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Data Mining and Knowledge DiscoveryData Mining and Knowledge Discovery

Knowledge Discovery (KD) is a nontrivial process of 
identifying

valid
novel
potentially useful
and ultimately understandable

patterns from large collections of data*

One of the KD steps is Data Mining (DM)
concerned with the actual extraction of knowledge from data
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* Fayyad, U.M., Piatesky-Shapiro, G., Smyth, P., and Uthurusamy, R., Advances in Knowledge Discovery and Data Mining, AAAi/MIT Press, 1996
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Data Mining and Knowledge DiscoveryData Mining and Knowledge Discovery

Evolution of Data Mining and Knowledge Discovery
study using online research service Axiom® 
exponentially growing field, with a strong emphasis on applications 

incorporation of existing tools and algorithms 
trends include

machine learning
temporal and spatial data analysis
XML-related technology
data warehousing
high performance systems
visualization
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DMKD process model
Understanding the 
problem domain
Understanding the data
Preparation of the data
Data mining
Evaluation of the 
discovered knowledge
Using the discovered 
knowledge

Data Mining and Knowledge DiscoveryData Mining and Knowledge Discovery
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Cios, K. J., & Kurgan, L., Trends in Data Mining and Knowledge Discovery, In: Pal N.R., Jain, L.C. and Teoderesku, N. (Eds.), Knowledge Discovery in 
Advanced Information Systems, Springer, to appear, 2002 
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Data Mining and Knowledge DiscoveryData Mining and Knowledge Discovery

DMKD process model 
and XML

XML for data transportation 
and storage

can be stored using XML 
enabled DBMS or native 
XML DBMS

Simple Object Access 
Protocol (SOAP): XML/HTTP 
based communication 
protocol
Predictive Model Markup 
Language (PMML): XML–
based language used to 
define predictive data 
models
Universal Description 
Discovery and Integration 
(UDDI): XML based, 
platform–independent  
framework for describing, 
discovering and integrating 
web services

The 2002 Computer Science Seminars, University of Colorado at Denver Lukasz Kurgan

Cios, K. J., & Kurgan, L., Trends in Data Mining and Knowledge Discovery, In: Pal N.R., Jain, L.C. and Teoderesku, N. (Eds.), Knowledge Discovery in 
Advanced Information Systems, Springer, to appear, 2002 
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DM Toolbox Architecture
No single DM tool performs well 
on different all types of data

Uses XML based technologies 
like XML-RPC, SOAP, PMML, 
WSDL, and UDDI

Execution model
1. accepts the data from a user
2. dynamically checks availability and 

description of online-enabled DM 
tools using UDDI

3. invokes the tools that can provide 
meaningful results for currently 
processed data

4. serves data to the chosen DM tools 
for processing

5. receives the results
6. analyses and integrates the results, 

and serves them back to the user
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Kurgan, L., Cios, K.J., & Trombley, M., The WWW Based Data Mining Toolbox Architecture, submitted to the 6th International Conference on Neural Networks 
and Soft Computing, 2002 
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Preparation of the DataPreparation of the Data

The key step in the DMKD process
success of the DMKD process depends on this step
usually consumes between 25 and 65% of the project time

deciding which data will be used by data mining tools in the 
next step 
preparation of the data

sampling of the data
correlation and significance tests
data cleaning 

removing or correcting incomplete records, noise, missing values, etc
derivation of new attributes

discretization 
data integration
feature selection and extraction algorithms

reducing dimensionality

The 2002 Computer Science Seminars, University of Colorado at Denver Lukasz Kurgan

DataData

attributes in columns
examples in rows
class labels define the concept described by the data

heart disease data
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Class: 1 (present), 2 (absent)
Age: continuous
Sex: 0,1
Chest Pain Type: 1,2,3,4
Resting Blood Pressure: continuous
Serum Cholesterol: continuous
Fasting Blood Sugar: 0,1
Resting Electr Results: 0,1,2
Max Heart Rate: continuous
Exercise Induced Angina: 0,1
Old peak: continuous
Slope Exercise ST: 0,1,2,3
Number Major Vessels: continuous
Thallium: 3,6,7

7121.211422023911041592
6120.611422125613031562
7010.401400017712041651
3110.211212026912020741
7120.211050026312841641
7010.301410026112421572
7021.601602056411530671
3322.401092032213041702



5

DiscretizationDiscretization

Discretization transforms a continuous attribute values into a 
finite number of intervals and associates with each interval a 
numerical, discrete value

Supervised discretization
discretizes attributes by taking into account the class labels 
assigned to examples
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DiscretizationDiscretization

CAIM (Class-Attribute Interdependency Maximization) 
discretization algorithm

maximizes mutual class-attribute interdependence
generates possibly the smallest number of intervals for a given 
continuous attribute

tested on several well-know benchmarking datasets
compared with six other state-of-the-art discretization algorithms
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Kurgan L. & Cios K.J., Discretization Algorithm that Uses Class-Attribute Interdependence Maximization, Proceedings of the 2001 International Conference on 
Artificial Intelligence (IC-AI 2001), pp.980-987, Las Vegas, Nevada, 2001
Kurgan, L., & Cios, K.J., CAIM Discretization Algorithm, submitted to IEEE Transactions on Data and Knowledge Engineering, 2001 
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DiscretizationDiscretization

The algorithm consists of these two steps: 
initialization of the candidate interval boundaries and the initial 
discretization scheme
consecutive additions of a new boundary that results in the locally 
highest value of the CAIM criterion

uses greedy approach, which searches for the approximate optimal
value of the CAIM criterion by finding its local maximum values
computationally inexpensive and well approximates finding the 
optimal discretization scheme

shown by the results
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CAIM discretization criterion

where:
n is the number of intervals
i iterates through all intervals, i.e. i=1,2,...,n
maxi is the maximum value among all qir values (maximum value within the ith column of the 
quanta matrix), r=1,2,...,S

Mir is the total number of continuous values of attribute F that are within the interval (dr-1, dr]

Quanta matrix:
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Iris plants data
red = Iris-setosa
blue = Iris-versicolor
green = Iris-virginicaCAIM

CADD

IEM

Max. Entropy

Paterson-Niblett

Equal Freq.

Equal Width

Algorithm

0.823
0.793
0.744
0.474
0.5312
0.664
0.594

CAIR value#intervals
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DiscretizationDiscretization
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DiscretizationDiscretization

4.3CAIM
4.3IEM
6.6CADD
3.5Maximum Entropy
6.4Paterson-Niblett
1.9Equal Frequency
1.0Equal Widthtime [s]
1.3CAIM
2.3IEM
3.6CADD
4.4Maximum Entropy
3.9Paterson-Niblett
4.6Equal Frequency
4.6Equal Widthtotal # of 

intervals

2.0CAIM
3.1IEM
3.3CADD
6.1Maximum Entropy
3.6Paterson-Niblett
4.8Equal Frequency
4.3Equal WidthCAIR

mean value 
through all 
intervals

RANK
meanDiscretization MethodCriterion

test performed using 8 datasets
about 1300 experiments
average rank  used to show the results

3.3
2.1
3.3
5.4
5.6
4.3
6.0

1.8
2.9
3.9
5.3
4.3
4.8

5.3

4.6

RANK
mean

C5.0
accuracy

CLIP4
accuracy

ML 
algorithm

C5.0
# rules

CLIP4
# rules

ML 
algorithm

3.1Built-in
1.9CAIM
2.5IEM
4.9CADD
5.8Maximum Entropy
3.3Paterson-Niblett
5.8Equal Frequency
4.9Equal Width
2.1CAIM
3.0 IEM
3.5 CADD
3.6 Maximum Entropy
2.6 Paterson-Niblett
3.5 Equal Frequency
3.8 Equal Width

RANK
mean

Discretization 
Method
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DiscretizationDiscretization

Summary
can be used with any class-labeled data
maximizes interdependence between class labels and discrete 
intervals
generates the smallest number of intervals for a given continuous 
attribute
automatically selects the number of intervals in contrast to many 
other discretization algorithms
works quickly enough to be applicable to real-life problems

the tests show that when the proposed algorithm is applied as a 
front-end tool, it improves the performance of supervised ML 
algorithm
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Data IntegrationData Integration

Provide unified access to semantically and structurally diverse 
information sources 

XML data
content 

numbers, character strings, images, etc.
context 

describes what role the content plays
defines a standard to add markup (tags) to identify structure of a 
documents
e.g. a rule is built out of selectors, a selector is a pair of attributes 
(name and value))
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Data IntegrationData Integration

XMapper system
provides semantic mapping that enables integration of information 
between two XML data sources

The 2002 Computer Science Seminars, University of Colorado at Denver Lukasz Kurgan

<hea3>
<example>

<class>2</class> 
<FBSugar>0</FBSugar> 
<REResults>0</REResults> 
<SlopePESTS>1</SlopePESTS> 
<S>1</S> 
<CPT>2</CPT> 
<MaxHR>141</MaxHR> 
<EIA>0</EIA> 
<OP>0.3</OP> 
<MajVesselsNo>0</MajVesselsNo> 
<Years>57</Years> 
<RBPress>124</RBPress> 
<SChol>261</SChol> 

</example>
</hea3>

<hea1>
<example>

<class>1</class> 
<Age>35</Age> 
<Sex>0</Sex> 
<Chest Pain Type>4</Chest Pain Type> 
<Resting Blood Pressure>138</Resting Blood Pressure> 
<Serum Cholesterol>183</Serum Cholesterol> 
<Fasting Blood Sugar>0</Fasting Blood Sugar> 
<Resting Electr Results>0</Resting Electr Results> 
<Max Heart Rate>182</Max Heart Rate> 
<Exercise Induced Angina>0</Exercise Induced Angina> 
<Old peak>1.4</Old peak> 
<Slope Exercise ST>1</Slope Exercise ST> 
<Number Major Vessels>0</Number Major Vessels> 
< Thallium >3</ Thallium > 

</example>
</hea1>

Kurgan, L., Swiercz, W., & Cios, K.J., Semantic Mapping of XML Tags using Inductive Machine Learning, submitted to the 2002 International Conference on 
Machine Learning and Applications, Las Vegas, 2002 

mapping discovered by the XMapper system
1-to-1 mappings 
unmatchable tags
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class 
S
example
RBPress
SChol
MaxHR
REResults
CPT
FBSugar
SlopePESTS
EIA
MajVesselsNo
Years
OP

class 
Sex
Example
Resting Blood Pressure
Serum Cholestoral
Max Heart Rate
Resting Electr Results
ChestPainType
FastingBloodSugar
Slope Exercise ST
Exercise Induced Angina
Number Major Vessels
Age
Old peak
Thallium

XML2XML1

Data IntegrationData Integration
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XMapper
every tag from the two XML documents extracts a vector of features 
that describes its properties
distance between the vectors is calculated for every pair of tags, 
which belong to different sources
1-to-1 mappings are generated by sequentially finding pairs of tags 
with the minimum distance 
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Data IntegrationData Integration

XMapper consists of two modules
constraints analysis module that extracts

properties of data stored in XML sources, like data types, length, 
number of null values etc.,
structural information, like number of children nodes, data types 
of children nodes etc.

learning module
extract information about relationship between attributes used in 
both data sources
uses inductive ML algorithm DataSqueezer 

The 2002 Computer Science Seminars, University of Colorado at Denver Lukasz Kurgan

Data IntegrationData Integration
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Tested
7 artificial and 3 real-life domains
XML documents within a domain differed in tag  names, tag order 
and structure
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Data IntegrationData Integration

82.6total mean
81.7mean for real-life domains
60.0105realest
100.0105faculty
85.2105course
83.4mean for artificial domains
60.012thy
65.212spect
85.133pid
85.533mush
100.012iris
88.133hea
100.033cmc

mean accuracy
[%]

# experiments
(source pairs)

# of
sources

domain

71%92%76%LSD
60%100%85%XMapper

realestfacultycourse

comparison between the LSD and 
XMapper

XMapper’s average accuracy 81.7%
LSD’s average accuracy 79.6%

Data IntegrationData Integration
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XMapper
fully automated 
uses standalone XML only

no need for creating DTD or Schema files that describe the XML sources
generates mappings between all, including non-leaf, tags

in contrast to the LDS system
returns ordered, in terms of confidence, mappings

significant help the user to discover incorrect mappings
high degree of accuracy
returns both matched and unmatched tags
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Data MiningData Mining

Another key step in the DMKD process
applies DM tools to discover new information
involves

selection of data modeling tools
deciding on training and test procedures
building the model itself
assessing model quality

DM tools include many types of algorithms, such as machine 
learning, rough and fuzzy sets, Bayesian methods, evolutionary 
computing, neural networks, clustering, association rules, etc.
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Inductive Machine LearningInductive Machine Learning

Machine learning (ML)
the ability of a computer program to improve its own performance, 
based on the past experience, by generation of a new data structure 
that is different from an old one

e.g. generation of production rules from numerical or nominal data
generated description is explicit

e.g. in the form of rules or decision trees
it be analyzed, learned from, or modified by the user

Induction infers generalized information, or knowledge, by 
searching for regularities among the data
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ML AlgorithmsML Algorithms

Two inductive ML algorithms
both used to perform classification

1. An algorithm generates a data model using historical data
2. The model is used to classify unseen data into predefined categories

CLIP4
generates inequality rules

IF A!=B THEN C
uses set covering problem to generate rules
hybrid of decision tree and rule algorithms

DataSqueezer
generates equality rules

IF A=B THEN C
uses data generalization mechanisms
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Cios K. J. & Kurgan L. (2001), Hybrid Inductive Machine Learning: An Overview of CLIP Algorithms, In: Jain L.C., and Kacprzyk J. (Eds.) New Learning 
Paradigms in Soft Computing pp. 276-322, Physica-Verlag (Springer)
Cios, K.J., & Kurgan, L., Hybrid Inductive Machine Learning Algorithm, submitted, 2001 

CLIP4CLIP4

data is partitioned into 
subsets using a tree 
structure
rules are generated only 
from subsets stored at 
the leaf nodes

improved performance
accuracy
speed

The 2002 Computer Science Seminars, University of Colorado at Denver Lukasz Kurgan
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CLIP4CLIP4

CLIP4’s benchmarking tests
compared with 33 other ML algorithms
CLIP4 algorithm is not statistically significantly different from the 
algorithm that achieved the smallest error rates 
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5.8 min

CLIP4 
CPU time 

[min]

598.546.8 h6.9 s16.817.825.145.417.1

max [h]min [s]maxmin

CLIP4 # of 
selectors

CPU time for the 
33 ML algorithmsCLIP4 # 

of rules

median # of 
leaves/rules 

for the 21 alg.

CLIP4 
error 
rates

error rates 
for the 33 ML 

algorithms

CLIP4CLIP4

The main advantages of the CLIP4 algorithm are
generates inequality rules
flexibility

works with highly dimensional data
high number of examples
high number of attributes

provides solutions to multiple learning tasks
generates classification rules
performs feature selection
generates feature and selector ranking
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DataSqueezerDataSqueezer

Intuitively easy to understand
equality production rules
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Class: home, treatment
Temperature: normal, low, high
Number Major Vessels: normal, low, high
Chest Pain Type: 1,2,3,4

4normalhightreatment

4lowlowtreatment

4highlowtreatment

1lownormalhome

2lownormalhome

3normalnormalhome

3normallowhome

2normallowhome
for home:

low, normal, * (2)
normal, normal, 3 (1)
normal, low, * (2)

for treatment
low, * , 4 (2)
high, normal , 4 (2)

RULES for CLASS : home  (2 rules)
1. IF  Temperature = normal THEN Class = home
2. IF  Temperature = low AND Number Major Vessels = normal THEN Class = home

RULES for CLASS : treatment  (1 rule)
1. IF  Chest Pain Type = 4 THEN Class = treatment

DataSqeezer’s benchmarking tests
compared with 33 other ML algorithms
DataSqeezer algorithm is not statistically significantly different from 
the algorithm that achieved the smallest error rates
only 7 out of 33 algorithms achieved smaller error rates and were 
faster then the DataSqeezer at the same time
generates very compact rules

only 3.5 selectors / rule while generating similar number of rules
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DataSqueezerDataSqueezer

80.5

DS # of 
selectors

38.4 s

DS 
CPU 

time [s]

3.546.8 h6.9 s22.017.825.445.417.1

max [h]min [s]maxmin

DS # of 
selectors/ rule

CPU time for the 
33 ML algorithmsDS # of 

rules

median # of 
leaves/rules 

for the 21 alg.

DS 
error 
rates

error rates 
for the 33 ML 

algorithms
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DataSqueezerDataSqueezer

Generates very compact rules

Very easy to implement
the only one data structure needed is a table

Can be windowed
generates rules from pockets of data
results in speed-up and scalability
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ApplicationsApplications

The DMKD process model was used in several of ours projects:

“Data Mining and Knowledge Discovery” project sponsored by Ohio 
Aerospace Institute and GE Aircraft Engines

development of a software for engine life time prediction

Design of an automated diagnostic system developed in cooperation 
with Medical College of Ohio

system for computerized diagnosing of Single Proton Emission 
Computed Tomography (SPECT) images of myocardial perfusion

Design of a system for intelligent analysis of temporal data developed 
in cooperation with Denver Children’s Hospital

analysis of the cystic fibrosis
currently in progress
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Cios, K.J., Kurgan, L., Mitchell, S, Bailey, M., Duckett, D., & Gau, K., Report for the OAI Phase I Collaborative Core Research Project on Data Mining and 
Knowledge Discovery, the 2000 Ohio Aerospace Institute (OAI) Collaborations Forum, Cleveland, OH, 2000
Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M. & Goodenday, L.S., Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis, Artificial 
Intelligence in Medicine, vol. 23/2, pp.149-169, 2001
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ApplicationsApplications

Our algorithms were used in several applications

Design of an automated diagnostic system for SPECT heart images
CLIP4 used to develop a set of rules for computing the diagnosis

“ML for record linkage” project sponsored by US Air Force
XML, RDF (resource description framework), and ML based approach to 
intelligent record linking and searching of the World Wide Web of the 
future for the most relevant information to the user
CLIP4 used as the ML technology

Design of a system for intelligent analysis of temporal data
CAIM used to discretize continuous attributes
DataSqueezer used to generate rules for predefined temporal intervals

rule tables
attribute and selector ranking tables 
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