thousand distinct protein sequences are included in the Protein Data 
Bank (PDB) [4,5] when compared with 110.3 million nonredundant protein sequences in the 
RefSeq database [6,7]. Moreover, the experimental determination of protein structure is 
relatively expensive and time-consuming and cannot keep up with the rapid accumulation of 
the sequence data [8-14]. One successful way to predict the tertiary structure is to proceed in a 
step-wise fashion. First, we predict how the sequence folds into the secondary structure, then 
how these secondary structure elements come together to form SSSs, and finally the information 
about the secondary and supersecondary structures is used to help in computational 
determination of the full three-dimensional molecule [15-22]. 
 

 
Figure 1. Cartoon representation of the tertiary structure of the T1 domain of human renal potassium 

channel Kv1.3 (PDB code: 4BGC). Secondary structures are color coded: -helices (red), -strands 

(blue), and coils (yellow). The  hairpin supersecondary structure motif, which consists of two -strands 

and the coil between them, is denoted using the dotted rectangle. 

 
Last three decades observed strong progress in the development of accurate predictors of the 
secondary structure, with predictions with about 82% accuracy [23]. This number has climbed 
in recent years to 84%, which is approaching the estimated accuracy limit of approximately 88% 
[24]. Besides being useful for the prediction of the tertiary structure, secondary structure 
predicted from the sequence is widely adopted for analysis and prediction of numerous 
structural and functional characteristics of proteins. These applications include computation of 
multiple alignment [25], target selection for structural genomics [26-28], and prediction of 
protein-nucleic acids interactions [29-32], protein-ligand interactions [33-35], residue depth 
[36,37], beta-turns [38], structural classes and folds [39-43], residue contacts [44,45], 
disordered regions [46-51], disordered linker regions [52], disordered protein-binding regions 
[53,54] and folding rates and types [55-57], to name selected few. Secondary structure 
predictors enjoy strong interest, which could be quantified by the massive workloads that they 
handle. For instance, the web server of the arguably one of the most popular methods, PSIPRED, 
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was reported already in 2005 to receive over 15,000 requests per month [58]. Another indicator 
is the fact that many of these methods receive high citations counts. A review [59] reported that 
seven methods were cited over 100 times and two of them, PSIPRED [58,60,61] and PHD 
[62,63] were cited over 1300 times. 
 
The prediction of the SSS includes methods specialized for specific types of these structures, 
including  hairpins, coiled coils, and helix–turn–helix motifs. The first methods were 
developed in 1980s and to date about twenty predictors were developed. Similarly as the 
secondary structure predictors, the predictors of SSS found applications in numerous areas 
including analysis of amyloids [64,65], microbial pathogens [66], and synthases [67], 
simulation of protein folding [68], analysis of relation between coiled coils and disorder [69], 
genome-wide studies of protein structure [70,71], and prediction of protein domains [72]. One 
interesting aspect is that the prediction of the secondary structure should provide useful 
information for the prediction of SSS. Two examples that exploit this relation are a prediction 
method by the Thornton’s group [73] and the BhairPred method [74], both of which predict the 
 hairpins. 
 
The secondary structure prediction field was reviewed a number of times. The earlier reviews 
summarized the most important advancements in this field, which were related to the use of 
sliding window, evolutionary information extracted from multiple sequence alignment, and 
machine-learning classifiers [75-77], and the utilization of consensus-based approaches [78,79]. 
Several reviews concentrate on the evaluations and applications of the secondary structure 
predictors and provide practical advice for the users, such as the information concerning 
availability [23,80,81]. Most recent reviews cover many of the current state-of-the-art 
secondary structure prediction methods but they lack the coverage of the supersecondary 
structure predictors [24,82]. The SSS prediction area has been reviewed less extensively. The  
hairpin and coiled coil predictors, as well as the secondary structure predictors were overviewed 
in 2006 [83] and a comparative analysis of the coiled coil predictors was presented in the same 
year [84]. A recent review provides an in depth guide to the prediction of coiled coils [85]. To 
the best of our knowledge there were only two surveys that covered both secondary and 
supersecondary structure predictors [86,87]. This chapter extends our review from 2013 on the 
predictors of secondary and supersecondary structures [87] by including the most recent 
advancements and methods in these active areas of research. We summarize a comprehensive 
set of 34 recent secondary structure and SSS predictors, with 17 methods for each type of 
predictions. We also demonstrate how the prediction of the secondary structure is used to 
implement a SSS predictor and provide several practical notes for the end users. 

2.  Materials 

2.1.  Assignment of secondary structure 

Secondary structure, which is assigned from experimentally determined protein structure, is 
used for a variety of applications, including visualization [88-90] and classification of protein 
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folds [91-96], and as a ground truth to develop and evaluate the secondary and SSS predictors. 
Several annotation protocols were developed over the last few decades. The first 
implementation was done in late 1970s by Levitt and Greer [97]. This was followed by Kabsch 
and Sander who developed a method called Dictionary of Protein Secondary Structure (DSSP) 
[98], which is based on the detection of hydrogen bonds defined by an electrostatic criterion. 
Many other secondary structure assignment methods have been developed, including (in 
chronological order): DEFINE [99], P-CURVE [100], STRIDE [101], P-SEA [102], XTLSSTR 
[103], SECSTR [104], KAKSI [105], Segno [106], PALSSE [107], SKSP [108], PROSIGN 
[109], SABA [110], PSSC [111], PCASSO [112], and SACF [113]. Moreover, the 2Struc web 
server provides an integrated access to multiple annotation methods and enables convenient 
comparison between different assignment protocols [114].  
 
The DSSP remains the most widely-used protocol [105], which is likely due to the fact that it 
is used to annotate depositions in the PDB and since it was used to evaluate secondary structure 
predictions in the two largest community based assessments: the Critical Assessment of 
techniques for protein Structure Prediction (CASP) [115] and the EValuation of Automatic 
protein structure prediction (EVA) continuous benchmarking project [116]. DSSP determines 
the secondary structures based on the patterns of hydrogen bonds, which are categorized into 
three major states: helices, sheets, and regions with irregular secondary structure. This method 
assigns one of the following eight secondary structure states for each of the structured residues 
(residues that have three-dimensional coordinates) in the protein sequence: 

 G: (3-turn) 310 helix, where the carboxyl group of a given amino acid forms a hydrogen 
bond with amid group of the residue three positions down in the sequence forming a tight, 
right-handed helical structure with 3 residues per turn.  

 H: (4-turn) α-helix, which is similar to the 3-turn helix, except that the hydrogen bonds 
are formed between consecutive residues that are 4 positions away. 

 I: (5-turn) π-helix, where the hydrogen bonding occurs between residues spaced 5 
positions away. Most of the π-helices are right-handed. 

 E: extended strand, where 2 or more strands are connected laterally by at least two 
hydrogen bonds forming a pleated sheet. 

 B: an isolated beta-bridge, which is a single residue pair sheet formed based on the 
hydrogen bond. 

 T: hydrogen bonded turn, which is a turn where a single hydrogen bond is formed between 
residues spaced 3, 4, or 5 positions away in the protein chain. 

 S: bend, which corresponds to a fragment of protein sequence where the angle between 
the vector from Cα

i to Cα
i+2 (Cα atoms at the ith and i+2th positions in the chain) and the 

vector from Cα
i-2 to Cα

i is below 70°. The bend is the only non-hydrogen bond-based 
regular secondary structure type. 

 –: irregular secondary structure (also referred to as loop and random coil), which includes 
the remaining conformations. 

These eight secondary structure states are often mapped into the following three states (see 
Figure 1): 

 H: α-helix, which corresponds to the right or left handed cylindrical/helical conformations 
that include G, H, and I states. 
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 E: β-strand, which corresponds to pleated sheet structures that encompass E and B states. 
 C: coil, which covers the remaining S, T, and – states. 

The DSSP program is freely available from https://swift.cmbi.umcn.nl/gv/dssp/. 

2.2.  Assignment of supersecondary structures 

SSS is composed of several adjacent secondary structure elements. Therefore, the assignment 
of SSS relies on the assignment of the secondary structure. Among more than a dozen types of 
SSSs,  hairpins, coiled coils, and –turn– motifs received more attention due to the fact that 
they are present in a large number of protein structures and they have pivotal roles in the 
biological functions of proteins. The  hairpin motif comprises the second largest group of 
protein domain structures and is found in diverse protein families, including enzymes, 
transporter proteins, antibodies, and in viral coats [74]. The coiled coil motifs mediate the 
oligomerization of a large number of proteins, are involved in regulation of gene expression, 
and serve as molecular spacers [117,118]. The –turn– (helix–turn–helix) motif is 
instrumental for DNA binding and transcription regulation [119,120]. The  hairpins, coiled 
coils, and –turn– motifs are defined as follows: 

 A  hairpin contains two strands that are adjacent in the primary structure, oriented in an 
antiparallel arrangement, and linked by a short loop; 

 A coiled coil is built by two or more –helices that wind around each other to form a 
supercoil. 

 An –turn– motif is composed of two -helices joined by a short turn structure. 
The  hairpins are commonly annotated by PROMOTIF program [121], which also assigns 
several other SSS types, e.g., psi-loop and -– motifs. Similar to DSSP, the PROMOTIF 
program assigns SSS based on the distances and hydrogen bonding between the residues. The 
coiled coils are usually assigned with the SOCKET program [122], which locates/annotates 
coiled-coil interactions based on the distances between multiple helical chains. The DNA-
binding –turn– motifs are usually manually extracted from the DNA-binding proteins, since 
these motifs that do not interact with DNA are of lesser interest. 
 
For users convenience, certain supersecondary structures, such as the coiled coils and –– 
motifs, can be accessed, analyzed, and visualized using specialized databases like CCPLUS 
[123] and TOPS [124]. CCPLUS archives coiled coil structures identified by SOCKET for all 
structures in PDB. The TOPS database stores topological descriptions of protein structures, 
including the secondary structure and the chirality of selected SSSs, e.g., β hairpins and ––
 motifs. 

2.3.  Multiple sequence alignment 

Multiple sequence alignments were introduced to prediction of secondary structure in early 
1990s [125]. Using multiple sequence alignment information rather than only protein sequence 
has led to a 10% accuracy improvement in secondary structure prediction [125]. Multiple 
sequence alignments are also often used in the prediction of SSS [74,83,84]. The strength of 
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including multiple sequence alignment information in prediction is the evolutionary 
information they contain, which is much richer (or accessible) than a single sequence. Multiple 
sequence alignments can be obtained from a given protein sequence in two steps. In the first 
step, sequences that are similar to the given input sequence are identified from a large sequence 
database, such as the nr (non-redundant) database provided by the National Center for 
Biotechnology Information (NCBI). In the second step, multiple sequence alignment is 
performed between the input sequence and its similar sequences and the profile is generated. 
An example of the multiple sequence alignment is given in Figure 2 where eight similar 
sequences are identified for the input protein (we use the protein from Figure 1). Each position 
of the input (query) sequence is represented by the frequencies of amino acid derived from the 
multiple sequence alignment to derive the profile. For instance, for the boxed position in Figure 
2, the counts of amino acids glutamic acid (E), glutamine (Q) and valine (V) are 5, 2, and 2, 
respectively. Therefore, this position can be represented by a 20-dimensional vector (0, 0, 0, 
5/9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2/9, 0, 0, 0, 2/9, 0, 0), where each value indicates the fraction of the 
corresponding amino acid type (amino acids are sorted in alphabetical order) in multiple 
sequence alignment at this position. A multiple sequence alignment profile is composed of these 
20-dimentional vectors for each position in the input protein chain, and is a common 
representation of a multiple sequence alignment. 
 
 

Query protein … E R V V I N I S G L R F E T Q L K T L - Q F P E … 
Q61923 … E R L V I N I S G L R F E T Q L R T L S L F P D … 
Q8I4B0 … Q I V T I N V S G M R F Q T F E S T L S R Y P N … 
P17972 … N R V V L N V G G I R H E T Y K A T L K K I P A … 
Q63881 … A L I V L N V S G T R F Q T W Q D T L E R Y P D … 
Q01956 … G K I V I N V G G V R H E T Y R S T L R T L P G … 
P97557 … D C L T V N V G G S R F V L S Q Q A L S C F P H … 
Q0P583 … D S F T V N V G G S R F V L S Q Q A L S C F P H … 
O18868 … R R V R L N V G G L A H E V L W R T L D R L P R … 

 
Figure 2. Multiple sequence alignment between the input (query) sequence, which is a fragment of the 

T1 domain of human renal potassium channel Kv1.3 shown in Figure 1, and similar sequences. The first 

row shows the query chain and the subsequent rows show the eight aligned proteins. Each row contains 

the protein sequence ID (the first column) and the corresponding amino acid sequence (the third and 

subsequent columns), where “…” denotes continuation of the chain and “–“ denotes a gap, which means 

that this part of the sequence could not be aligned. The boxed column is used as an example to discuss 

generation of the multiple sequence alignment profile in section 2.3. 

 

The PSI-BLAST (Position-Specific Iterated BLAST) [126] algorithm was developed for the 
identification of distant similarity to a given input sequence. First, a list of closely related 
protein sequences is identified from a sequence database, such as the nr database. These 
sequences are combined into a position specific scoring matrix (PSSM), which is similar to a 
profile discussed above with the exception that values are the log-odds of observing a given 
residue. Another query against the sequence database is run using this first PSSM, and a larger 
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group of sequences is found. This larger group of sequences is used to construct another PSSM, 
and the process is repeated. PSI-BLAST is more sensitive in picking up distant evolutionary 
relationships than a standard protein-protein BLAST that does not perform iterative repetitions. 
Since late 1990s, PSI-BLAST is commonly used for the generation of PSSMs that are often 
used directly in the prediction of secondary and supersecondary structures. An example PSSM 
profile is given in Figure 3. The BLAST and PSI-BLAST programs are available at 
http://blast.ncbi.nlm.nih.gov/. 
 

  A C D E F G H I K L M N P Q R S T V W Y 

2 E -2 -5 2 6 -5 -3 -1 -5 1 -4 -3 0 -2 3 -1 -1 -2 -4 -4 -3

3 R -1 -3 -3 -2 -2 -4 -2 1 1 1 -1 -2 -3 -1 5 -2 -2 2 -4 -3

4 V -2 -3 -5 -5 -2 -5 -5 4 -4 1 1 -5 -4 -4 -5 -4 -2 6 -5 -3

5 V -1 -3 -2 0 -3 -3 2 1 2 -1 -1 0 0 -1 1 0 2 2 -4 -2

6 I -3 -3 -5 -5 1 -5 -5 4 -4 4 0 -5 -5 -4 -4 -4 -3 2 -4 -2

7 N -4 -6 1 -3 -6 -3 -2 -6 -3 -6 -5 8 -5 -3 -3 -2 -3 -6 -7 -5

8 I -3 -3 -6 -5 -3 -6 -6 2 -5 -1 -1 -5 -5 -5 -5 -4 -2 7 -5 -4

9 S -1 -5 -3 -4 -5 7 -4 -6 -4 -6 -5 -3 -4 -4 -4 1 -3 -5 -5 -5

10 G -2 -5 -4 -5 -6 7 -5 -7 -4 -6 -5 -3 -5 -4 -5 -3 -4 -6 -5 -6

11 L -1 0 -2 0 0 -3 3 0 0 1 1 -2 -3 1 2 -1 1 0 -3 0

12 R -2 -4 -3 -2 -1 -4 1 1 2 0 1 -2 -4 -1 5 -1 -2 0 -3 2

13 F -4 -5 -5 -4 7 -5 4 -3 -4 -2 -3 -4 -5 0 -1 -4 -2 -2 -1 6

14 E -2 -3 -1 3 -3 -3 -2 0 -1 0 1 -2 -3 2 0 1 3 0 -4 -3

15 T -2 -3 -4 -3 -3 -4 -4 -2 -3 2 -2 -3 -4 -3 -4 1 6 0 -4 -4

16 Q -1 -3 -1 -1 -1 -3 -2 -3 0 -1 -2 -1 0 2 2 1 2 -2 3 2

17 L 0 -1 -3 -1 -1 -1 0 -2 1 1 -1 -2 -2 0 3 -1 -1 -2 5 -1

18 K 1 1 1 1 -4 -1 0 -3 0 -3 -2 0 -2 2 1 3 1 -3 -4 -3

19 T -1 -3 -4 -1 -4 -4 -4 -3 -3 -1 -3 -3 -4 -3 -4 -1 7 -2 -5 -4

20 L -4 -4 -6 -5 -2 -6 -5 2 -5 6 0 -6 -5 -4 -5 -5 -2 -1 -4 -3

21 Q 0 -4 -2 0 -4 -3 -2 -2 3 -4 -1 -1 -3 3 5 1 -1 -3 -4 -3

22 F -3 2 -3 -2 5 -4 -2 0 -3 1 -1 -2 -4 -3 -1 -3 -3 -1 -1 5

23 P -1 -5 -3 0 -5 -4 -4 -5 -3 -5 -4 -1 8 -3 -1 -3 -3 -4 -5 -5

24 E -1 -4 4 1 -4 2 1 -3 0 0 -3 0 -3 -1 -1 -1 -2 -3 -4 -3

…           
           

 
Figure 3. Position-specific scoring matrix generated by PSI-BLAST for the input (query) sequence, which 

is a fragment of chain A of the AF1521 protein shown in Figure 1. The first and second columns are the 

residue number and type, respectively, in the input protein chain. The subsequent columns provide 

values of the multiple sequence alignment profile for a substitution to an amino acid type indicated in 

the first row. Initially, a matrix P, where pi,j indicates the probability that the jth amino acid type (in columns) 

occurs at ith position in the input chain (in rows), is generated. The position-specific scoring matrix M is 

defined as mi,j = log(pi,j / bj), where bj is the background frequency of the jth amino acid type. 
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3.  Methods 

3.1.  Current secondary structure prediction methods 

The prediction of the secondary structure is defined as mapping of each amino acid in the 
primary structure to one of the three or eight secondary structure states, most often as defined 
by the DSSP. Many secondary structure predictors use a sliding window approach in which a 
local stretch of residues around a central position in the window is used to predict the secondary 
structure state at the central position. Moreover, as one of the first steps in the prediction 
protocol, many methods use PSI-BLAST to generate multiple alignment and/or PSSM that, 
with the help of the sliding window, are used to encode the input sequence. The early predictors 
were implemented based on a relatively simple statistical analysis of composition of the input 
sequence. Modern methods adopt sophisticated machine learning-based classifiers to represent 
the relation between the input sequence (or more precisely between evolutionary information 
encoded in its PSSM) and the secondary structure states. In the majority of cases, the classifiers 
are implemented using neural networks. However, different predictors use different numbers of 
networks (between one and hundreds), different types of networks (e.g., feed-forward and 
recurrent), different scales of the networks (e.g., regular and deep) and different sizes of the 
sliding windows.  
 
Prediction methods are provided to the end users as standalone applications and/or as web 
servers. Standalone programs are suitable for higher volume (for a large number of proteins) 
predictions and they can be incorporated in other predictive pipelines, but they require 
installation by the user on a local computer. The web servers are more convenient since they 
can be run using a web browser and without the need for the local installation, but they are more 
difficult to use when applied to predict a large set of chains, i.e., some servers allow submission 
of one chain at the time and may have long wait times due to limited computational resources 
and a long queue of requests from other users. Moreover, recent comparative survey [23] shows 
that the differences in the predictive quality for a given predictor between its standalone and 
web server versions depend on the frequency with which the underlying databases, which are 
used to calculate the evolutionary information and to perform homology modeling, are updated. 
Sometimes these updates are more frequent for the web server, and in other cases for the 
standalone package. 
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Table 1. Summary of the recent sequence-based predictors of secondary structure. The “year last 

published” column provides the year of the publication of the most recent version of a given method. 

The “availability” column identifies whether a standalone program (SP), a web server (WS), and/or an 

application programmer’s interface (API) is available. The methods are sorted by the year of their last 

publication in the descending order. 

Name Year last 
published 

Prediction model States Availability 

MUFOLD-SS 2018 Deep neural network 8 SP 
SPIDER3 2017 Bidirectional recurrent neural network 3 WS+SP 
RaptorX 2016 Deep conditional neural fields 8 WS 
Jpred 2015 Neural network 3 WS+API 
SCORPION 2014 Neural network 8 WS 
PSIPRED 2013 Neural network 3 WS+SP+API
Porter 2013 Bidirectional recurrent neural network 3 WS+SP 
SPARROW 2012 Quadratic model + neural network 3 SP 
Frag1D 2010 Scoring function 3 WS+SP 
DISSPred 2009 Support vector machine + clustering 3 WS 
PCI-SS 2009 Parallel cascade identification 3 WS+API 
PROTEUS 2008 Neural network 3 WS+SP 
OSS-HMM 2006 Hidden Markov model 3 SP 
YASSPP 2006 Support vector machine 3 WS 
YASPIN 2005 Neural network + hidden Markov model 3 WS 
SABLE 2005 Neural network 3 WS+SP 
SSpro 2005 Neural network 8 WS+SP 
 
Table 1 summarizes 17 methods in the reverse chronologic order: MUFOLD-SS [127], Spider3 
[128], RaptorX [129,130], Jpred [131-134], SCORPION [135], PSIPRED [58,60,61,136], 
Porter [137-139], SPARROW [140], Frag1D [141], DISSPred [142], PCI-SS [143], PROTEUS 
[144-146], OS-HMM [147], YASSPP [148], YASPIN [149], SABLE [150], and SSpro 
[151,152]. This list is limited to predictors published since 2005 and have standalone programs 
or websites available at the time of this writing. Older methods were comprehensively reviewed 
in [75-77]. Note that only four of the 17 methods (MUFOLD-SS, RaptorX, SCORPION and 
SSpro) predict the 8-state secondary structure, and these methods also provide the 3-state 
predictions.  
 
Below, we discuss in detail 14 methods that are listed in reverse chronologic order. These 
methods offer web servers, as arguably these are used by a larger number of users. We 
summarize their architecture, provide location of their implementation, and briefly discuss their 
predictive performance. We observe that the predictive quality should be considered with a 
grain of salt since different methods were evaluated on different datasets and using different 
test protocols (see Note 1). However, we primarily utilize fairly consistent results that were 
published in two comparative studies (see Note 2) [23,59]. Moreover, research shows that 
improved predictive performance could be obtained by post-processing of the secondary 
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structure predictions (see Note 3) [153]. 

3.1.1 SPIDER3 

The SPIDER series of predictors have been developed by the Zhou group at the Griffith 
University. In particular, SPIDER3 [128] is inspired by its predecessors that have come from 
the same lab: SPIDER2 [154,155] and SPINE X [156]. SPIDER3 is designed to consider long 
range sequence information to improve secondary structure prediction accuracy. Common 
neural network architectures require a fixed size input window, and the network is applied to 
the sequence repeatedly over a sliding window. In contrast, bidirectional recurrent neural 
networks (BRNN) used in SPEDER3, in a sense, consider the entire sequence simultaneously, 
with network state being shared along the sequence [157]. Moreover, use of specialized Long 
Short Term Memory (LSTM) network nodes improves the flow of information between distant 
sequence positions [158]. The authors demonstrate that the LSTM-BRNN improves prediction 
accuracy, particularly for residues with many long range contacts. SPIDER3 achieves a Q3 
score of nearly 84% on an independent test dataset. 
Inputs: hidden Markov model profiles and PSSM generated from the input protein sequence 
using HHBlits [159] and PSI-BLAST, respectively 
Architecture: LSTM-BRNN 
Availability: http://sparks-lab.org/server/SPIDER3/ 

3.1.2 RaptorX 

RaptorX [129,130] was developed by the Xu group at the University of Chicago. Like SPIDER3, 
this predictor also considers long range sequence information but through use of deep 
convolutional neural networks (DeepCNF). For each layer of the network, inputs are taken from 
the previous layer from neighboring positions. This architecture considers information from 
distant sequence positions, where the depth of the network determines the maximum distance 
considered. RaptorX uses a window size of 11 residues and five layers, resulting in an effective 
window size of 51 residues. On an independent test set, the authors find RaptorX to outperform 
all other tested methods. 
Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: deep convolutional neural network 
Availability: http://raptorx2.uchicago.edu/StructurePropertyPred/predict/ 

3.1.3 Jpred 

Jpred was originally developed in late 1990s by Barton group at the University of Dundee [132]. 
This method was updated a few times, with the most recent version Jpred 4 [134]. Similar to 
PSIPRED, Jpred was demonstrated to provide about 82% accuracy for the 3-state secondary 
structure prediction [134]. The web server implementation of Jpred couples the secondary 
structure predictions with the prediction of solvent accessibility and prediction of coiled coils 
using COILS algorithm [160].  
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Inputs: hidden Markov model profiles and PSSM generated from the input protein sequence 
using HMMer [161] and PSI-BLAST, respectively 
Architecture: ensemble of neural networks 
Availability: http://www.compbio.dundee.ac.uk/jpred/ 

3.1.4 SCORPION 

The Li group of Old Dominion University developed the SCORPION method to take advantage 
of local sequence features for the prediction of secondary structure [135]. This is accomplished 
by using statistics derived from residue pairs and triplets at defined sequence distances within 
a short local window. The other key aspect of this method is its stacked architecture. Stacking 
is an approach where the output of the first predictor is used for the input to the second predictor, 
second to third, etc. SCORPION uses a series of three stacked neural networks to refine 
secondary structure predictions. By the authors’ assessment, SCORPION shows superior 
accuracy to other prediction methods, in both Q3 (three-state accuracy) and Q8 (eight-state 
accuracy) measures. Though improvement in Q3 accuracy over PSIPRED is small, SCORPION 
shows a large improvement in segment-based accuracy, indicating a better match to secondary 
structure elements. 
Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: three stacked neural networks 
Availability: 3-state prediction, http://hpcr.cs.odu.edu/c3scorpion/; 8-state prediction, 
http://hpcr.cs.odu.edu/c8scorpion/ 

3.1.5 PSIPRED 

PSIPRED is one of the most popular prediction methods (see Note 4); e.g., it received the largest 
number of citations as shown in [23,59]. This method was developed in late 1990s by Jones 
group at the University College London [60], and was later improved and updated in 2020 and 
2013 [61,136]. PSIPRED is characterized by a relatively simple design which utilizes just two 
neural networks. This method was ranked as top predictor in the CASP3 and CASP4 
competitions, and was recently evaluated to provide 3-state secondary structure predictions 
with 81% accuracy [23,61]. The current version bundles the secondary structure predictions 
with the prediction of transmembrane topology and fold recognition. 
Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: ensemble of two neural networks 
Availability: http://bioinf.cs.ucl.ac.uk/psipred/ 

3.1.6 PORTER 

This predictor was developed by Pollastri group at the University College Dublin [138]. The 
web server that implements PORTER was utilized over 170,000 times since 2004 when it was 
released. This predictor was upgraded in 2007 to include homology modeling [137]. The 
original and the homology-enhanced versions were recently shown to provide 79% [23] and 
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83% accuracy [59], respectively. PORTER is a part of a comprehensive predictive platform 
called DISTILL [162], which also incorporates predictors of relative solvent accessibility, 
residue-residue contact density, contacts maps, subcellular localization, and tertiary structure. 
The most recent upgrades to PORTER in 2009 [163] and 2013 [164] expanded the training set 
and architecture, resulting in a significate increase in performance. 
Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: ensemble of recurrent neural networks 
Availability: http://distill.ucd.ie/porter/ 

3.1.7 Frag1D 

The idea behind Frag1D, created by the Hovmöller group at Stockholm University, is that 
similar sequence fragments will have similar structures [141]. A database of fragments from 
known structures is compared to fragments of the query protein, where the most similar 
segments are used to predict secondary structure. Fragment comparison is scored using profile-
profile comparison, augmenting sequence-derived profiles with structure-derived profiles. For 
the query sequence, structure profiles are unknown and are approximated through an iterative 
procedure of fragment matching. By the authors evaluation, this method has comparable 
performance to PSIPRED. 
Inputs: sequence profiles generated from the input protein sequence using PSI-BLAST 
Architecture: scoring function 
Availability: http://frag1d.bioshu.se 

3.1.8 DISSPred 

The DISSPred approach was recently introduced by Hirst group at the University of 
Nottingham [142]. Similar to SPIDER3 and its predecessors, this method predicts both the 3-
state secondary structure and the backbone torsion angles. The unique characteristic of 
DISSPred is that the predictions are cross-linked as inputs, i.e., predicted secondary structure 
is used to predict torsion angles and vice versa. The author estimated the accuracy of this 
method to be at 80% [142]. 
Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: ensemble of support vector machines and clustering 
Availability: http://comp.chem.nottingham.ac.uk/disspred/ 

3.1.9 PCI-SS 

PCI-SS [143] is a unique approach to secondary structure prediction, developed by the Green 
group at the Carleton University. The approach, known as parallel cascade identification (PCI), 
progressively refines predictions using a series of linear/non-linear function layers. The 
parameter space of PCI contains discrete components, intractable to conventional training 
methods, so the authors’ employ genetic algorithm for model training. The authors find that this 
method performs comparably to other, more conventional, methods. 
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Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: parallel cascade identification  
Availability: http://bioinf.sce.carleton.ca/PCISS 

3.1.10 PROTEUS 

This secondary structure prediction approach was developed by Wishart group at the University 
of Alberta [146]. PROTEUS is a consensus-based method, in which outputs of three secondary 
structure predictors, namely PSIPRED, Jnet [165], and an in-house TRANSSEC [146], are fed 
into a neural network. The predictions from the neural network are combined with the results 
based on homology modeling to generate the final output. PROTEUS is characterized by 
accuracy of about 81%, which was shown by both the authors [144] and in a comparative survey 
[23]. This predictor was incorporated into an integrated system called PROTEUS2, which 
additionally offers prediction of signal peptides, transmembrane helices and strands, and 
tertiary structure [144].  
Inputs: multiple alignment generated from the input protein sequence using PSI-BLAST 
Architecture: neural network that utilizes consensus of three secondary structure predictors 
Availability: http://wks16338.biology.ualberta.ca/proteus2/ 

3.1.11 YASSPP 

YASSPP was designed by Karypis lab at the University of Minnesota in 2005 [148]. Rather 
than typically used neural network classifiers, YASSPP instead utilizes multiple support vector 
machine learners. This method was shown to provide similar predictive quality to PSIPRED 
[148]. 
Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: ensemble of six support vector machines 
Availability: http://glaros.dtc.umn.edu/yasspp/ 

3.1.12 YASPIN 

The YASPIN method was developed by Heringa lab at the Vrije Universiteit in 2004 [149]. 
This is a hybrid method that utilizes a neural network and a hidden Markov model. One of the 
key characteristics of this method is that, as shown by the authors, it provides accurate 
predictions of -strands [149]. The predictive performance of YASPIN was evaluated using 
EVA benchmark and two comparative assessments [23,61], which show that this method 
provides predictions with accuracy in the 76 to 79% range. 
Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: Two-level hybrid design with neural network in the 1st level and hidden Markov 
model in the 2nd level 
Availability: http://www.ibi.vu.nl/programs/yaspinwww/ 
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3.1.13 SABLE 

The SABLE predictor was developed by Meller group at the University of Cincinnati [150]. 
The web server that implements this method was used close to 200,000 times since it became 
operational in 2003. Two recent comparative studies [23,61] and prior evaluations within the 
framework of the EVA initiative show that SABLE achieves accuracy of about 78%. The web 
server of the current version 2 also includes prediction of solvent accessibility and 
transmembrane domains. 
Inputs: PSSM generated from the input protein sequence using PSI-BLAST 
Architecture: ensemble of recurrent neural networks 
Availability: http://sable.cchmc.org/ 

3.1.14 SSpro 

SSpro was introduced in early 2000 by the Baldi group at the University of California, Irvine 
[152]. Its version 4.5 [151] utilizes homology modeling, which is based on alignment to known 
tertiary structures from PDB, and achieves over 82% accuracy [23]. The SSpro 4.0 was also 
ranked as one of the top secondary structure prediction servers in the EVA benchmark [166]. 
SSpro’s most recent version 5.2 is part of a comprehensive prediction center called SCRATCH, 
which also includes predictions of secondary structure in 8-states using SSpro8 [152], and 
prediction of solvent accessibility, intrinsic disorder, contact numbers and contact maps, 
domains, disulfide bonds, B-cell epitopes, solubility upon overexpression, antigenicity, viral 
capsid and tail proteins, and tertiary structure. 
Inputs: sequence profiles generated from the input protein sequence using PSI-BLAST  
Architecture: ensemble of recurrent neural networks 
Availability: http://scratch.proteomics.ics.uci.edu/ 

3.2.  Supersecondary structure prediction methods 

Since SSS predictors are designed for a specific type of the supersecondary structures, e.g., 
SpiriCoil only predicts the coiled coils [70], the prediction of the SSS is defined as the 
assignment of each residue in the primary structure to two states: a state indicating the formation 
of a certain SSS type and another state indicating any other conformation. Similar to the 
prediction of the secondary structure, majority of the recent SSS predictors use a sliding 
window approach in which a local stretch of residues around a central position in the window 
is utilized to predict the SSS state at the central position. The architectures of the methods for 
the prediction of different types of SSSs vary more substantially when compared with the fairly 
uniform architectures of the modern secondary structure predictors that primarily rely on the 
neural networks.  
 
One of the early attempts for the prediction of  hairpin utilized the predicted secondary 
structure and similarity score between the predicted sequence and a library of  hairpin 
structures [73]. More recent  hairpin predictors use the predicted secondary structure and some 
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sequence-based descriptors to represent the predicted sequence [74,167-171]. Moreover, 
several types of prediction algorithms, such as neural networks, support vector machines, 
quadratic discriminant functions and random forests, were used for the prediction of the  
hairpin motifs. The most recent predictor, STARPDB-beta hairpin [172], is based on a simple 
alignment into structurally annotated proteins collected from PDB.  
 
The first attempt to predict coiled coils was based on scoring the propensity for formation of 
coiled coils in the predicted (input) sequence by calculating similarity to a position-specific 
scoring matrix derived from a statistical analysis of a coiled coil database [94]. More recent 
studies utilize hidden Markov models and a PSSM profile to represent the input sequence 
[70,173-177]. Predictive quality of these tools was empirically evaluated in a recent 
comparative review [85] (see Note 5). 
 
The initial study on the prediction of –turn– motif was also based on scoring similarity 
between the predicted sequence and the –turn– structure library [178]. Subsequent, method 
use a pattern dictionary developed from known –turn– structures [179,180], where 
predictions are made directly from pattern similarity [179] or using a classifier over pattern 
occurrences [180]. 
 
Table 2 summarizes 17 supersecondary structure prediction methods, including 7  hairpin 
predictors (in chronological order): method by de la Cruz et al. [73], BhairPred [74], and 
methods by Hu et al. [170], Zou et al. [169], Xia et al. [168], Jia et al. [167], and the STARPDB-
beta hairpin method [172]; 7 coiled coil predictors: MultiCoil2 [181,182], MARCOIL [177], 
PCOILS [176], bCIPA [175], Paircoil2 [174], CCHMM_PROF [173], and SpiriCoil [70]; and 
3 –turn– predictors: method by Dodd and Egan [178], GYM [179], and Xiong et al. [180]. 
Older coiled coil predictors were reviewed in [84]. 
 
We note that some of the methods for the prediction of  hairpin and –turn– structures do 
not offer any implementation, i.e., neither a standalone program nor a web server, which 
substantially limits their utility. Following, we discuss in greater detail the representative 
predictors for each type of the SSSs, with particular emphasis on the  hairpin predictors that 
utilize the predicted secondary structure. 
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Table 2. Summary of the recent sequence-based predictors of supersecondary structure. The “year last 

published” column provides the year of the publication of the most recent version of a given method. 

The “availability” column identifies whether a standalone program (SP) and/or a web server (WS) is 

available. NA denotes that neither SP nor WS is available. The methods are sorted by the year of their 

last publication in the descending order for a given type of the supersecondary structures. 

Supersecondary 
structure type 

Name (authors) 
 

Year last 
published

Prediction model Availability

 hairpin STARPDB-beta 
hairpin 

2016 Sequence similarity WS 

Jia et al. 2011 Random forest NA 
Xia et al. 2010 Support vector machine NA 

Zou et al. 2009 
Increment of diversity + quadratic 
discriminant analysis 

NA 

Hu et al. 2008 Support vector machine NA 
BhairPred 2005 Support vector machine WS 
de la Cruz et al. 2002 Neural network NA 

Coiled coil MultiCoil2 2011 Markov random field WS+SP 
SpiriCoil 2010 Hidden Markov model WS 
CCHMM_PROF 2009 Hidden Markov model WS 
Paircoil2 2006 Pairwise residue probabilities WS+SP 
bCIPA 2006 no model WS 
PCOILS 2005 Residue probabilities WS 
MARCOIL 2002 Hidden Markov model SP 

-turn- Xiong et al. 2009 Support vector machine NA 
GYM 2002 Statistical method WS 
Dodd et al. 1990 Similarity scoring NA 

3.2.1 BhairPred 

The BhairPred predictor was developed by Raghava group at the Institute of Microbial 
Technology, India in 2005 [74]. The predictions are performed using a support vector machine-
based model, which is shown by the authors to outperform a neural network-based predictor. 
Each residue is encoded using its PSSM profile, secondary structure predicted with PSPPRED, 
and solvent accessibility predicted with the NETASA method [183]. BhairPred was shown to 
provide predictions with accuracy in the 71 to 78% range on two independent test sets [74].  
Inputs: PSSM generated from the input protein sequence using PSI-BLAST, 3-state secondary 
structure predicted using PSIPRED, and solvent accessibility predicted with NETASA 
Architecture: support vector machine 
Availability: http://www.imtech.res.in/raghava/bhairpred/ 

3.2.2 MultiCoil2 

The MultiCoil2 prediction method [181] extends the MultiCoil method [182], which in turn is 
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an extension of the Paircoil method [184]. The paircoil method is based on the pair-wise residue 
statistics of positions within the heptapeptide coiled-coil repeat, calculated from a set of known 
coiled coils. This idea is based on the structural constraints of coiled-coil packing and the 
compensatory nature of neighboring positions with the α-helix. MultiCoil extends this idea to 
simultaneously predicting two- or three- way coiled coils by employing a separate set of 
statistics for each. MultiCoil2 improves this approach by replacing the simple scoring scheme 
of previous methods with a Markov random field. This improvement yield a substantial 
improvement over both Paircoil and Multicoil when trained on the same dataset [181]; 
MultiCoil2 correctly identifies nearly 92% of coiled-coil residues with only 0.3% of non-coiled-
coils incorrectly identified, according to the authors’ assessment [181] (see Note 6). 
Inputs: protein sequence 
Architecture: Markov random field 
Availability: http://cb.csail.mit.edu/cb/multicoil2/cgi-bin/multicoil2.cgi 

3.2.3 GYM 

The GYM prediction method is based on mining patterns from known helix-turn-helix 
examples and matching those pattern from novel sequences [179]. Patterns are defined as two 
or more residues occurring at the same positions within different helix-turn-helix examples. 
These patterns are discovered with a novel algorithm which ensures that they are maximal (i.e. 
not a portion of another pattern) and occur with a minimum defined frequency. When matching 
patterns to novel sequences, the GYM2 method uses the BLOSUM62 matrix to weight patterns 
by similarity, rather than strict matching. 
Inputs: protein sequence 
Architecture: motif scoring 
Availability: http://users.cis.fiu.edu/~giri/bioinf/GYM2/prog.html 

3.3.  Supersecondary structure prediction by using predicted secondary 

structure 

Since supersecondary structure is composed of several adjacent secondary structure elements, 
the prediction of the secondary structures should be a useful input to predict SSS (see Note 7). 
Two SSS predictors, BhairPred [74] and the method developed by Thornton group [73], have 
utilized the predicted secondary structure for the identification of  hairpins. Following, we 
discuss latter method to demonstrate how the predicted secondary structure is used for the 
prediction of the SSS. This method consists of 5 steps: 
Step 1. Predict secondary structure for a given input sequence using the PHD method [62]. 
Step 2. Label all -coil- patterns in the predicted secondary structure. 
Step 3. Score similarity between each labeled pattern and each hairpin structure in a template 

library. The similarity vector between a -coil- pattern and a hairpin structure consists 
of 14 values, including 6 values that measure similarity of the secondary structures, 1 
value that measures similarity of the solvent accessibility, 1 value that indicates the 
presence of turns, 2 values that describe specific pair interactions and nonspecific 
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distance-based contacts, and 4 values that represent the secondary structure patterns 
related to residue length. 

Step 4. The 14 similarity scores are processed by a neural network that produces a discrete 
output, 0 or 1, indicating that the strand-coil-strand pattern is unlikely or likely, 
respectively, to form a  hairpin. 

Step 5. For a given labeled -coil- pattern, a set of similarity scores is generated for each 
template hairpin, and therefore the neural network generates an output for each template 
hairpin. The labeled -coil- pattern is predicted as  hairpin if the outputs are set to 1 
for more than 10 template hairpins. 

The working of the de la Cruz et al. method developed by the Thornton group [73] is illustrated 
in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The architecture of the  hairpin predictor proposed by the Thornton group. The prediction 

concerns the input (query) sequence, which is a fragment of chain A of the AF1521 protein shown in 

Figure 1. 

4.  Notes 

1. The predictive quality of the secondary structure predictors was empirically compared in 
several large-scale, world-wide initiatives including CASP [115], Critical Assessment of 
Fully Automated Structure Prediction (CAFASP) [185], and EVA [116,166]. Only the early 
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CASP and CAFASP meetings, including CASP3 in 1998, CASP4 and CAFASP2 in 2000, 
and CASP5 and CAFASP3 in 2002, included the evaluation of the secondary structure 
predictions. Later on, the evaluations were carried out within the EVA platform. Its most 
recent release monitored thirteen predictors. However, EVA was last updated in 2008. 

2. A large-scale comparative analysis [23] has revealed a number of interesting and practical 
observations concerning structure prediction. The accuracy of the 3-state prediction based 
on the DSSP assignment is currently at 82%, and the use of a simple consensus-based 
prediction improves the accuracy by additional 2%. The homology modeling-based 
methods, such as SSpro and PROTEUS, are shown to be better by 1.5% accuracy than the 
ab-initio approaches. The neural network-based methods are demonstrated to outperform 
the hidden Markov model-based solutions. A recent comparative analysis [24] finds that 
accuracy has climbed to about 84%. Further, they find that errors most commonly confuse 
helices and coils, and strands and coils. Prediction errors for helices and strands are most 
frequent at the ends of elements, whereas coils show little location bias in errors. Errors are 
also elevated for residues with many long range contacts, relative to residues with few long 
range contacts.  

3. As shown in [23], the current secondary structure predictors are characterized by several 
drawbacks, which motivate further research in this area. Depending on the predictor, they 
confuse between 1 and 6% of strand residues with helical residues and vice versa (these are 
significant mistakes) and they perform poorly when predicting residues in the beta-bridge 
and 310 helix conformations.  

4. The arguably most popular secondary structure predictor is PSIPRED. This method is 
implemented as both a standalone application (version 2.6) and a web server (version 3.0). 
PSIPRED is continuously improved, usually with a major upgrade every year and with 
weekly updates of the databases. The current (as of May 2018) count of citations in the ISI 
Web of Knowledge to the paper that describes the original PSIPRED algorithm [60] is close 
to 3,187, which demonstrates the broad usage of this method.  

5. A recent assessment evaluated all coiled coil predictors listed in Table 2 [85]. In general, 
MultiCoil2 and CCHMM_PROF were found to have the highest prediction performance. 
Due to its architecture, MultiCoil2 cannot detect coiled coils shorter than 21 amino acids, 
and on a length restricted set, MultiCoil2 has the best performance. However, on an 
unrestricted set, CCHMM_PROF has the best performance. 

6. Prediction of the supersecondary structures could be potentially improved by utilizing a 
consensus of different approaches. As shown in a comparative analysis of coiled coil 
predictors [84], the best-performing Marcoil has generated many false positives for highly 
charged fragments, while the runner-up PCOILS provided better predictions for these 
fragments. This suggests that the results generated by different coiled coil predictors could 
be complementary. However, another comparative study highlights some problem cases for 
consensus prediction, and instead calls for further predictor development [85].  

7. The major obstacle to utilize the predicted secondary structure in the prediction of the 
supersecondary structures, which was observed in mid 2000s, was (is) the inadequate 
quality of the predicted secondary structure. For instance, only about half of the native  
hairpins were predicted with the strand-coil-strand secondary structure pattern [73]. The use 
the native rather than the predicted secondary structure was shown to lead to a significant 
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improvement in the prediction of the supersecondary structures [74]. 
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