Discovering Structure in Data Fast Classification Using the DataSqueezer Algorithm

Lukasz Kurgan University of Alberta

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Discovering Structure in Data

Data Mining

- defined as extraction of valid, useful, easily understandable knowledge from large collections of data, for high level decision making
- research interests
 - data preprocessing (discretization, missing data imputation)
 - automated generation of data models
 - production and association rules
 - classification
 - discrete target concept
 prediction
 - prediction
 continuous target concept

© Lukasz Kurgan, 2000

Discovering Structure in Data data models (rules, and others) can be generated very fast log-linear time with respect to number of data points associations and rules allow to find hidden relations cassifications (a special type called association classification) and rules can be used other models include: decision trees, bayesian, regression, neural networks, support vector machines, instance-based,... (may require more computations)

© Lukasz Kurgan, 2006

Discovering Structure in Data

relevance

- biology is a source of large and often unexplored databases
 many biological problems can be translated into model
- generation and analysis, prediction and/or classification tasks
- the goal is to find structure in the data

my recent research interests are in

- analysis of clinical data to discover disease biomarkers, new treatments and diagnostic procedures
- protein structure analysis and prediction; analysis of both individual proteins and large protein clusters based on data stored in protein data banks

© Lukasz Kurgan, 2006

DataSqueezer Algorithm

comparison of fast rule learners

learner	Complexity	reference	learner	Complexity	reference
REP	O(\$4)	Cohen, 1993	RIPPER	nearly linear complexity, not worse than O(s logs)	Cohen, 1995
C4.5 rules	O(s3)	Cohen, 1995			
LERILS	O(s ²)	Chisholm and Tadepalli, 2002	SLIPPER	nearly linear complexity, not worse than O(s logs)	Cohen and Singer, 1999
RISE	O(s ²)	Domingos, 1994			
CN2	O(\$2)	Domingos, 1994	IREP++	nearly linear complexity, not worse than O(s logs)	Dain, Cunningham and Boyer, 2004
CLIP4	O(\$2)	Cios and Kurgan, 2004			
DiVS	O(s ²)	Sebag, 1996	C5.0	nearly linear complexity, not worse than O(s logs)	Cohen and Singer, 1999
IREP	O(s log ² s)	Furnkranz and Widmer, 1994			
					© Lukas: Kuroan 2006

DataSqueezer Algorithm

a accuracy

 set
 Record reads
 Constrained
 Resolution
 Resolution

