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Data

= Tabular (relational) multi-attribute and multi-sample
o e.g. clinical patient records, micro-array data, protein
sequence data banks...
o Numerical and nominal values
= Highly dimensional
o # data samples (few thousands to few millions, or more...)
o # attributes (few to several hundred, or more...)

= Analysis of such data is possible only using automated
computational methods
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| Discovering

= Data Mining
o defined as extraction of valid, useful, easily understandable
knowledge from large collections of data, for high level
decision making
o research interests
= data prepr ing (discretizati issing data imputation)
= automated generation of data models
o production and association rules
= classification
o discrete target concept
= prediction
o continuous target concept
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| Discovering

o automated generation of data models

does not require restrictive statistical assumptions such as independence,
linear relationships, multi-colinearity, normality, etc.

finds rules for which a set of (independent) variables are correlated with a
result, which simply means that given the ‘IF’ condition, the ‘THEN’ result
occurs a given percentage of time.
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H e o M 1.1F CONDITION1 = normal AND CONDITION2 = normal THEN DECISION = A
H froed noemal % 2IF INDEX= 2 THEN DECISION = A
A normal Toy 2 3.IF CONDITION1 = normal AND CONDITION2 = low THEN DECISION = A
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B high Tow 4 2.1F CONDITION1 = low AND INDEX = 4 THEN DECISION = B
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A normal low 4 DECISION =B
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A normal normal 2
8 low igh 4
s high i 4
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‘ Discovering

o automated generation of data models
= does not require restrictive statistical assumptions such as independence,
linear relationships, multi-colinearity, normality, etc.
= finds rules for which a set of (independent) variables are correlated with a
result, which simply means that given the ‘IF’ condition, the ‘THEN' result
occurs a given percentage of time.
Tow

A normal 2
A low normal 3
A normal normal 3
A normal Tow 2
5 normal o . ASSOCIATIONS (no “decision” target)
H low oo a 1. DECISION = B AND INDEX = 4
H high norml i 2. CONDITIONT = normal AND CONDITION2 = normal AND INDEX = 2
A normal low 2 3. CONDITION2 = normal AND INDEX = 3
A ‘normal normal 2 4. DECISION = A AND INDEX = 2
A al normal 2 etc
A normal normal 3
A normal 1
B normal high 4
s high low 4
B high normal 4
A normal Tow 4
A Tow normal 2
A low normal 2
A normal normal 4
A normal normal 2
B Tow high 4
B high Tow 4
B high normal 4
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‘ Discovering

o data models (rules, and others)

= can be generated very fast
0 log-linear time with respect to number of data points

= associations and rules allow to find hidden relations

= rules (and other models) allow to perform classification and
prediction
0 both associations (a special type called association
classification) and rules can be used
o other dels include: decision trees, bayesian, regression,
neural networks, support vector machines, instance-based,...
(may require more computations)

Structure

= relevance
o biology is a source of large and often unexplored databases
o many biological problems can be translated into model
generation and analysis, prediction and/or classification tasks
= the goal is to find structure in the data

o my recent research interests are in
= analysis of clinical data to discover disease biomarkers, new
treatments and diagnostic procedures
= protein structure analysis and prediction; analysis of both individual
proteins and large protein clusters based on data stored in protein
data banks

| DataSqueezer Algorithm

o comparison of fast rule learners

learner Complexity reference learner Complexity reference
REP O(s*) Cohen, 1983 RIPPER | nearly linear complexity, not Cohen, 1995
C4.5rules 0O(s?) Cohen, 1995 worse than O(s logs)
LERILS 0O(s?) Chisholm and Tadepalli, 2002 | §LIPPER | nearly linear complexity, not | Cohen and Singer, 1999
RISE 0O(s?) Domingos, 1994 worse than O(s logs)
CN2 O(s?) Domingos. 1994 IREP++ | nearly linear complexity, not | ain. Curningham and
CLIP4 0O(s?) Cios and Kurgan, 2004 worse than O(s logs) .
Divs 0(s?) Sebag, 19%6 C5.0 nearly linear complexity, not | Conen and Singer, 1999
IREP O(s log?s) | Fumkranz and Widmer, 1994 worse than O(s logs)
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‘ DataSqueezer Algorithm

Given:  POS, NEG, k (number of attributes), s (number of examples)

Stept
1.1 Gpos = DataReduction(POS, k);
12 Gyeo = DataReduction(NEG k);
Step2.
21 Initialize RULES = [J; i=1; 1/ where rules, denotes " rule stored in RULES
22 te LIST = list of all columns in Gygg
23 within every Gy column that is on LIST, for every non missing value a from selected column j compute sum, s,, of values of
gpos[k+1] for every row i, in which a appears and multply s, by the number of values the attribute j has
24 select maximal s,,, remove j from LIST, add j = a” selector 10 rules,
251 if rules, does not describe any rows in Gy
252 then remove all rows described by rules, from Gy, i=i+1;
253 if Gyog is not empty go 10 2.2, else terminate
254 else go10 2.3
Output:  RULES describing POS
DataReduction (D, k) 1 data reduction procedure for D=POS or D=NEG
DRI Initialize G = [; i=1; tmp = d.; g, = dy; g,fk+11=1;
DR2.1  forj=1toN, I for positivelnegative data; Ny is Npos 0F Ny
DR22  forkk=1lok //for all attributes
DR23 if (d{kK] = tmplkK] or dfkk] =+
DR24 then tmp{kk] = '+; //*# denotes missing” do ot care” vale
DR25  if (number of non missing values in tmp = 2)
DR26 then g, = tmp; glk+1}++;

DR27 else i++; g, = d; glk+1]=1: tmp = d;
DR28 retun G;
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‘ DataSqueezer Algorithm

= example

IF temperature = normal THEN home
[T temperature = low AND blood flow
‘mormal THEN hemse

Aeigh normal 4 1
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| DataSqueezer Algorithm

= DataSqueezer was extensively tested to shows:
o competitiveness with other state-of-the-art rule learners in the
accuracy and complexity of the rules it generates
o better scalability

= the empirical ity of D q closely hes the
calculated log-linear asymptoti ity, while the r ing time
for DataSqueezer is far shorter than for other competing learners

o good robustness to missing data
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| DataSqueezer Algorithm

= accuracy
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| DataSqueezer Algorithm

= rules
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‘ DataSqueezer Algorithm

= computational complexity
o based on the linear approximations of the results, an
extrapolation of the running time for a larger (20 million
examples) real-life dataset was computed. It would require
about
= 27 minutes for DataSqueezer
= 1 hour 45 minutes for C5.0
= 4 hours and 18 minutes for RIPPER without optimization
= 5 hours 15 minutes for RIPPER
= 16 hours 20 minutes for SLIPPER
to perform induction using the same hardware.
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| DataSqueezer Algorithm

= computational complexity

o real-life dataset (complex rule base)
1 ~
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‘ DataSqueezer Algorithm

= robustness to missing data (accuracy)
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DataSqueezer Algorithm

robustness to missing data (number of rules)
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DataSqueezer Algorithm

robustness to missing data (number of selectors)
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DataSqueezer Algorithm

robustness to missing data (running time)
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DataSqueezer Algorithm

robustness to missing data
o DataSqueezer shows superior robustness to missing values in
terms of
running time
stable level of accuracy
and fairly good robustness in terms of number and complexity of
generated rules.
o The other robust learner is SLIPPER, which shows superior
properties in terms of
the number and complexity of generated rules
high and fairly stable accuracy of generated rules
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DataSqueezer Algorithm

Summary

o simple to implement

o generates rules with accuracy and complexity comparable to
the rules generated by other learners

o characterized by log-linear complexity combined with speed
that is superior when compared with other scalable, modern
learners

o superior robustness to missing values

Kurgan L, Cios K and Dick S, Highly Scalable and Robust Rule Learer Comparison, IEEE. Systems, Man, . Part
B,v0l. 36, 0.1, pp. 32-53, 2006
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Example Application

Analysis of Cystic Fibrosis (CF) data

o CF is a deadly genetic disease; it affects respiratory system,
digestive system, endocrine system, and reproductive system

o Project |nvo|ved analysis of cllnlcal CF data

the Uni y of Colorado and the Denver’s

in
Children Hospital
(temporal) data on 856 patients collected starting in 1982

o Goals
discovery of important factors that influence the pace of development of CF

o  several categories were defined based on an attribute that quantifies the progress of
the disease in terms of the respiratory functions

discovery of important factors that are related to particular kinds of CF

1 CF is caused by at least 500 different genetic mutations but approximately 70% of
the mutations are found to be “delta F508” gene (the most common CF mutation)

0 three kinds of CF were defined and 1) both, 2
are F508, 2) either Genotypes 1 or Genotype 2 is FSOB and the other ls any other
) both 2 are not F508

© Lukasz Kurgan, 2006




'Example Application

= Analysis of CF data
o sample results for goal 1

. and finding was a relation between high value of
sweatelectr1 (potassium levels) and the improvement of the disease
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