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Summary 

The sequence-based prediction of the secondary and supersecondary structures enjoys strong 

interest and finds applications in numerous areas related to the characterization and prediction 

of protein structure and function. Substantial efforts in these areas over the last three decades 

resulted in the development of accurate predictors, which take advantage of modern machine 

learning models and availability of evolutionary information extracted from multiple 

sequence alignment. In this chapter, we first introduce and motivate both prediction areas and 

introduce basic concepts related to the annotation and prediction of the secondary and 

supersecondary structures, focusing on the β hairpin, coiled coil, and α–turn–α motifs. Next, 

we overview state-of-the-art prediction methods, and we provide details for twelve modern 

secondary structure predictors and four representative supersecondary structure predictors. 

Finally, we provide several practical notes for the users of these prediction tools. 

 

Key words: secondary structure prediction; supersecondary structure prediction; beta-hairpins; 

coiled coils; helix-turn-helix; Greek key; multiple sequence alignment. 

1.  Introduction 

Protein structure is defined at three levels: primary structure which is the sequence of amino 

acids joined by peptide bonds; secondary structure that concerns regular local sub-structures 

including α-helices and β-strands, which were first postulated by Pauling and coworkers (1, 

2); and tertiary structure which is the three-dimensional structure of a protein molecule. The 

supersecondary structure (SSS) bridges the two latter levels and concerns specific 

combinations / geometric arrangements of a few secondary structure elements. Common 

supersecondary structures include α-helix hairpins, β hairpins, coiled coils, Greek key, and 

β–α–β, α–turn–α,α–loop–α, and Rossmann motifs. The secondary and SSS elements are 

combined together, with help of various types of coils, to form the tertiary structure. An 

example that displays the secondary structures and the β hairpin supersecondary structure is 

given in Figure 1. 

 

In early 1970s Anfinsen demonstrated that the native tertiary structure is encoded in the 

primary structure (3) and this observation fueled the development of methods that predict the 

structure from the sequence. The need for these predictors is motivated by the fact that the 

tertiary structure is known for a relatively small number of proteins, i.e., as of mid 2011 about 

70 thousand protein structures are deposited in the Protein Data Bank (PDB) (4) when 
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compared with 12.5 million nonredundant protein sequences in the RefSeq database (5), and 

the fact that experimental determination of protein structure is relatively expensive and 

time-consuming and cannot keep up with the rapid accumulation of the sequence data (6-9). 

One of the successful ways to predict the tertiary structure is to proceed in a step-wise fashion. 

First, we predict how the sequence folds into the secondary structure, then how these 

secondary structure elements come together to form SSSs, and finally the information about 

the secondary and supersecondary structures is used to help in computational determination of 

the full three-dimensional molecule (10-15). 

 

 

Figure 1. Cartoon representation of the tertiary structure of chain A of AF1521 protein (PDB code: 

2BFR). The α-helices are shown in dark gray, β-strands in black, and coils in light gray. The β hairpin 

supersecondary structure motif, which consists of strand1, strand2, and the coil between the two 

strands, is denoted using the dotted rectangle. 

 

Last three decades observed strong progress in the development of accurate predictors of the 

secondary structure, which currently provide predictions with about 82% accuracy (16). 

Besides being useful for the prediction of the tertiary structure, the secondary structure 

predicted from the sequence is widely applied for the analysis and prediction of numerous 

structural and functional characteristics of proteins. These characteristics include multiple 

alignment (17), prediction of protein-ligand interactions (18-20), prediction of residue depth 

(21, 22), structural classes and folds (23-25), residue contacts (26, 27), disorder (28-30), 

folding rates and types (31-33), and target selection for structural genomics (34, 35), to name 

just a few. The secondary structure predictors enjoy strong interest, which could be quantified 

by the massive workloads that they handle. For instance, the web server of the one of the most 

popular methods, PSIPRED, was reported in 2005 to receive over 15,000 requests per month 

(36). Another indicator is the fact that many of these methods receive high citations counts. A 

recent review (37) reported that seven methods were cited over 100 times and two of them, 

PSIPRED (36, 38, 39) and PHD (40, 41) were cited over 1300 times. 

 



 

 3

The prediction of the SSS includes methods specialized for specific types of these structures, 

including β hairpins, coiled coils, and helix–turn–helix motifs. The first methods were 

developed in 1980s and to date about twenty predictors were developed. Similarly as the 

secondary structure predictors, the predictors of SSS found applications in numerous areas 

including analysis of amyloids (42, 43), microbial pathogens (44), and synthases (45), 

simulation of protein folding (46), analysis of relation between coiled coils and disorder (47), 

genome-wide studies of protein structure (48, 49), and prediction of protein domains (50). 

One interesting aspect is that the prediction of the secondary structure should provide useful 

information for the prediction of SSS. Two examples that exploit this relation are a prediction 

method by the Thornton’s group (51) and the BhairPred method (52), both of which predict 

the β hairpins. 

 

The secondary structure prediction field was reviewed a number of times. The earlier reviews 

summarized the most important advancements in this field, which were related to the use of 

sliding window, evolutionary information extracted from multiple sequence alignment, and 

machine-learning classifiers (53-55), and more recently due to the utilization of 

consensus-based approaches (56). More recent reviews concentrate on the evaluations and 

applications of the secondary structure predictors and provide practical advice for the users, 

such as the information concerning availability (16, 57, 58). The SSS prediction area was 

reviewed less extensively. The β hairpin and coiled coil predictors, as well as the secondary 

structure predictors were overviewed in 2006 (59) and a comparative analysis of the coiled 

coil predictors was presented in the same year (60). In this chapter, we summarize a more 

comprehensive set of recent secondary structure and SSS predictors. We also demonstrate 

how the prediction of the secondary structure is used to implement a SSS predictor and 

provide several practical notes for the users. 

2.  Materials 

2.1.  Assignment of secondary structure 

The secondary structure, which is assigned from the tertiary structure, is used for a variety of 

applications, including visualization (61-63) and classification of the protein folds (64-67), 

and as a ground truth to develop and evaluate the secondary and SSS predictors. Several 

annotation protocols were developed over the last few decades. The first implementation was 

done in late 1970s by Levitt and Greer (68). This was followed by Kabsch and Sander who 

developed a method called Dictionary of Protein Secondary Structure (DSSP) (69), which is 

based on the detection of hydrogen bonds defined by an electrostatic criterion. Other, more 

recent, assignment methods include DEFINE (70), P-CURVE (71), STRIDE (72), P-SEA (73), 

XTLSSTR (74), SECSTR (75), KAKSI (76), Segno (77), PALSSE (78), SKSP (79), 

PROSIGN (80), and SABA (81). Moreover, the 2Struc web server provides an integrated 

access to multiple annotation methods, which enables convenient comparison between 

different assignment protocols (82). 
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The DSSP remains to be the most widely-used protocol (76), which is likely due to the fact 

that it is used to annotate depositions in the PDB and since it was used to evaluate secondary 

structure predictions in the two largest community based assessments: the Critical Assessment 

of techniques for protein Structure Prediction (CASP) (83) and the EValuation of Automatic 

protein structure prediction (EVA) continuous benchmarking project (84). DSSP determines 

the secondary structures based on the patterns of hydrogen bonds, which are categorized into 

three major states: helices, sheets, and regions with irregular secondary structure. This method 

assigns one of the following eight secondary structure states for each of the structured 

residues (residues that have three-dimensional coordinates) in the protein sequence: 

• G: (3-turn) 310 helix, where the carboxyl group of a given amino acid forms a hydrogen 

bond with amid group of the residue three positions down in the sequence forming a tight, 

right-handed helical structure with 3 residues per turn.  

• H: (4-turn) α-helix, which is similar to the 3-turn helix, except that the hydrogen bonds are 

formed between consecutive residues that are 4 positions away. 

• I: (5-turn) π-helix, where the hydrogen bonding occurs between residues spaced 5 positions 

away. Most of the π-helices are right-handed. 

• E: extended strand, where 2 or more strands are connected laterally by at least two 

hydrogen bonds forming a pleated sheet. 

• B: an isolated beta-bridge, which is a single residue pair sheet formed based on the 

hydrogen bond. 

• T: hydrogen bonded turn, which is a turn where a single hydrogen bond is formed between 

residues spaced 3, 4, or 5 positions away in the protein chain. 

• S: bend, which corresponds to a fragment of protein sequence where the angle between the 

vector from C
α
i to C

α
i+2 (C

α
 atoms at the i

th
 and i+2

th
 positions in the chain) and the vector 

from C
α
i-2 to C

α
i is below 70°. The bend is the only non-hydrogen bond-based regular 

secondary structure type. 

• –: irregular secondary structure (also referred to as loop and random coil), which includes 

the remaining conformations. 

These eight secondary structure states are often mapped into the following three states (see 

Figure 1): 

• H: α-helix, which corresponds to the right or left handed cylindrical/helical conformations 

that include G, H, and I states. 

• E: β-strand, which corresponds to pleated sheet structures that encompass E and B states. 

• C: coil, which covers the remaining S, T, and – states. 

The DSSP program is freely available from http://swift.cmbi.ru.nl/gv/dssp/. 

2.2.  Assignment of supersecondary structures 

The SSS is composed of several adjacent secondary structure elements. Therefore, the 

assignment of the SSS relies on the assignment of the secondary structure. Among more than 

a dozen types of the SSSs, the β hairpins, coiled coils, and α–turn–α motifs received more 

attention due to the fact that they are present in a large number of protein structures and they 

have pivotal roles in the biological functions of proteins. The β hairpin motif comprises the 

second largest group of protein domain structures and is found in diverse protein families, 
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including enzymes, transporter proteins, antibodies, and in viral coats (52). The coiled coil 

motifs mediate the oligomerization of a large number of proteins and are involved in 

regulation of gene expression, e.g., transcription factors (85). The α–turn–α (helix–turn–helix) 

motif is instrumental for DNA binding, i.e., majority of the DNA-binding proteins interact 

with DNA through this motif (86). The β hairpins, coiled coils, and α–turn–α motifs are 

defined as follows: 

• β hairpin motif contains two strands that are adjacent in the primary structure, oriented in 

an antiparallel arrangement, and linked by a short loop; 

• coiled coil is build by two or more α–helices that wind around each other to form a 

supercoil. 

• α–turn–α motif is composed of two α-helices joined by a short turn structure. 

The β hairpin motifs are commonly annotated by PROMOTOF program (87), which also 

assigns several other SSS types, e.g., psi-loop and β-α–β motifs. Similar to DSSP, the 

PROMOTOF program assigns SSS based on the distances and hydrogen bonding between the 

residues. The coiled coils are usually assigned with the SOCKET program (88), which 

locates/annotates coiled-coil interactions based on the distances between multiple helical 

chains. The DNA-binding α–turn–α motifs are usually manually extracted from the 

DNA-binding proteins, since these motifs that do not interact with DNA are of lesser interest. 

 

For users convenience, certain supersecondary structures, such as the coiled coils and β–α–β 

motifs, can be accessed, analyzed, and visualized using specialized repositories such as 

CCPLUS (89) and TOPS (90). CCPLUS archives coiled coil structures identified by 

SOCKET for all structures in PDB. The TOPS database stores topological descriptions of 

protein structures, including the secondary structure and the chiralities of selected SSSs, e.g., 

β hairpins and β–α–β motifs. 

2.3.  Multiple sequence alignment 

Multiple sequence alignment profile was introduced into the pipelines for the prediction of the 

secondary structure in early 1990s (91). Using the multiple sequence alignment profile rather 

than the primary sequence has led to a large improvement by 10% accuracy in the secondary 

structure prediction (91). The alignment profile is also often used in the prediction of the 

supersecondary structure (52, 59, 60). The multiple sequence alignment profile is generated 

from a given protein sequence in two steps. In the first step, sequences that are similar to the 

given input sequence are identified from a large sequence database, such as the nr 

(non-redundant) database provided by the National Center for Biotechnology Information 

(NCBI). In the second step, multiple sequence alignment is performed between the input 

sequence and its similar sequences and the profile is generated. An example of the multiple 

sequence alignment is given in Figure 2 where eight similar sequences are identified for the 

input protein (we use the protein from Figure 1). Each position of the input (query) sequence 

is represented by the frequencies of amino acid derived from the multiple sequence alignment 

to derive the profile. For instance, for the boxed position in Figure 2, the counts of amino 

acids Tyr (Y), Ala (A) and Gly (G) are 5, 2, and 2, respectively. Therefore, this position is 

represented by a 20-dimensional vector (2/9, 0, 0, 0, 0, 2/9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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5/9), where each value indicates the fraction of the corresponding amino acid type (amino 

acids are sorted in alphabetical order) in multiple sequence alignment at this position. The 

profile is composed of these 20-dimentional vectors for each position in the input protein 

chain. 

 

 

Query protein … K R L E H G G G V A Y A I A K A C A G D A G L … 

YP_002995377 … K Y L E H G G G V A Y A I A K A A S G D V R E … 

YP_002958591 … K Y L E H G G G V A Y A I A K A A A G N V A E … 

YP_003418650 … S Y L Q H G G G V A Y A I V K K G G - - - - - … 

YP_002828572 … S Y L Q H G G G V A Y A I V K K G G - - - - - … 

ZP_04861702 … G M L K H V G G V A A A I V K K G G - - - - - … 

ZP_05391340 … G A L K H G G G A A A A I V K A G G - - - - - … 

YP_003345806 … E Y L K H G G G V A G A I V R A G G - - - - - … 

YP_003496764 … S H L K M G G G V A G A I R R A G G - - - - - … 

 

Figure 2. Multiple sequence alignment between the input (query) sequence, which is a fragment of 

chain A of the AF1521 protein shown in Figure 1, and similar sequences identified in the nr database. 

The first row shows the query chain and the subsequent rows show the eight aligned proteins. Each 

row contains the protein sequence ID (the first column) and the corresponding amino acid sequence 

(the third and subsequent columns), where “…” denotes continuation of the chain and “–“ denotes a 

gap, which means that this part of the sequence could not be aligned. The boxed column is used as an 

example to discuss generation of the multiple sequence alignment profile in section 2.3. 

 

The PSI-BLAST (Position-Specific Iterated BLAST) (92) algorithm was developed for the 

identification of distant similarity to a given input sequence. First, a list of closely related 

protein sequences is identified from a sequence database, such as the nr database. These 

sequences are combined into a general "profile", which summarizes significant features 

present in these sequences. Another query against the sequence database is run using this 

“profile”, and a larger group of sequences is found. This larger group of sequences is used to 

construct another “profile”, and the process is repeated. PSI-BLAST is more sensitive in 

picking up distant evolutionary relationships than a standard protein-protein BLAST that does 

not perform iterative repetitions. Since late 1990s, the PSI-BLAST is commonly used for the 

generation of multiple sequence alignment profile, which is named position-specific scoring 

matrix (PSSM) and which is often utilized in the prediction of secondary and supersecondary 

structures. An example PSSM profile is given in Figure 3. The BLAST and PSI-BLAST 

programs are available at http://blast.ncbi.nlm.nih.gov/. 
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  A R N D C Q E G H I L K M F P S T W Y V … 
                       

1 K -1 2 0 -1 -3 1 1 -2 -1 -3 -3 5 -2 -3 -1 0 -1 -3 -2 -3 … 

2 R -2 2 -2 -3 -3 -1 -2 -3 1 -2 -1 0 -1 2 -3 -2 -2 2 7 -2 … 

3 L -2 -2 -4 -4 -1 -2 -3 -4 -3 2 4 -3 2 0 -3 -3 -1 -2 -1 1 … 

4 E -1 0 0 2 -4 2 5 -2 0 -4 -3 1 -2 -4 -1 0 -1 -3 -2 -3 … 

5 H -2 0 1 -1 -3 0 0 -2 8 -4 -3 -1 -2 -1 -2 -1 -2 -3 2 -3 … 

6 G 0 -3 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -3 -3 -4 … 

7 G 0 -3 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -3 -3 -4 … 

8 G 0 -3 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -3 -3 -4 … 

9 V 0 -3 -3 -4 -1 -2 -3 -4 -3 3 1 -3 1 -1 -3 -2 0 -3 -1 4 … 

10 A 4 -2 -2 -2 0 -1 -1 0 -2 -1 -2 -1 -1 -2 -1 1 0 -3 -2 0 … 

11 Y -2 -2 -3 -4 -2 -2 -2 -4 1 0 1 -2 0 3 -3 -2 -2 2 6 -1 … 

12 A 4 -2 -2 -2 0 -1 -1 0 -2 -1 -2 -1 -1 -2 -1 1 0 -3 -2 0 … 

13 I -1 -3 -4 -3 -1 -3 -4 -4 -4 5 2 -3 1 0 -3 -3 -1 -3 -1 3 … 

14 A 4 -2 -2 -2 0 -1 -1 0 -2 -1 -2 -1 -1 -2 -1 1 0 -3 -2 0 … 

15 K -1 2 0 -1 -3 1 1 -2 -1 -3 -3 5 -2 -3 -1 0 -1 -3 -2 -3 … 

16 A 4 -2 -2 -2 0 -1 -1 0 -2 -1 -2 -1 -1 -2 -1 1 0 -3 -2 0 … 

17 C 2 -3 -3 -3 9 -2 -3 -2 -3 -1 -1 -2 -1 -3 -2 0 -1 -3 -2 -1 … 

18 A 4 -1 -1 -1 -1 -1 -1 0 -2 -2 -2 -1 -1 -3 -1 2 0 -3 -2 -1 … 

19 G 0 -3 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -3 -3 -4 … 

20 D -2 -2 1 6 -4 0 2 -1 -1 -3 -4 -1 -3 -4 -2 0 -1 -5 -3 -4 … 

21 A 3 -2 -2 -2 -1 -1 -1 -1 -2 0 -1 -1 -1 -2 4 0 0 -3 -2 1 … 

22 G 0 3 0 -1 -3 3 0 2 -1 -3 -3 1 -2 -3 -2 1 0 -3 -2 -3 … 

23 L -1 0 -1 0 -3 1 4 -2 -1 -1 1 2 0 -2 -2 -1 -1 -3 -2 -1 … 

…                       

 

Figure 3. Position-specific scoring matrix generated by PSI-BLAST for the input (query) sequence, 

which is a fragment of chain A of the AF1521 protein shown in Figure 1. The first and second columns 

are the residue number and type, respectively, in the input protein chain. The subsequent columns 

provide values of the multiple sequence alignment profile for a substitution to an amino acid type 

indicated in the first row. Initially, a matrix {pi,j}, where pi,j indicates the probability that the j
th
 amino acid 

type (in columns) occurs at i
th
 position in the input chain (in rows), is generated. The position-specific 

scoring matrix {mi,j} is defined as mi,j = log(pi,j / bj), where bj is the background frequency of the j
th
 amino 

acid type. 

3.  Methods 

3.1.  Current secondary structure prediction methods 

The prediction of the secondary structure is defined as mapping of each amino acid in the 

primary structure to one of the three (or eight) secondary structure states, most often as 

defined by the DSSP. Virtually all recent secondary structure predictors use a sliding window 

approach in which a local stretch of residues around a central position in the window is 
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utilized to predict the secondary structure state at the central position. Moreover, as one of the 

first steps in the prediction protocol, the state-of-the-art methods use PSI-BLAST to generate 

multiple alignment and/or PSSM that, with the help of the sliding window, are used to encode 

the input sequence. The early predictors were implemented based on a relatively simple 

statistical analysis of composition of the input sequence. The modern methods adopt 

sophisticated machine learning-based classifiers to represent the relation between the input 

sequence (or more precisely between the evolutionary information generated with 

PSI-BLAST) and the secondary structure states. In majority of cases, the classifiers are 

implemented using neural networks. However, different predictors use different numbers of 

networks (between one and hundreds), different types of networks (e.g., feed-forward and 

recurrent), and different sizes of the sliding window. These prediction methods are provided 

to the end users as standalone applications and/or as web servers. The standalone programs 

are suitable for higher volume (for a large number of proteins) predictions and they can be 

incorporated in other predictive pipelines, but they require installation by the user on a local 

computer. The web servers are more convenient since they can be run using a web browser 

and without the need for the local installation, but they are more difficult to use when applied 

to predict a large set of chains, i.e., some servers allow submission of one chain at the time 

and may have long wait times due to limited computational resources and a long queue of 

requests from other users. Moreover, recent comparative survey (16) shows that the 

differences in the predictive quality for a given predictor between its standalone and web 

server versions depend on the frequency with which the underlying databases, which are used 

to calculate the evolutionary information and to perform homology modeling, are updated. 

Sometimes these updates are more frequent for the web server, and in other cases for the 

standalone package.  

Table 1. Summary of the recent sequence-based predictors of secondary structure. The “year last 

published” column provides the year of the publication of the most recent version of a given method. 

The “availability” column identifies whether a standalone program (SP) and/or a web server (WS) is 

available. The methods are sorted by the year of their last publication in the descending order. 

Name Year last published Prediction model Availability 

PSIPRED 2010 Neural network WS+SP 

SPINE 2009 Neural network WS+SP 

Frag1D 2009 Scoring function SP 

DISSPred 2009 Support vector machine + clustering WS 

SAM-T 2009 Neural network WS+SP 

PROTEUS 2008 Neural network WS+SP 

Jpred 2008 Neural network WS 

P.S.HMM 2007 Neural network + hidden Markov model WS 

Porter 2007 Neural network WS+SP 

OSS-HMM 2006 Hidden Markov model SP 

YASSPP 2006 Support vector machine WS 

YASPIN 2005 Neural network + hidden Markov model WS 

SABLE 2005 Neural network WS+SP 

SSpro 2005 Neural network WS+SP 
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Table 1 summarizes 15 methods, including PSIPRED (36, 38, 39), SPINE (93, 94), Frag1D 

(95), DISSPred (96), SAM-T (97-101), PROTEUS (102, 103), Jpred (104-106), P.S.HMM 

(107), Porter (108, 109), OS-HMM (110), YASSPP (111), YASPIN (112), SABLE (113), and 

SSpro (114, 115), that predict the 3-state secondary structure and which were published since 

2005 inclusive. Older methods were reviewed in (53-55). We note that only a few methods, 

including SSpro8 (115) and SAM-T08 (101), predict the 8-state secondary structure. 

Following, we discuss in greater detail the methods that offer web servers, as arguably these 

are used by a larger number of users. We summarize their architecture, provide location of 

their implementation, and briefly discuss their predictive performance. We note that the 

predictive quality should be considered with a grain of salt since different methods were 

evaluated on different datasets and using different test protocols (see Note 1). However, we 

primarily utilize fairly consistent results that were published in two recent comparative studies 

(see Note 3) (16, 37). Moreover, recent research shows that improved predictive performance 

could be obtained by post-processing of the secondary structure predictions (see Note 4) 

(116). 

3.2.  PSIPRED 

PSIPRED is one of the most popular prediction methods (see Note 2); e.g., it received the 

largest number of citations as shown in (16, 37). This method was developed in late 1990s by 

Jones group at the University College London (38), and later improved and updated, with the 

most recent version 3.0 (39). PSIPRED is characterized by a relatively simple design which 

utilizes just two neural networks. This method was ranked as top predictor in the CASP3 and 

CASP4 competitions, and was recently evaluated to provide 3-state secondary structure 

predictions with 81% accuracy (16, 39). The current version bundles the secondary structure 

predictions with the prediction of transmembrane topology and fold recognition. 

Inputs: PSSM generated from the input protein sequence using PSI-BLAST 

Architecture: ensemble of two neural networks 

Availability: http://bioinf.cs.ucl.ac.uk/psipred/ 

3.3.  Jpred 

Jpred was developed in late 1990s by Barton group at the University of Dundee (105). This 

method was updated a few times, with the most recent version Jpred 3 (104, 106). Similarly 

as PSIPRED, Jpred was demonstrated to provide about 81% accuracy for the 3-state 

secondary structure prediction (104). The web server implementation of Jpred couples the 

secondary structure predictions with the prediction of solvent accessibility and prediction of 

coiled coils using COILS algorithm (117).  

Inputs: hidden Markov model profiles and PSSM generated from the input protein sequence 

using HMMer (118) and PSI-BLAST, respectively 

Architecture: ensemble of neural networks 

Availability: http://www.compbio.dundee.ac.uk/www-jpred/ 
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3.4.  SSpro 

SSpro was introduced in early 2000 by the Baldi group at the University of California, Irvine 

(115). The latest version 4.5 (114) utilizes homology modeling, which is based on alignment 

to known tertiary structures from PDB, and achieves over 82% accuracy (16). The SSpro 4.0 

was also ranked as one of the top secondary structure prediction servers in the EVA 

benchmark (119). SSpro is part of a comprehensive prediction center called SCRATCH, 

which also includes predictions of secondary structure in 8-states using SSpro8 (115), and 

prediction of solvent accessibility, disorder, contact numbers and contact maps, domains, 

disulfide bonds, B-cell epitopes, solubility upon overexpression, antigenicity, and tertiary 

structure. 

Inputs: sequence profiles generated from the input protein sequence using PSI-BLAST  

Architecture: ensemble of recurrent neural networks 

Availability: http://scratch.proteomics.ics.uci.edu/ 

3.5.  SAM-T 

SAM-T is a family of methods which are under development since late 1990s by Karplus lab 

at the University of California at Santa Cruz. They include SAM-T98 (97), SAM-T99 (98), 

SAM-T02 (99), SAM-T04 (100), and SAM-T08 (101). The server outputs secondary structure 

prediction using multiple annotation protocols, including the 3- and 8-state DSSP. It also 

offers a number of other predictions (the predicted secondary structure is used as an input to 

calculate some of these predictions) including the tertiary structure, solvent accessibility, 

residue-residue contacts, multiple sequence alignments of putative homologs, and lists and 

alignment to potential templates with known structure. 

Inputs: multiple alignment generated from the input protein sequence using PSI-BLAST 

Architecture: neural network 

Availability: http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html 

3.6.  SABLE 

The SABLE predictor was developed by Meller group at the University of Cincinnati (113). 

The web server that implements this method was used close to 200,000 times since it became 

operational in 2003. Two recent comparative studies (16, 39) and prior evaluations within the 

framework of the EVA initiative show that SABLE achieves accuracy of about 78%. The web 

server of the current version 2 also includes prediction of solvent accessibility and 

transmembrane domains. 

Inputs: PSSM generated from the input protein sequence using PSI-BLAST 

Architecture: ensemble of recurrent neural networks 

Availability: http://sable.cchmc.org/ 
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3.7.  YASPIN 

The YASPIN method was developed by Heringa lab at the Vrije Universiteit in 2004 (112). 

This is a hybrid method that utilizes a neural network and a hidden Markov model. One of the 

key characteristics of this method is that, as shown by the authors, it provides accurate 

predictions of β-strands (112). The predictive performance of YASPIN was evaluated using 

EVA benchmark and more recently in two comparative assessments (16, 39), which show that 

this method provides predictions with accuracy in the 76 to 79% range. 

Inputs: PSSM generated from the input protein sequence using PSI-BLAST 

Architecture: Two-level hybrid design with neural network in the 1st level and hidden Markov 

model in the 2nd level 

Availability: http://www.ibi.vu.nl/programs/yaspinwww/ 

3.8.  PORTER 

This predictor was developed by Pollastri group at the University College Dublin (109). The 

web server that implements PORTER was utilized over 170,000 times since 2004 when it was 

released. This predictor was upgraded in 2007 to include homology modeling (108). The 

original and the homology-enhanced versions were recently shown to provide 79% (16) and 

83% accuracy (37), respectively. PORTER is a part of a comprehensive predictive platform 

called DISTILL (120), which also incorporates predictors of relative solvent accessibility, 

residue-residue contact density, contacts maps, subcellular localization, and tertiary structure.  

Inputs: PSSM generated from the input protein sequence using PSI-BLAST 

Architecture: ensemble of recurrent neural networks 

Availability: http://distill.ucd.ie/porter/ 

3.9.  YASSPP 

YASSPP was designed by Karypis lab at the University of Minnesota in 2005 (111). This is 

one of the few modern predictors that do not utilize neural network classifiers, but instead it 

uses multiple support vector machine learners. This method was shown to provide similar 

predictive quality to PSIPRED (111). The YASSPP predictor is bundled with several other 

predictors for transmembrane helices, disorder, solvent accessibility, contact order, and 

DNA-binding and ligand-binding residues in the MONSTER server at 

http://bio.dtc.umn.edu/monster/.  

Inputs: PSSM generated from the input protein sequence using PSI-BLAST 

Architecture: ensemble of six support vector machines 

Availability: http://glaros.dtc.umn.edu/yasspp/ 

3.10.  PROTEUS 

This secondary structure prediction approach was developed by Wishart group at the 

University of Alberta around 2005 (103). PROTEUS is a consensus-based method in which 
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outputs of three secondary structure predictors, namely PSIPRED (37), Jnet (106), and an 

in-house TRANSSEC (103), are fed into a neural network. The predictions from the neural 

network are combined with the results based on homology modeling to generate the final 

output. PROTEUS is characterized by accuracy of about 81%, which was shown both the 

authors (102) and in a recent comparative survey (16). This predictor was incorporated into an 

integrated system called PROTEUS2, which additionally offers prediction of signal peptides, 

transmembrane helices and strands, and tertiary structure (102).  

Inputs: multiple alignment generated from the input protein sequence using PSI-BLAST 

Architecture: neural network that utilizes consensus of three secondary structure predictors 

Availability: http://wks16338.biology.ualberta.ca/proteus2/ 

3.11.  SPINE 

The SPINE method originated at the Zhou group at the Indiana University–Purdue University 

in mid 2000s. The initial implementation (94), which was completed at the SUNY at Buffalo, 

was recently upgraded to create SPINE X (93). This predictor is characterized by relatively 

strong predictive performance with accuracy at about 81% (16). An important feature of this 

method is that it also provides predictions of backbone torsion angles, which give more 

detailed insights into the conformation of the backbone when compared with the secondary 

structure. The web server of SPINE X also provides predictions of solvent accessibility (93) 

and fluctuations of the torsion angles (121). 

Inputs: PSSM generated from the input protein sequence using PSI-BLAST 

Architecture: ensemble of neural networks 

Availability: http://sparks.informatics.iupui.edu/SPINE-X/ 

3.12.  P.S.HMM 

The P.S.HMM predictor was developed at the University of Copenhagen and University of 

Southampton (107). Similar to YASPIN, this is a hybrid of a neural network and a hidden 

Markov model. The P.S.HMM method uses the hidden Markov model to produce initial 

predictions that are refined with help of a small neural network, while YASPIN performs 

predictions in the reverse order. The unique characteristic of this method is the fact that the 

hidden Markov model was designed utilizing genetic algorithms. This predictor provides 

outputs with 69% accuracy, as recently evaluated in (16), which is consistent with results 

presented by the authors (107). 

Inputs: sequence profiles generated from the input protein sequence using PSI-BLAST  

Architecture: Two-level hybrid design with hidden Markov model in the 1st level and neural 

network in the 2nd level 

Availability: http://wonk.med.upenn.edu/ 

3.13.  DISSPred 

The DISSPred approach was recently introduced by Hirst group at the University of 
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Nottingham (96). Similar to SPINE, this method predicts both the 3-state secondary structure 

and the backbone torsion angles. The unique characteristic of DISSPred is that the predictions 

are cross-linked as inputs, i.e., predicted secondary structure is used to predict torsion angles 

and vice versa. The author estimated the accuracy of this method to be at 80% (96). 

Inputs: PSSM generated from the input protein sequence using PSI-BLAST 

Architecture: ensemble of support vector machines and clustering 

Availability: http://comp.chem.nottingham.ac.uk/disspred/ 

3.14.   Supersecondary structure prediction methods 

Since SSS predictors are designed for a specific type of the supersecondary structures, e.g., 

SpiriCoil only predicts the coiled coils (48), the prediction of the SSS is defined as the 

assignment of each residue in the primary structure to two states: a state indicating the 

formation of a certain SSS type and another state indicating any other conformation. Similar 

to the prediction of the secondary structure, majority of the recent SSS predictors use a sliding 

window approach in which a local stretch of residues around a central position in the window 

is utilized to predict the SSS state at the central position. However, the architectures of the 

methods that were proposed for the prediction of different types of SSSs vary more 

substantially when compared with the fairly uniform architectures of the modern secondary 

structure predictors.  

 

One of the early attempts for the prediction of β hairpin utilized the predicted secondary 

structure and similarity score between the predicted sequence and a library of β hairpin 

structures (51). More recent β hairpin predictors use the predicted secondary structure and 

some sequence-based descriptors to represent the predicted sequence (52, 122-126). Moreover, 

several types of prediction algorithms, including neural networks, support vector machines, 

quadratic discriminants, and random forests, were used for the prediction of β hairpin motifs.  

 

The first attempt to predict coiled coils was based on scoring the propensity for formation of 

coiled coils in the predicted (input) sequence by calculating similarity to a position-specific 

scoring matrix derived from a statistical analysis of a coiled coil database (67). More recent 

studies utilize the hidden Markov models and the PSSM profile to represent the input 

sequence (48, 127-131).  

 

The initial study on the prediction of α–turn–α motif was also based on scoring similarity 

between the predicted sequence and the α–turn–α structure library (132). Subsequently, a 

statistical method that utilizes a pattern dictionary of the primary sequences was developed 

(133). A more recent predictor exploits the potential for using structural knowledge to 

improve the detection of the helix–turn–helix motifs (134). This method uses a linear 

predictor that takes similarity scores between the input protein structure and a template library 

of α–turn–α structures as its inputs. 

 

Table 2 summarizes 16 supersecondary structure prediction methods, including 6 β hairpin 

predictors: method by de la Cruz et al. (51), BhairPred (52), and methods by Hu et al. (125), 
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Zou et al. (124), Xia et al. (123), and Jia et al. (122); 7 recent coiled coil predictors: MultiCoil 

(135), MARCOIL (131), PCOILS (130), bCIPA (129), Paircoil2 (128), CCHMM_PROF 

(127), and SpiriCoil (48); and 3 α–turn–α predictors: method by Dodd and Egan (132), GYM 

(133), and HTHquery (see Note 6) (134). The older coiled coil predictors were reviewed in 

(60). 

 

We note that some of the methods for the prediction of β hairpin and α–turn–α structures do 

not offer any implementation, i.e., neither a standalone program nor a web server, which 

substantially limits their utility. Following, we discuss in greater detail the representative 

predictors for each type of the SSSs, with particular emphasis on the β hairpin predictors that 

utilize the predicted secondary structure. 

 

Table 2. Summary of the recent sequence-based predictors of supersecondary structure. The “year last 

published” column provides the year of the publication of the most recent version of a given method. 

The “availability” column identifies whether a standalone program (SP), and/or a web server (WS), or 

neither (NA) is available. The methods are sorted by the year of their last publication in the descending 

order for a given type of the supersecondary structures. 

 

Supersecondary 

structure type 

Name (authors) 

 

Year last 

published 
Prediction model Availability 

Jia et al. 2011 Random forest NA 

Xia et al. 2010 Support vector machine NA 

Zou et al. 2009 
Increment of diversity + quadratic 

discriminant analysis 
NA 

Hu et al. 2008 Support vector machine NA 

BhairPred 2005 Support vector machine WS 

β hairpin 

de la Cruz et al. 2002 Neural network NA 

SpiriCoil 2010 Hidden Markov model WS 

CCHMM_PROF 2009 Hidden Markov model WS 

Paircoil2 2006 Pairwise residue probabilities WS+SP 

bCIPA 2006 no model WS 

PCOILS 2005 Residue probabilities WS 

MARCOIL 2002 Hidden Markov model SP 

Coiled coil 

MultiCoil 1997 Pairwise residue probabilities WS+SP 

HTHquery 2005 Linear predictor WS 

GYM 2002 Statistical method WS 

α-turn-α 

Dodd et al. 1990 Similarity scoring NA 

 

3.15.  BhairPred 

The BhairPred predictor was developed by Raghava group at the Institute of Microbial 

Technology, India in 2005 (52). The predictions are performed using a support vector 

machine-based model, which is shown by the authors to outperform a neural network-based 
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predictor. Each residue is encoded using its PSSM profile, secondary structure predicted with 

PSPPRED, and solvent accessibility predicted with the NETASA method (136). BhairPred 

was shown to provide predictions with accuracy in the 71 to 78% range on two independent 

test sets (52).  

Inputs: PSSM generated from the input protein sequence using PSI-BLAST, 3-state secondary 

structure predicted using PSIPRED, and solvent accessibility predicted with NETASA 

Architecture: support vector machine 

Availability: http://www.imtech.res.in/raghava/bhairpred/ 

3.16.  CCHMM_PROF 

The CCHMM_PROF predictor was developed by Fariselli group at the University of Bologna 

in 2009 (127). CCHMM_PROF is the first hidden Markov model-based predictor of 

coiled-coils that exploits the PSSM profile to encoding the input sequence. The major 

difference between CCHMM_PROF and other hidden Markov models is that the states of 

CCHMM_PROF produce vectors instead of symbols. The CCHMM_PROF achieved 

accuracy of 97% when discriminating between sequence that do and do not contain coiled 

coils (127). This predictor finds the location of the coiled coil segments with 80% success rate 

and was shown to outperform older solutions (127). 

Inputs: PSSM generated from the input protein sequence using PSI-BLAST 

Architecture: hidden Markov model 

Availability: http://gpcr.biocomp.unibo.it/cgi/predictors/cchmmprof/pred_cchmmprof.cgi 

3.17.  HTHquery 

This method was developed by Thornton group at the European Bioinformatics Institute in 

2005 (134). HTHquery takes a protein structure as input and tests whether this structure has a 

helix–turn–helix motif which could bind to DNA. The input protein is compared with a set of 

structural templates and putative α–turn–α regions with the smallest RMSD to each template 

in a template library are determined using Kabsch algorithm (137). The accessible surface 

area and the electrostatic motif score are computed for each of these putative regions using 

NACCESS (http://www.bioinf.manchester.ac.uk/naccess/) and the methods described in (138), 

respectively. Next, these inputs, i.e., the minimum RMSD, the accessible surface area, and the 

electrostatic motif score, are inputted into a linear predictor. HTHquery provides predictions 

with a true positive rate of 83.5% and a false positive rate of 0.8% (134). 

Inputs: protein structure 

Architecture: linear predictor 

Availability: http://www.ebi.ac.uk/thornton-srv/databases/HTHquery 
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Figure 4. The architecture of the β hairpin predictor proposed by the Thornton group (51). 

3.18.  Supersecondary structure prediction by using predicted secondary 

structure 

Since supersecondary structure is composed of several adjacent secondary structure elements, 

the prediction of the secondary structures should be a useful input to predict SSS (see Note 5). 

Two SSS predictors, BhairPred (52) and the method developed by Thornton group (51), have 

utilized the predicted secondary structure for the identification of β hairpins. Following, we 

discuss latter method to demonstrate how the predicted secondary structure is used for the 

prediction of the SSS. The Thornton et al. method consists of 5 steps: 

Step 1. Predict the secondary structure for a given input sequence using PHD method (40). 

Step 2. Label all β-coil-β patterns in the predicted secondary structure. 

Step 3. Score similarity between each labeled pattern and each hairpin structure in a template 

library. The similarity vector between a β-coil-β pattern and a hairpin structure 

consists of 14 values, including 6 values that measure similarity of the secondary 

structures, 1 value that measures similarity of the solvent accessibility, 1 value that 

indicates the presence of turns, 2 values that describe specific pair interactions and 

nonspecific distance-based contacts, and 4 values that represent the secondary 

…..…VQNVFGIRDMNRTSSVAGKCERTFFAST…..… 

…..…CCCHHHHEEEECCCEEEEECCCHHHHH…..… 

Input sequence 

Predicted secondary 

structure 

EEEECCCEEEEE 
A labeled β-coil-β 

pattern 

Similarity scores 

between pattern and 

hairpin templates 

(t1,1,t1,2,…,t1,14) (t2,1,t2,2,…,t2,14) (tn,1,tn,2,…,tn,14) 

template 1 template 2 template n …… 

…… 

Neural network predictor 

output 1 output 2 output n …… 

Binary outputs of 

neural network 

Summed output 

IF output > 10 THEN β hairpin; otherwise not β 

hairpin 
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structure patterns related to residue length. 

Step 4. The 14 similarity scores are processed by a neural network that produces a discrete 

output, 0 or 1, indicating that the strand-coil-strand pattern is unlikely or likely, 

respectively, to form a β hairpin. 

Step 5. For a given labeled β-coil-β pattern, a set of similarity scores is generated for each 

template hairpin, and therefore the neural network generates an output for each 

template hairpin. The labeled β-coil-β pattern is predicted as β hairpin if the outputs 

are set to 1 for more than 10 template hairpins. 

The working of the Thornton et al. method is visualized in Figure 4.  

4.  Notes 

1. The predictive quality of the secondary structure predictors was empirically compared in 

several large-scale, world-wide initiatives including CASP (83), Critical Assessment of 

Fully Automated Structure Prediction (CAFASP) (139), and EVA (84, 119). Only the early 

CASP and CAFASP meetings, including CASP3 in 1998, CASP4 and CAFASP2 in 2000, 

and CASP5 and CAFASP3 in 2002, included the evaluation of the secondary structure 

predictions. Later on, the evaluations were carried out within the EVA platform. Its most 

recent release monitored thirteen predictors. However, EVA was last updated in mid 2008. 

2. The arguably most popular secondary structure predictor is PSIPRED. This method is 

implemented as both a standalone application (version 2.6) and a web server (version 3.0). 

PSIPRED is continuously improved, usually with a major upgrade every year and with 

weekly updates of the databases. The current (as of June 2011) count of citations in the ISI 

Web of Knowledge to the paper that describes the original PSIPRED algorithm (38) is 

close to 1700, which demonstrates the high utility of this method.  

3. A recent large-scale comparative analysis (16) has revealed a number of interesting and 

practical observations concerning state-of-the-art in the secondary structure prediction. 

The accuracy of the 3-state prediction based on the DSSP assignment is currently at 82%, 

and the use of a simple consensus-based prediction improves the accuracy by additional 

2%. The homology modeling-based methods, such as SSpro and PROTEUS, are shown to 

be better by 1.5% accuracy than the ab-initio approaches. The neural network-based 

methods are demonstrated to outperform the hidden Markov model-based solutions. 

4. As shown in (16), the current secondary structure predictors are characterized by several 

drawbacks, which motivate further research in this area. They confuse 1-6% of strand 

residues with helical residues and vice versa (these are significant mistakes) and they 

perform poorly when predicting residues in the beta-bridge and 310 helix conformations.  

5. The major obstacle to utilize the predicted secondary structure in the prediction of the 

supersecondary structures, which was observed in mid 2000s, was (is) the inadequate 

quality of the predicted secondary structure. For instance, only about half of the native β 

hairpins were predicted with the strand-coil-strand secondary structure pattern (51). The 

use the native rather than the predicted secondary structure was shown to lead to a 

significant improvement in the prediction of the supersecondary structures (52). 

6. Prediction of the supersecondary structures could be potentially improved by utilizing a 

consensus of different approaches. As shown in a relatively recent comparative analysis of 



 

 18 

coiled coil predictors (60), the best-performing Marcoil has generated many false 

positives for highly charged fragments, while the runner-up PCOILS provided better 

predictions for these fragments. This suggests that the results generated by different coiled 

coil predictors could be complementary. 
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