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SIGNIFICANCE STATEMENT 
Computational approaches offer a cost- and time-efficient way to predict secondary structure of 
proteins from protein sequences. The current, third generation of these computational methods 
provides accurate predictions and is conveniently and freely available as webservers and 
standalone software. These predictions are widely used across the globe to facilitate prediction of 
the tertiary protein structure and various functional characteristics of proteins. We provide 
practical insights on how to perform and interpret the predictions for selected modern methods. 

ABSTRACT 
Secondary structure of proteins refers to local and repetitive conformations, such as α-helices 
and β-strands, which occur in protein structures. Computational prediction of secondary structure 
from protein sequences has long history with three generations of predictive methods. This unit 
summarizes several recent third-generation predictors. We discuss their inputs and outputs, 
availability, predictive performance, and explain how to perform and interpret their predictions. 
We cover methods for the prediction of the 3-class secondary structure states (helix, strand, and 
coil) as well as the 8-class secondary structure states. Recent empirical assessments and our 
small-scale analysis reveal that these predictions are characterized by high levels of accuracy 
between 70 and 80%. We emphasize that modern predictors are available to the end users in the 
form of convenient to use webservers and standalone software. 
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INTRODUCTION 
Proteins are polymers of 20 types of amino acids. For most proteins, their amino acid chains 

fold into specific spatial conformations to carry out their biological functions. Thus, it is 
beneficial to determine these structures to contribute to the understanding of how proteins 
function at the molecular level. Protein structure is typically categorized into four levels. The 
primary structure is the linear sequence of amino acid joined by peptide bonds. Secondary 
structure (SS) refers to local and regularly occurring patterns, such as α-helices and β-strands, 
which are determined by the dihedral angles and resulting hydrogen bonds between peptide 
groups. Tertiary structure describes how the protein chains are folded into a three dimensional 
shape; this corresponds to a specific spatial arrangement of the SSs. Some proteins include 
multiple polypeptide chains and in these cases the quaternary structure is defined as the spatial 
arrangements of these chains. The Protein Data Bank (PDB) (Berman et al., 2000) is the 
worldwide repository of the three-dimensional structural data and the corresponding sequences 
of large biological molecules, with primary focus on proteins. As of May 2016, there were about 
110 thousand protein structures in PDB including about 32 thousand structures of human 
sequences. 

 
Typically, SS is annotated from the three-dimensional structure. First, the three-dimensional 

structure is solved and then the SS is computed from the coordinates of the atoms that make up 
the amino acids that are positioned in the three-dimensional structure. There are two main types 
of SSs: α-helices and β-strands; they were first postulated by Pauling and his colleagues in 1950s 
(Pauling et al., 1951). The first method to annotate secondary structure was developed by 
Michael Levitt (recipient of the 2013 Nobel Prize in Chemistry) and Jonathan Greer in 1976 
(Levitt and Greer, 1977). The arguably most widely-used method to assign SSs  that is often 
assumed as the gold standard (Joosten et al., 2011; Kurgan and Disfani, 2011) is the dictionary of 
proteins SS (DSSP) that was proposed by Wolfgang Kabsch and Christian Sander in 1983 
(Kabsch and Sander, 1983). The original article that describes DSSP was cited close to 11 
thousand times (source: Google Scholar as of May 2016). The popularity of this method stems 
from the fact that it is used in the PDB and that it was utilized to evaluate methods for the 
prediction of SS in two largest community-driven assessments: the Critical Assessment of 
protein Structure Prediction (CASP) (Moult et al., 1995) and evaluation of automatic protein 
structure prediction (EVA) (Koh et al., 2003). DSSP assigns one of the following eight SS types 
for every structured residue (i.e., residue that has three-dimensional coordinates for its atoms): 
1. H: α-helix (hydrogen bonds every 4 residues) 
2. B: residue in an isolated β-strand 
3. E: extended strand that participates in formation of β sheets 
4. G: 310 helix (hydrogen bonds every 3 residues) 
5. I : π helix (hydrogen bonds every 5 residues) 
6. T : hydrogen bonded turn 
7. S : bend 
8. Blank, –, or C: loop or irregular structure (also referred to as coil or random coil) 

The above are known as the DSSP’s 8-class classification. These 8 types are often simplified 
into 3-class classification (3 major types of SSs): 
1. H: helix; it encompasses right or left handed cylindrical/helical conformations that include H, 

G and I types. 
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2. E: extended strand; it corresponds to pleated sheet structures including E and B types. 
3. – or C: other remaining types including blank (– or C), T and S. 

 

A  
Residue no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
Sequence M V Y V C H F E N C G R S F N D R R K L N R H K K I H T R 
DSSP-8 C C E E E C C S S C C E E E S S H H H H H H H G G G G C C 
SSpro8 C E E E E E E E T T T C C H H H H H H H H H H C E E C C C 
                              
DSSP-3 C C E E E C C C C C C E E E C C H H H H H H H H H H H C C 
PSSpred C C E E E E E C C C C C C H H H H H H H H H H H H H H C C 
Confidence 9 3 7 8 7 6 1 5 8 8 8 6 3 3 4 5 7 8 8 8 8 7 7 6 5 4 2 4 9 
PC 97 66 16 9 15 18 42 72 86 87 84 74 61 32 27 21 12 9 8 8 8 12 15 17 21 25 35 64 99 
PH 1 1 0 1 1 1 3 5 7 7 9 15 27 58 66 76 87 90 92 92 91 86 82 78 70 64 53 24 0 
PE 2 35 85 92 85 82 56 25 9 5 5 8 8 6 3 2 1 1 1 1 1 2 2 4 5 9 11 6 1 

    B  

Figure 1. Structure of a zinc finger (PDB ID: 2AB7). Panel A shows a cartoon representation of the 
three-dimensional structure. The N-terminus (C-terminus) of the protein sequence is located in the lower 
right (upper left) corner. The secondary structures are color-coded as follows: loop and bend (gray), 
strand (yellow), and helix (red and purple). Numbers show positions of selected residues in the protein 
sequence. Panel B shows the protein sequence where amino acids are given using 1-letter code together 
with native and predicted SSs. DSSP-8 and DSSP-3 lines show the native 8- and 3-class SSs, respectively, 
annotated for each residue using DSSP. The SSpro8 and PSSpred lines give the putative 8- and 3-class 
SSs predicted with SSpro and PSSpred methods, respectively. The four lines at the bottom provide 
confidence index and probability (in percent) of predictions for every residue that were generated by the 
PSSpred method. 
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Figure 1 shows an example of the three-dimensional structure of a zinc finger together with its 

corresponding secondary structure annotated with DSSP using the 8 and 3 classes. Following the 
SS along the protein sequence from the N-terminus we find a segment of two residues that form 
a loop (gray color), a segments of three residues that forms a strand (yellow), 2-residues long 
loop, bend (gray color) composed of two residues followed by another 2-residues long loop, 
second strand that forms a β sheet with the first strand, a short bend, 11-residues long helix that 
is annotated as α-helix for the first 7 residues (red) and as a 310 helix for the last 4 residues 
(purple), and a short loop at the C-terminus. We also provide secondary structure predicted from 
the primary structure (amino acid sequences) using two methods, one for the prediction of 8 
classes and another for the prediction of 3 classes of SS. We discuss this structure and 
predictions at a greater depth later in this unit. 

PREDICTION OF SECONDARY STRUCTURE FROM 
SEQUENCE 

Motivation 

In spite of the fact that we know structures for over 100 thousand proteins, most protein 
structures in nature remain unknown. As of May 2016, there were nearly 64 million non-
redundant protein sequences in the RefSeq database (Pruitt et al., 2007). Although some of these 
sequences share similar or even identical structure, arguably many proteins still await structural 
determination. The large number of unknown structures is one of the barriers that keeps us from 
learning and studying protein functions. The fast pace at which new protein sequences are 
accumulated and the lagging number of solved structures motivate development of 
computational methods for the prediction of protein structures from the sequences. These 
methods are less expensive to use and substantially more time-efficient compared to the 
experimental methods. They rely on the observation made by Anfinsen in 1970s that protein 
sequence uniquely determines the corresponding tertiary structure of proteins (Anfinsen, 1973). 
This suggests that in principle prediction from the sequence alone could provide correct structure. 
The fact that the information of how the sequences are folded into SS can then be used to predict 
the tertiary structure in a stepwise fashion (from the amino acid sequence to SS, and from SS to 
the tertiary structure) fuels the development of many methods for the prediction of SS. 

Brief historical overview 

Most of the computational methods predict the 3-class SS, i.e., they predict every residue in 
the input protein sequence as helix, strand or coil (other type). The first SS predictor was 
proposed in 1965 (Guzzo, 1965). This method took advantage of correlations between particular 
amino acid types and SS types. Other early prediction methods that were developed in 1960s and 
1970s, i.e., the first generation methods (Rost, 2001), used a similar idea that connects the 
likelihood of particular amino acid types forming particular SS type (Rost, 2002). The second 
generation methods which appeared in 1980s and early 1990s (Rost, 2001) extended the single 
amino acid to a segment of adjacent residues (a sliding window) This approach was motivated by 
the fact that SSs form segments of consecutive residues in the sequence. However, the accuracy 
stalled at around 60% due to the fact that these early methods used only local information (a 
single residue or a segment of adjacent residues in a single input sequence) as their input. This 
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information was estimated to account for about 65% of the formation of SS (Rost, 2002; Zhang 
et al., 2011). A major breakthrough has arrived in mid 1990s with the third generation predictors 
(Rost, 2001). The key advancement was the adoption of evolutionary information generated via 
multiple sequence alignment, which is used by most of the currently popular methods like 
PROFsec (Rost and Sander, 1993a; Rost and Sander, 1993b; Rost and Sander, 1994) and 
PSIPRED (Jones, 1999). The third generation methods have the accuracy for the 3-class 
prediction at over 70% (Rost, 2002). Recent advances include availability of progressively larger 
datasets of structurally solved proteins that were used to train predictive models, use of more 
advanced predictive models, and development of consensus schemes that combine results 
generated by multiple predictors of SS (Rost and Sander, 2000; Zhang et al., 2011). For instance, 
authors of PROTEUS (Montgomerie et al., 2006) and RaptorX (Wang et al., 2016) have reported 
the 3-class accuracy of 81% (Montgomerie et al., 2008) and 84% on their test datasets, 
respectively. Moreover, in recent years several methods that predict the 8-class SS, such as 
SSpro8 (Pollastri et al., 2002) and RaptorX (Wang et al., 2016), were released. The prediction of 
the 8-class secondary structure is arguably more challenging compared to the 3-class prediction. 

Computation of predictions 

We focus on the sequence-based SS prediction where secondary structure is generated from 
the input protein sequence. Typically, these predictors accept a single amino acid sequence as the 
input (in either FASTA format or as a raw sequence). Some methods may also take multiple 
sequence alignment as the input (to save time required to produce evolutionary profile if it was 
already computed), and some allow submission of multiple query sequences in a batch. Their 
output consists of the 3-class or 8-class SS types for every residue in the input sequence. For 
example, in Figure 1B, the SSpro8 method outputs the predicted 8-class SS types that are based 
on the DSSP assignment and PSSpred outputs the 3-class types. Some predictors also provide a 
score that quantifies likelihood that a given prediction is correct and/or multiple scores for each 
of the possible SS types. PSSpred outputs a confidence index for the predicted SS type (Figure 
1B). The confidence is computed as a difference between probability of the predicted type 
(which is by definition higher than probability of the other types) and the second highest 
probability. Higher values of this index indicate a higher likelihood that the given prediction is 
correct. Figure 1B also provides the values of the predicted probabilities for each of the three SS 
types for every residue that were generated by PSSpred. The predicted SS type is the type that 
has the highest associated probability. 

 
A list of 13 modern predictors is given in Table 1. These methods were last published no 

earlier than 2005 and are available as webservers and/or standalone software packages; the latter 
makes them convenient to use for the end users. They were identified based on a PubMed search 
and based on the list of methods included in the recent comparative assessment (Zhang et al., 
2011) and review (Chen and Kurgan, 2013). We focus on three methods that we recommend as a 
good starting point when needing to predict SS: (1) SSpro, one of the most recent methods that 
predicts both 3- and 8-class SSs; (2) PSIPRED, arguably the most popular SS predictor which 
was reported to receive the highest number of citations per year (Zhang et al., 2011); and (3) 
PSSpred that is among the most recent method.   
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Table 1. Summary of recent sequence-based SS prediction methods. The methods are sorted chronologically. WS: Web Server; SP: Standalone 
Package. 

Prediction method Year last 
published 

Batch 
submission 

3 and/or 8 
class 

Availability Reference(s) URL 

SABLE 2005 No 3 WS + SP (Adamczak et al., 2005) http://sable.cchmc.org/ 
YASPIN 2005 No 3 WS (Lin et al., 2005) http://www.ibi.vu.nl/programs/yaspinwww/ 
Porter 2005 Yes 3 WS + SP (Pollastri and McLysaght, 2005) http://distillf.ucd.ie/distill/ 
PROTEUS 2008 Yes 3 WS + SP (Montgomerie et al., 2008; 

Montgomerie et al., 2006) 
http://www.proteus2.ca/ 

SPINE-X 2012 No 3 WS + SP (Faraggi et al., 2012) http://sparks-lab.org/SPINE-X/ 
PSIPRED 2013 No 3 WS + SP (Buchan et al., 2013; Jones, 1999) http://bioinf.cs.ucl.ac.uk/psipred/ 
SSPro 2014 No 3 and 8 WS + SP (Magnan and Baldi, 2014; Pollastri 

et al., 2002) 
http://scratch.proteomics.ics.uci.edu/ 

SCORPION 2014 No 3 and 8 WS + SP (Yaseen and Li, 2014) http://hpcr.cs.odu.edu/c3scorpion/ 
http://hpcr.cs.odu.edu/c8scorpion 

PROFsec 2014 No 3 WS + SP (Rost and Sander, 1993a; Rost and 
Sander, 1993b; Rost and Sander, 
1994; Yachdav et al., 2014) 

https://www.predictprotein.org/ 

JPred 2015 Yes 3 WS + API (Drozdetskiy et al., 2015) http://www.compbio.dundee.ac.uk/jpred/ 
PSSpred 2015 No 3 WS + SP (Yang et al., 2015) http://zhanglab.ccmb.med.umich.edu/PSSpred/ 
SPIDER2 2015 No 3 WS + SP (Heffernan et al., 2015) http://sparks-lab.org/index.php/Main/Services 
RaptorX 2016 Yes 3 and 8 WS + SP (Källberg et al., 2012; Wang et al., 

2016) 
http://raptorx.uchicago.edu/ 
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PSIPRED is available as a webserver at http://bioinf.cs.ucl.ac.uk/psipred/ and can be also 
downloaded as a standalone software for the Linux platform at the same address. This method 
accepts single amino acid sequence or FASTA-formatted multiple sequence alignment as the 
input. It outputs predicted SS type for each residue in the input sequence (H: helix, E: strand, C: 
coil); each prediction comes with a corresponding confidence level that is scaled to the range 
between 0 (low confidence) and 9 (high confidence).  

SSpro is available as a webserver as a part of the SCRATCH platform at 
http://scratch.proteomics.ics.uci.edu/. Its standalone version runs on the Linux platform and can 
be obtained from the same address. SSpro takes a single raw (unformatted) amino acid sequence 
up to 1500 residues long as the input. For each residue in the input sequence it generates the 3-
class prediction (H: helix, E: strand, C: coil) and the 8-class prediction (H: α helix, G: 310 helix, I: 
π helix, E: extended strand, B: isolated β-strand, T: turn, S: bend, C: coil).  

PSSpred can be used as a webserver and standalone software running on the Linux platform; 
both versions can be found at http://zhanglab.ccmb.med.umich.edu/PSSpred/. This predictor 
accepts a single FASTA-formatted amino acid sequence up to 4000 residues long as the input. It 
outputs the SS type for each residue in the input sequence (H: helix, E: strand, C: coil), the 
corresponding confidence index that is scaled to the range between 0 (low confidence) and 9 
(high confidence), and three probabilities for the three SS types. The predicted secondary 
structure corresponds to the SS type that secures the highest probability. 

Analysis of predictions 

We use three protein structures that were recently released in PDB to visualize and compare 
predictions from PSIPRED, SSpro and PSSpred with each other and with the native structure. 
These proteins include Vpu cytoplasmic domain (PDB id: 2N29), PDZ domain (PDB id: 2N7P), 
and Ryanodine receptor 1 repeat12 domain (PDB id: 5C30). We use the recently released 
structures to minimize predictive bias due to a potential inclusion of these proteins into datasets 
that were used to build the considered SS predictors. The selected proteins include one short 
(2N29 with 54 residues), one medium-size (2N7P with 104 residues) and one longer sequence 
(5C30 with 196 residues). Moreover, the latter two proteins include strands, helices and coils 
while the shortest chain has helices and coils. This allows us to assess prediction of all major SS 
types. We note that results on these few proteins should not be assumed to be representative of 
an overall predictive quality of a given method. The predictions were collected from the 
corresponding three webservers. Figure 2 that summarizes these predictions reveals that 
predictions of the three methods generally agree with the native annotations of the secondary 
structure. Most of the helices and strands were correctly predicted, although their boundaries 
suffer some errors. The predictors are also relatively consistent with each other. Moreover, we 
note that the confidence scores offer useful information. For instance, a part of the long helix that 
was incorrectly predicted at the N-terminus of the Vpu cytoplasmic domain (PDB id: 2N29) by 
PSIPRED and PSSpred includes residues that have low values of confidence, < 8. Similarly, the 
helix incorrectly predicted by PSIPRED at the N-terminus of the PDZ domain is also scored with 
low values of confidence. At the same time, the majority of the correctly predicted helices have 
the confidence values at 8 and 9. Next, we quantify the predictive quality of the considered 
methods. 
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Figure 2. Predictions with PSIPRED, SSpro and PSSpred for Vpu cytoplasmic domain (PDB id: 2N29), PDZ domain (PDB id: 2N7P), and Ryanodine receptor 1 repeat12 
domain (PDB id: 5C30). The 3-class SS are annotated as follows: H (helix), E (strand), and – (coil). The 8-class SS are annotated as follows: E (extended strand), B (isolated 
strand), H (α-helix), G (310 helix) I π helix, T hydrogen bonded turn, S bend, and – (coil). The secondary structures are color-coded as follows: loop and bend (gray), strand 
(yellow), and helix (red and purple). 

Vpu cytoplasmic domain 
Sequence        EYRKILRQRKIDRLIDRLIERAEDSGNESEGEISALVELGVELGHHAPWDVDDL 
Native 3-class  --------HHHHHHHHHHHHHHH------HHHHHHHHHHHHH------------ 
Native 8-class  -TTSS-SSGGGGGHHHHHHHHHHTTSS--HHHHHHHHHHHHHTT-TTTTSSS-- 
 
PSIPRED 3-class -HHHHHHHHHHHHHHHHHHHHHHH-------HHHHHHHHHHHH----------- 
   Confidence   956778877888999998887630389885228999998676338999887789 
PSSpred 3-class -HHHHHHHHHHHHHHHHHHHHHHHH-------HHHHHHH--------------- 
   Confidence   436889999999999999999887456676518999986310356788878999 
SSpro 3-class   -HHHHHHHH-HHHHHHHHHH-------------HHHHHH-HH------------ 
SSpro 8-class   -HHHHHHHH-HHHHHHHHHHTTHHTT-TTTTHHHHHHHHT-EE----------- 
 
 
PDZ domain 
Sequence        PLTRPYLGFRVAVGRDSSG-TTLSIQEVTQTYTGSNGGADLMGPAFAAGLRVGDQLVRFAGYTVTELAAFNTVVARHVRPSASIPVVFSRDGVVMSATIVVGELE 
Native 3-class  ----------EEEE-------EEEE------------------HHHHH-----EEE----------HHHHHHHHHH-----EEEEEEEE----EEEEEEEE---- 
Native 8-class  --------S-EEEE--SS-S-EEEESS--TT---STT---SS-HHHHHT--TTEEE--STTT----HHHHHHHHHH---TTEEEEEEEESSS-EEEEEEEE---- 
 
PSIPRED 3-class ---HHHHHHHHH-------EEEEEEE---HHHHHH--------HHHH-------EEEEE--EE-----HHHHHHH-------EEEEEEEE--EEEEEEEEEEE-- 
   Confidence   961346887533280133331388221897689533999999910115998897899879987188512589841219999624799986993899999985119 
PSSpred 3-class --HHHHHHHHHHH-EEEE-EEEEEEEE--HHHHHHH-------HHHHH-----EEEEEE--EE---HHHHHHHHHH-----EEEEEEEEE--EEEEEEEEEEE-- 
   Confidence   806899999998494785011689985798999986888889906874998884999989976499999999998539998389999997997899999999649 
SSpro 3-class   --------EEEEE-------EEEEEEEEEEEEE-----EEE--HHHHH---H-HHHHHHHHHHHHHHHHHHHHHHHH-----EEEEEEEE--EEEEEEEEEEE-- 
SSpro 8-class   -----EEEEEEEEE--TTT-EEEEEEEEEEEEE--TT-EEEE-HHHHHT-HHHHHHHHHHHHHHHHHHHHHHHHHHH--TT-EEEEEEEETTEEEEEEEEEEE-- 
 
 
Ryanodine receptor 1 repeat12 domain 
Sequence        SNADTVQIVLPPHLERIREKLAENIHELWALTRIEQGWTYGPVRDDNKRLHPALVNFHSLPEPERNYNLQMSGETLKTLLALGAHVGMADEKAEDNLKKTKLPKTYMMSNGYKPAPLDLSHVRLTPAQTTLVDRLAENGHNVWARDRVAQGWSYSAVQDIPARRNPRLVPYRLLDEATKRSNRDSLAQAVRTLLGYGYNIE 
Native 3-class  -----------HHHHHHHHHHHHHHHHHHHHHHHH---EE----E----EE-----HHH--HHHHHHHHHHHHHHHHHHHH----EEE----HHHH--E----HHH----------E--------HHHHHHHHHHHH---EEEE----EEEE---------------EEEHHH--HHHHHHHHHHHHHHHHHHHH--EEE- 
Native 8-class  -----------GGGHHHHHHHHHHHHHHHHHHHHHTT-EE-SS-BTTTTEETT-S-GGGS-HHHHHHHHHHHHHHHHHHHHTT--EEE--TTHHHH--B----GGG--TTS-----B--TT----HHHHHHHHHHHHSTTEEEETTTTEEEE-----------S-TTEEEGGGS-HHHHHHHHHHHHHHHHHHHHTTEEE- 
 
PSIPRED 3-class -----------HHHHHHHHHHHHHHHHHHHHHHHH--------------------------HHHHHHHHHHHHHHHHHHHHH--------HHHHHHHHH--------------------------HHHHHHHHHHHHHHHHHHHHHHHH---EE---------------------HHHHHHHHHHHHHHHHHHHH------ 
   Confidence   997546754790168999999999999999988883993256447886789885579999978788538768999999999276545675366654321147643346899988888888765695689999999998689999999884963101116899889975679999999898409999999999987796019 
PSSpred 3-class -----------HHHHHHHHHHHHHHHHHHHHHHHHH--------------------HHH--HHHHHHHHHHHHHHHHHHHHH--EEEE-----HHHHHHH-------------------------HHHHHHHHHHHHHHHHHHHHHHHHH--EE----------------HHH--HHHHHHHHHHHHHHHHHHHHH--EE- 
   Confidence   987632233777899999999999999999999986863243457643678666777779988999999999999999999796565257763444332013321011358888875443221376689999999999999999999997971133125644678865344669989999999999999999999897549 
SSpro 3-class   ------EEE--HHHHHHHHHHHHHHHHHHHHHHHH--------------------------HHHHHHHHHHHHHHHHHHHHH--EEE------HHHHHH----------------------EE--HHHHHHHHHHHHHHHHHHHHHHHH---------------------H----HHHHHH-HHHHHHHHHHHHHH----- 
SSpro 8-class   -----EEEE--HHHHHHHHHHHHHHHHHHHHHHHHTT--E-----TT----TT----TT--HHHHHHHHHHHHHHHHHHHHHT-EEE------HHHHHH-----T---TTT--------TEEE--HHHHHHHHHHHHHHHHHHHHHHHHTT-EE-----TTT---------TT--HHHHHH-HHHHHHHHHHHHHTT-E-- 
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Accuracy of a given prediction is evaluated by comparing the predicted SS with the native SS 
which is typically obtained from an experimentally solved three-dimensional structure. Popular 
measures that are used to evaluate predictive quality include: 

1. Qipre: the proportion of correctly predicted residues of a given SS type among all residues 
of the same predicted type, where i stands for one of the three or eight types. 

2. Qiobs: the proportion of correctly predicted residues of a given SS type among all residues 
with the same native type, where i stands for one of the three or eight types. 

3. Q3 or Q8 value: the overall rate of correctly predicted residues over all SS types for the 3-
class or 8-class predictions. 

Overall, a high quality predictor should offer high Q values. 
 
We use the results generated by PSSpred from Figure 1B to demonstrate how these measures 

are calculated. In the predicted SS sequence, 11 out of 14 predicted helical residues are also 
native helical residues (as annotated via DSSP-3) and so QHpred = 11/14 ≈ 78.6%. Similarly, 
QEpred = 3/5 = 60% and QCpred = 8/10 = 80%.  In the native SS sequence (DSSP-3 line), 11 out of 
11 helix residues are also predicted as helix residues and thus QHobs = 11/11 = 100%. Likewise, 
QEobs = 3/6 = 50% and QCobs = 8/12 ≈ 66.7%. Overall, 22 out of 29 residues are predicted 
correctly (i.e., the predicted and native SS type are the same) and so Q3 = 22/29 ≈ 75.9%.  

Table 2. Summary of the predictive quality for the predictions with PSIPRED, SSpro and PSSpred for 
Vpu cytoplasmic domain (PDB id: 2N29), PDZ domain (PDB id: 2N7P), and Ryanodine receptor 1 
repeat12 domain (PDB id: 5C30). 

Type of SS annotation Prediction method Q3 values (%) 
2N29 2N7P 5C30 Average 

3-class SS types using DSSP PSIPRED 79.6 66.7 76.6 74.3 
 SSpro 70.4 66.7 75.6 70.9 
 PSSpred 72.2 65.7 80.6 72.8 

8-class SS types using DSSP  Q8 values (%) 
 SSpro 38.9 55.2 65.2 53.1 

 
The overall accuracies measured with Q3 (Q8 for the prediction of the 8-class SS types) for 

PSIPRED, SSpro and PSSpred for the three sample proteins from Figure 2 are summarized in 
Table 2. The average (over the three proteins) accuracy ranges between 71 and 74% for the 3-
class predictions and equals 53% for the 8-class predictions. The values for the individual 
proteins vary more widely but overall are correlated between the methods, i.e., all methods 
predict the Ryanodine receptor (PDB id: 5C30) relatively well and the PDZ domain (PDB id: 
2N7P) with the lowest predictive performance. The average values are in agreement with the 
results from the recent comparative assessment where the Q3 values ranged between 68% and 
82%, depending on the method used (Zhang et al., 2011). We note that these are relatively high 
values given that the upper limit of predictive quality of the 3-class SS was estimated to be 
around 90% (Kihara, 2005). This limit was quantified based on differences that were observed 
between different X-ray structures and NMR models of the same proteins, and inconsistencies in 
the assignment of SS structures by different annotation protocols. 
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SUMMARY 
Prediction of secondary structure from protein sequences (sequence-based SS prediction) is a 

mature field of research and these predictors enjoy a widespread use. For instance, many SS 
predictors including Porter, PROTEUS, RaptorX, PSIPRED, SSpro, and PROFsec were included 
in comprehensive pipelines for the prediction of protein structure and function. Some methods, 
like Porter, PROTEUS and SSpro, also incorporate homology search in their predictive models, 
i.e., they find proteins with sequences that are similar to the sequence of the input protein and use 
their SSs to perform predictions. Modern sequence-based SS predictors rely on the availability of 
large databases of proteins that are used to train accurate predictive models and to produce 
accurate evolutionary information. 

 
Most of the existing SS predictors focus on the 3-class SS (Table 1). Based on the prior 

comparative reviews and our small-scale evaluation (Table 2), the end users can expect to collect 
predictions with the average overall accuracy over the three SS types between 70% and 80% 
(Kurgan and Disfani, 2011; Rost, 2001; Zhang et al., 2011). We also encourage the users to 
utilize the confidence indices provided by some predictors to judge reliability of predictions for 
individual residues. This approach was suggested to be “the most successful strategy to find the 
most reliable predicted regions” by Burkhard Rost, one of the pioneers of the SS prediction (Rost, 
2001). We note that recently, between 2014 and 2016, three methods that predict 8-class SS 
types were released: RaptorX, SSPro, and SCORPION. 

 
Considering usability, most modern prediction methods are provided as webservers (Table 1). 

This makes it easy and convenient for the end users to submit requests and collect results without 
the need for dedicated hardware or software. The users just need a modern web browser and an 
internet-connected computer to obtain the predictions. Some predictors, such as Porter, 
PROTEUS, RaptorX, and Jpred, accept queries with multiple sequences (batch submissions). 
This reduces the workload related to predictions on larger datasets of proteins. Many methods 
(Table 1) also provide standalone packages, which allow the end users to run predictions on their 
local computers. This is particularly handy when these predictors need to be incorporated into 
the end user’s computational pipelines. However, computations performed by the modern SS 
predictors can be relatively time-consuming. The end users should expect that prediction for a 
short protein (up to 200 amino acids) sequence may take between one and several minutes, and 
over half an hour for longer proteins (over 500 residues). 
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KEY REFERENCES 
Kabsch and Sander, 1983 
Describes the most commonly used method for the assignment of secondary structure from the 
tertiary protein structure 
 
Jones, 1999 
A classic reading that describes the most commonly used PSIPRED method for the prediction of 
the 3-class SS 
 
Zhang et al., 2011 
Provides comprehensive empirical assessment of predictive performance of modern methods for 
the prediction of secondary structure 
 
Chen and Kurgan, 2013 
Provides description and detailed discussion of key architectural details of a large number of 
modern predictors of secondary structure  
 
Magnan and Baldi, 2014 
Describes SSpro, one of the most popular and accurate methods for the prediction of the 8-class 
SS 

 

INTERNET RESOURCES 
http://bioinf.cs.ucl.ac.uk/psipred/  
PSIPRED’s webserver 

http://scratch.proteomics.ics.uci.edu/ 
SSpro’s webserver  

http://zhanglab.ccmb.med.umich.edu/PSSpred/.  
PSSpred’s webserver 
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