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Discovering Structure in Data

Tabular (relational) multi-attribute and multi-sample
e.g. clinical patient records, micro-array data, protein 
sequence data banks…
Numerical and nominal values

Highly dimensional
# data samples (few thousands to few millions, or more…)
# attributes (few to several hundred, or more…)

Analysis of such data is possible only using automated 
computational methods

© Lukasz Kurgan, 2006

Discovering Structure in Data

Data Mining
defined as extraction of valid, useful, easily understandable 
knowledge from large collections of data, for high level 
decision making
research interests 

data preprocessing (discretization, missing data imputation)
automated generation of data models

production and association rules
classification

discrete target concept
prediction

continuous target concept
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Discovering Structure in Data

automated generation of data models
does not require restrictive statistical assumptions such as independence, 
linear relationships, multi-colinearity, normality, etc. 
finds rules for which a set of (independent) variables are correlated with a 
result, which simply means that given the ‘IF’ condition, the ‘THEN’ result 
occurs a given percentage of time.
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RULES for DECISION: A  (4 rules)
1. IF  CONDITION1 = normal AND CONDITION2 = normal THEN DECISION = A
2. IF  INDEX = 2 THEN DECISION = A
3. IF  CONDITION1 = normal AND CONDITION2 = low THEN DECISION = A
4. IF  CONDITION1 = low AND CONDITION2 = normal THEN DECISION = A

RULES for DECISION: B  (3 rules)
1. IF  CONDITION1 = high AND INDEX = 4 THEN DECISION = B
2. IF  CONDITION1 = low AND INDEX = 4 THEN DECISION = B
3. IF  CONDITION1 = normal AND CONDITION2 = high AND INDEX = 4 THEN 

DECISION = B

target
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ASSOCIATIONS (no “decision” target)
1. DECISION = B AND INDEX = 4
2. CONDITION1 = normal AND CONDITION2 = normal AND INDEX = 2
3. CONDITION2 = normal AND INDEX = 3
4. DECISION = A AND INDEX = 2
etc.

© Lukasz Kurgan, 2006

Discovering Structure in Data

data models (rules, and others)

can be generated very fast
log-linear time with respect to number of data points

associations and rules allow to find hidden relations

rules (and other models) allow to perform classification and 
prediction

both associations (a special type called association 
classification) and rules can be used
other models include: decision trees, bayesian, regression, 
neural networks, support vector machines, instance-based,…
(may require more computations)
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Discovering Structure in Data

relevance
biology is a source of large and often unexplored databases
many biological problems can be translated into model 
generation and analysis, prediction and/or classification tasks

the goal is to find structure in the data

my recent research interests are in
analysis of clinical data to discover disease biomarkers, new 
treatments and diagnostic procedures
protein structure analysis and prediction; analysis of both individual 
proteins and large protein clusters based on data stored in protein 
data banks
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DataSqueezer Algorithm

comparison of fast rule learners

Furnkranz and Widmer, 1994O(s log2s)IREP

Cohen and Singer, 1999nearly linear complexity, not 
worse than O(s logs)

C5.0Sebag, 1996O(s2)DiVS

Cios and Kurgan, 2004O(s2)CLIP4

Dain, Cunningham and 
Boyer, 2004

nearly linear complexity, not 
worse than O(s logs)

IREP++Domingos, 1994O(s2)CN2

Domingos, 1994O(s2)RISE

Cohen and Singer, 1999nearly linear complexity, not 
worse than O(s logs)

SLIPPERChisholm and Tadepalli, 2002O(s2)LERILS

Cohen, 1995O(s3)C4.5 rules

Cohen, 1995nearly linear complexity, not 
worse than O(s logs)

RIPPERCohen, 1993O(s4)REP

referenceComplexitylearnerreferenceComplexitylearner
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DataSqueezer Algorithm

Given: POS, NEG, k (number of attributes), s (number of examples)
Step1.
1.1 GPOS = DataReduction(POS, k);
1.2 GNEG = DataReduction(NEG k);

Step2.
2.1 Initialize RULES = []; i=1; // where rulesi denotes ith rule stored in RULES
2.2 create LIST = list of all columns in GPOS
2.3 within every GPOS column that is on LIST, for every non missing value a from selected column j compute sum, saj, of values of 

gposi[k+1] for every row i, in which a appears and multiply saj, by the number of values the attribute j has
2.4 select maximal saj, remove j from LIST, add “j = a” selector to rulesi
2.5.1 if rulesi does not describe any rows in GNEG
2.5.2 then remove all rows described by rulesi from GPOS, i=i+1;
2.5.3 if GPOS is not empty go to 2.2, else terminate
2.5.4 else go to 2.3
Output: RULES describing POS

DataReduction (D, k) // data reduction procedure for D=POS or D=NEG
DR.1 Initialize G = []; i=1; tmp = d1; g1 = d1; g1[k+1]=1;
DR.2.1 for j=1 to ND // for positive/negative data; ND is NPOS or NNEG 
DR.2.2 for kk = 1 to k // for all attributes
DR.2.3 if (dj[kk] ≠ tmp[kk] or dj[kk] = ‘∗’)
DR.2.4 then tmp[kk] = ‘∗’; // ‘∗’ denotes missing” do not care” value
DR.2.5 if (number of non missing values in tmp ≥ 2)
DR.2.6 then gi = tmp; gi[k+1]++;
DR.2.7 else i++; gi = dj; gi[k+1]=1; tmp =  dj;
DR.2.8 return G;
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DataSqueezer Algorithm

example
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DataSqueezer Algorithm

DataSqueezer was extensively tested to shows:
competitiveness with other state-of-the-art rule learners in the 
accuracy and complexity of the rules it generates 
better scalability

the empirical complexity of DataSqueezer closely matches the 
calculated log-linear asymptotic complexity, while the running time 
for DataSqueezer is far shorter than for other competing learners 

good robustness to missing data
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DataSqueezer Algorithm

accuracy
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DataSqueezer Algorithm

rules
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DataSqueezer Algorithm
computational complexity

real-life dataset (complex rule base)

synthetic dataset (compact rule base)
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DataSqueezer Algorithm

computational complexity
based on the linear approximations of the results, an 
extrapolation of the running time for a larger (20 million 
examples) real-life dataset was computed. It would require 
about 

27 minutes for DataSqueezer
1 hour 45 minutes for C5.0
4 hours and 18 minutes for RIPPER without optimization
5 hours 15 minutes for RIPPER
16 hours 20 minutes for SLIPPER 

to perform induction using the same hardware. 
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DataSqueezer Algorithm

robustness to missing data (accuracy)
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DataSqueezer Algorithm

robustness to missing data (number of rules)
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DataSqueezer Algorithm

robustness to missing data (number of selectors)
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DataSqueezer Algorithm

robustness to missing data (running time)
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DataSqueezer Algorithm

robustness to missing data
DataSqueezer shows superior robustness to missing values in 
terms of

running time
stable level of accuracy

and fairly good robustness in terms of number and complexity of 
generated rules.

The other robust learner is SLIPPER, which shows superior 
properties in terms of

the number and complexity of generated rules 
high and fairly stable accuracy of generated rules
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DataSqueezer Algorithm

Summary
simple to implement
generates rules with accuracy and complexity comparable to 
the rules generated by other learners
characterized by log-linear complexity combined with speed 
that is superior when compared with other scalable, modern 
learners
superior robustness to missing values

Kurgan L, Cios K and Dick S, Highly Scalable and Robust Rule Learner: Performance Evaluation and Comparison, IEEE Transactions on Systems, Man, and Cybernetics, Part 
B, vol. 36, no. 1, pp. 32-53, 2006 
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Example Application

Analysis of Cystic Fibrosis (CF) data 
CF is a deadly genetic disease;  it affects respiratory system, 
digestive system, endocrine system, and reproductive system
Project involved analysis of clinical CF data 

in collaboration between the University of Colorado and the Denver’s 
Children Hospital 
(temporal) data on 856 patients collected starting in 1982

Goals
discovery of important factors that influence the pace of development of CF

several categories were defined based on an attribute that quantifies the progress of 
the disease in terms of the respiratory functions

discovery of important factors that are related to particular kinds of CF
CF is caused by at least 500 different genetic mutations but approximately 70% of 
the mutations are found to be “delta F508” gene (the most common CF mutation)
three kinds of CF were defined and analyzed: 1) both, Genotype 1 and Genotype 2 
are F508, 2) either Genotypes 1 or Genotype 2 is F508, and the other is any other 
genotype, 3) both Genotype 1 and Genotype 2 are not F508
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Example Application

Analysis of CF data 
sample results for goal 1

significant and previously unknown finding was a relation between high value of 
sweatelectr1 (potassium levels) and the improvement of the disease

Kurgan L., Cios K., Sontag M., and Accurso F., Mining the Cystic Fibrosis Data, In: Zurada J. and Kantardzic M., (Eds.), Next Generation of Data-Mining Applications, pp. 415-
444, IEEE Press - Wiley (ISBN 0-471-65605-4), 2005
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