

Advanced Information Systems, Springer, to appear, 2002

he 2002 Computer Science Seminars, University of Colorado at Denver									Luk	asz K	urgan				
Data															
 attributes in columns examples in rows class labels define the concept described by the data heart disease data 															
Class: 1 (present), 2 (absent)															
Age:	continuous	2	70	1	4	130	322	0	2	109	0	2.4	2	3	3
Sex:	0,1	1	67	0	3	115	564	0	2	160	0	1.6	2	0	7
Chest Pain Type:	1,2,3,4	2	57	1	2	124	261	0	0	141	0	0.3	1	0	7
Resting Blood Pressure:	continuous	-			-							0.0			<u> </u>
Serum Cholesterol:	continuous	1	64	1	4	128	263	0	0	105	1	0.2	2	1	7
Pasting Blood Sugar:	0,1	1	74	0	2	120	269	0	2	121	1	0.2	1	1	3
Max Heart Rate:	continuous	1	65	1	4	120	177	0	0	140	0	0.4	1	0	7
Exercise Induced Angina:	0,1	2	56	1	3	130	256	1	2	142	1	0.6	2	1	6
Old peak:	continuous	-				100			-	1.12		0.0	-	·	
Slope Exercise ST:	0,1,2,3	2	59	1	4	110	239	0	2	142	1	1.2	2	1	7
Number Major Vessels:	continuous														
Thallium:	3,6,7														

he 2002 Computer	Science Seminars, University of C	Colorado at Denve	er				Lukasz Kurgan			
 Discretization test performed using 8 datasets about 1300 experiments 										
🌻 a	verage rank use	d to shov	v the results							
Criterion	Discretization Method	RANK	Discretization Method	ML	RANK	ML	RANK			
CAIR mean value	Equal Width	4.3	Equal Width	aigontiini	4.6	aigontiini	3.8			
through all	Paterson-Niblett	3.6	Paterson-Niblett	CLIP4	4.3	CLIP4	2.6			
intervals	CADD	3.3	CADD	accuracy	5.3 3.9	# rules	3.5			
		3.1 2.0			2.9		3.0 2.1			
total # of intervals	Equal Width Equal Frequency	4.6	Equal Width Equal Frequency		<u>5.3</u> 6.0		4.9 5.8			
	Paterson-Niblett Maximum Entropy	3.9 4.4	Paterson-Niblett Maximum Entropy	C5.0	4.3 5.6	C5.0	3.3 5.8			
	IEM	3.6 2.3	IEM	accuracy	5.4 3.3	# rules	4.9 2.5			
time [s]	CAIM Equal Width	1.3 1.0	CAIM Built-in		2.1 3.3		1.9 3.1			
	Equal Frequency Paterson-Niblett	1.9 6.4								
	Maximum Entropy CADD	3.5 6.6								
		4.3 4.3	1							
L	O Pain		1							

2 Computer Science Seminars, Univers	ity of Colorado at Denver	Lukasz Kurga						
Data Integration								
manning discovered by the XManner system								
1-to-1 manning								
 unmatchable t 								
	495							
XML1	XML2							
class	class							
Sex	S							
Example	example							
Resting Blood Pressure	RBPress							
Serum Cholestoral	SChol							
Max Heart Rate	MaxHR							
Resting Electr Results	REResults							
ChestPainType	СРТ							
FastingBloodSugar	FBSugar							
Slope Exercise ST	SlopePESTS							
Exercise Induced Angina	EIA							
	MaiVesselsNo							
Number Major Vessels	majreconne							
Number Major Vessels Age	Years							
Number Major Vessels Age Old peak	Years OP							

he 2002 Comp	2002 Computer Science Seminars, University of Colorado at Denver						Lukasz Kurga						
		Da	ata Inte	egratio	on								
🔶 Te	sted												
	7 artifici	al and 3 rea	I-life domain	s									
- I	VML do	al alla e lea	thin a domai	o in difforad i	n toa	nomoo ti	a ordor						
		cuments wi	unin a doma	in amerea i	n tag	names, ta	ag order						
	and stru	icture											
dom	domain # of # experiments mean accuracy comparison between the LSD and												
	sources	(source pairs)	[%]	YMannor									
cmc	3	3	100.0	Ninappei									
hea	3	3	88.1	 XMapper's average accuracy 81.7% LSD's average accuracy 79.6% 									
iris	2	1	100.0										
mush	1 3	3	85.5										
pid	3	3	85.1										
spect	: 2	1	65.2		course	faculty	realest						
thy	2	1	60.0	VMannan	050/	4000/							
m	mean for artificial domains		83.4	Xwapper	85%	100%	60%						
cours	ie 5	10	85.2	LSD	76%	92%	71%						
facult	ty 5	10	100.0		I		1						
reales	st 5	10	60.0										
m	ean for real-	life domains	81.7										
	total m	nean	82.6										
		I											

