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What, Why and How of 
Computational Protein Structure 

Prediction
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Outline

• short and (hopefully) painless introduction to 
proteins and protein structures

• motivation for computational prediction methods
• overview of computational work in protein 

structure prediction
• protein structural class prediction
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Introduction to Proteins

Brief history
– from the Greek protas meaning “of primary importance”
– first proteins were discovered in early 19th century (in 

1838) by a Swedish chemist Jöns Jakob Berzelius 
• they were called albuminoids

– for about 100 years chemists argued about their internal 
structure and finally in 1935 the list of 20 amino acids 
that compose the proteins was compiled

– nowadays, there are well over 2 millions of known 
proteins and the detailed structure is known for over 30 
thousand of them
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Introduction to Proteins

Basic facts
– a protein is a complex, high-molecular-weight organic 

molecule that consists of amino acids joined by peptide 
bonds 

• other bio-macromolecules include polysaccharides, lipids, 
and nucleic acids

– they are among the most actively-studied molecules in 
biochemistry
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Introduction to Proteins

Basic facts
– proteins are essential to the structure and function of all 

living cells (including humans) and viruses
• examples functions include catalysis in chemical reactions 

(enzymes), forming the cytoskeleton (tubulin), serving various 
signaling and transporting functions (hemoglobin), 
implementing immune responses (antibodies), regulation of 
cell processes (hormones), and the list goes on and on...

• aside from the fat, human body consists of about 20% of 
proteins by weight

– why are the proteins so “popular”?
• they can adopt a huge number of three-dimensional shapes 

and thus constitute a perfect candidate to become a versatile 
“agent”
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Introduction to Proteins

Who makes the proteins?
– they are assembled from amino acids using information 

present in genes
• genes (located in the cell’s nucleus) are transcribed into RNA
• RNA is then subject to post-transcriptional modification and 

control, resulting in a mRNA (messanger-RNA)  that 
undergoes translation into a protein

• mRNA is translated inside a cell by ribosomes that match the 
three-base codons of the mRNA to the three-base anti-codons
of the appropriate tRNA (transfer-RNA)

• the enzyme aminoacyl tRNA synthetase (aaRs) catalyzes the 
formation of covalent peptide bonds between amino acids 
effectively forming a protein chain
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Introduction to Proteins
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Introduction to Proteins

How are they made?
– the translation process produces a linear sequence that is 

build from amino acids joined by covalent peptide bonds 
– nobody really knows (at least for larger proteins) how does 

it happens that a sequence is transformed into a molecule
• the sequence folds to form a three dimensional molecule
• the mechanics of this folding are largely unknown, although 

we know a lot in terms of the final product of the folding:
– the molecule can be described on four distinct structural levels
– it is build from only 20 amino acids
– and researchers agree that a unique sequence folds always into 

the same molecule (based on minimum energy principle)
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Amino Acids

Amino Acids (AA)
– the basic structural building units of proteins
– they form short polymer chains called peptides or longer 

polypeptides which are called proteins
– general structure

R
|

H2N – C – COOH
|
H 

– there are 20 R side chains that make up the different AA

carboxylic acid amino functional group

variable side chain
specific to each AA

tetrahedral α-C atom
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Amino Acids

TinySmall

3.2UAU, UACAromatic---XX-CH2-C6H4OHTyr, YTyrosine
1.4UGGAromatic----X-CH2C8H6NTrp, WTryptophan
6.6GUU, GUC, GUA, GUGAliphatic-X--X-CH(CH3)2Val, VValine
5.9ACU, ACC, ACA, ACG--X-XX-CH(OH)CH3Thr, TThreonine
6.8UCU, UCC, UCA, UCG, AGU,AGC-XX-X--CH2OHSer, SSerine
5.1CGU, CGC, CGA, CGG, AGA, AGG---positiveX--(CH2)3NH-C(NH)NH2Arg, RArginine
4.2CAA, CAG----X--CH2CH2CONH2Gln, QGlutamine
5.2CCU, CCC, CCA, CCG--X--X-CH2CH2CH2-Pro, PProline
4.3AAU, AAC--X-X--CH2CONH2Asn, NAsparagine
2.3AUG-----X-CH2CH2SCH3Met, MMethionine
9.1UUA, UUG, CUU, CUC, CUA, CUGAliphatic----X-CH2CH(CH3)2Leu, LLeucine
5.9AAA, AAG---positiveX--(CH2)4NH2Lys, KLysine
5.3AUU, AUC, AUAAliphatic----X-CH(CH3)CH2CH3Ile, IIsoleucine
2.3CAU, CACAromatic--positiveX--CH2-C3H3N2His, HHistidine
7.2GGU, GGC, GGA, GGG-XX--X-HGly, GGlycine
3.9UUU, UUCAromatic----X-CH2C6H5Phe, FPhenylalanine
6.3GAA, GAG---negativeX--CH2CH2COOHGlu, EGlutamate
5.3GAU, GAC--XnegativeX--CH2COOHAsp, DAspartate
1.9UGU, UGC--X--X-CH2SHCys, CCysteine
7.8GCU, GCC, GCA, GCG-XX--X-CH3Ala, AAlanine

Occurre
nce (%)DNA codonAromatic/ 

Aliphatic
SizeElectric 

ChargePolarHydro-
phobicSide chainAbbr.AA
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Protein Structure

Four distinct aspects of a protein's structure can be 
defined:
– primary AA sequence 
– secondary structure: highly patterned sub-structures of the overall 

three dimensional structure
• they include so called α-helices and β-sheets
• they are defined locally, i.e. many different secondary structure motifs 

are usually present in a protein molecule
– tertiary structure: the overall shape of a single protein molecule; 

• can be also defined as the spatial relationship of the secondary structural 
motifs to one another

• it is primarily formed by hydrophobic interactions; hydrogen bonds, ionic 
interactions, and disulfide bonds are also involved

– quaternary structure: the shape or structure that results from the 
union of more than one protein molecule 

• they are called protein subunits, and they function as part of the larger 
assembly or protein complex.
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Protein Sequence

Primary sequence
• proteins are generally 

relatively large
– e.g. the muscle protein

titin has a 27,000 AA
long chain 

– on average about 
300 AA

– the two ends of the AA chain are referred to as the carboxy
terminus (C-terminus) and the amino terminus (N-terminus) based 
on the nature of the free group on each extremity
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Protein Sequence

Primary sequence
– peptide bonds

H Ri-1 H Ri H Ri+1
|     | |     | |     |

…N – C – C  – N – C – C  – N – C – C  – …
|     ║ |     ║ |     ║
H    O      H    O H    O

i-1th AA ith AA i+1th AA
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Protein Sequence

Primary sequence
• examples 

– human hemoglobin 1A3N (oxygen transporter)

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAH
VDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR

– immunoglobulin 12E8 (antibody)

DIVMTQSQKFMSTSVGDRVSITCKASQNVGTAVAWYQQKPGQSPKLMIYSASNRYTGVPDRFTGSGSGTDFT
LTISNMQSEDLADYFCQQYSSYPLTFGAGTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVK
WKIDGSERQNGVLNSATDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

– narbonin 1NAR (storage protein)

PKPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPE
VKVVISIGGRGVNTPFDPAEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKD
DDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVDYQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTD
PLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTLQQLLAAR
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Protein Sequence

Primary sequence
• examples 

– narbonin 1NAR (storage protein)
PKPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPE
VKVVISIGGRGVNTPFDPAEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKD
DDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVDYQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTD
PLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTLQQLLAAR
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Protein Structure

Secondary structure
• α-helix structural motif in secondary structure

– first postulated by Pauling, Corey and 
Branson in 1951

– AA are arranged in a helical structure, 
5.4 Angstroms (0.54 nanometres) wide

– all AA side-chains are arranged at 
the outside of the helix

– N-H group of nth AA establishes a hydrogen 
bond with the C=O group of (n+4)th AA

– on average there are 3.6 AA per turn
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Protein Structure

Secondary structure
• β-strand structural motif in secondary structure

– first postulated by Pauling, 
Corey and Branson in 1951

– it consists of two or more AA
sequences within the same
protein that are arranged 
adjacently and in parallel, 
but with alternating orientation
such that hydrogen bonds can
form between the two strands

– N-H groups in the backbone
of one strand establish hydrogen bonds with the C=O groups in 
the backbone of the adjacent, parallel strand(s)

– the α-C atoms of adjacent strands are 350 picometres apart
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Protein Structure

Secondary structure
• β-strand – a major structural motif in secondary structure

– β-sheets are composed of several β-strands and in general can be 
classified into two types

• parallel β-sheets where the strands are running in the same direction
• anti-parallel β-sheets where the strands are running in the opposing 

direction
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Protein Structure

Secondary structure
• α-helix vs. β-sheet

– protein chain

– α-helix

– parallel β-sheet

– anti-parallel β-sheet

taken from http://dl.clackamas.cc.or.us/ch106-08/secondar.htm
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Protein Structure

Secondary structure
• how is it matched with the primary sequence?

– DSSP (Dictionary of Protein Secondary Structure) code is 
frequently used to describe the protein secondary 
structures for each residue (AA) using a single letter code

• the secondary structure is assigned based on hydrogen 
bonding patterns 

21/61

© Lukasz Kurgan, 2006

Protein Structure

Secondary structure
• DSSP codes

– helices
• G = 3-turn helix (3/10 helix);  min length 3 residues
• H = 4-turn helix (alpha helix); min length 4 residues
• I = 5-turn helix (pi helix); min length 5 residues

– strands
• E = beta sheet in parallel and/or anti-parallel sheet 

conformation (extended strand); min length 2 residues
• B = residue in isolated beta-bridge (single pair beta-sheet 

hydrogen bond formation)
– coils (all AA which are not strands or helices)

• T = hydrogen bonded turn (3, 4 or 5 turn)
• S = bend (the only non-hydrogen-bond based assignment)
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Protein Structure

Secondary structure
• examples 

– human hemoglobin
1A3N (oxygen transporter)

different colors denote multiple (4) 
hemoglobin molecules

primary sequence
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALS
ALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR

secondary sequence (in 8-states DSSP assignment)
CCCHHHHHHHHHHHHHHGGGHHHHHHHHHHHHHHHCGGGGGGTTTSCCSTTCHHHHHHHHHHHHHHHHHHHTTTSHHHHTH
HHHHHHHHTTCCCTHHHHHHHHHHHHHHHHHTTTTTTHHHHHHHHHHHHHHHHHHTTTCC

secondary sequence (in 3-states DSSP assignment)

CCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCHHHHHHCCCCCCCCCCHHHHHHHHHHHHHHHHHHHCCCCHHHHCH
HHHHHHHHCCCCCCHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHHHHHCCCCC
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Protein Structure

Secondary structure
• examples 

– immunoglobulin 12E8
(antibody)

different colors denote multiple (4) 
immunoglobulin molecules
two dimers are shown

primary sequence
DIVMTQSQKFMSTSVGDRVSITCKASQNVGTAVAWYQQKPGQSPKLMIYSASNRYTGVPDRFTGSGSGTDFTLTISNMQSE
DLADYFCQQYSSYPLTFGAGTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNS
ATDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

secondary sequence (in 8-states DSSP assignment)
CCCEECCCSEEEECTTCCEEEEEEESSCCTTCEEEEEECTTSCCEECEETTTEECTTTTTTEEEEEETTEEEEEESSCCGG
GCSEEEEEECSSSSCEECCCEEEEECCCCBCCEEEEECCCHHHHTTTEEEEEEEEESEESSCCEEEEEETTEECCTTEEEE
ECCCCTTTCCBCEEEEEEEEHHHHTTCSEEEEEEECTTCSSCEEEEEETTTT

secondary sequence (in 3-states DSSP assignment)
CCCEECCCCEEEECCCCCEEEEEEECCCCCCCEEEEEECCCCCCEECEECCCEECCCCCCCEEEEEECCEEEEEECCCCHH
HCCEEEEEECCCCCCEECCCEEEEECCCCECCEEEEECCCHHHHCCCEEEEEEEEECEECCCCEEEEEECCEECCCCEEEE
ECCCCCCCCCECEEEEEEEEHHHHCCCCEEEEEEECCCCCCCEEEEEECCCC
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Protein Structure

Secondary structure
• examples 

– narbonin 1NAR
(storage protein)

one molecule is shown

primary sequence
KPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVI
SIGGRGVNTPFDPAEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKDDDLNINVVS
IAPSENNSSHYQKLYNAKKDYINWVDYQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIG
GCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTLQQLLAAR

secondary sequence (in 8-states DSSP assignment)
CCEEEEEEESCCTTCCSCSSCCSTTCCCSSEEEEEEECCEEECBCTTSCBCSCEEECSCHHHHTHHHHHHHHHHCTTCEEE
EEEEESSTTSCBCBSCTTTHHHHHHHHHHHHHHHSEETTEECCCEEEEEESCBCSSTTHHHHHHHHHHHHHHCTTSCCCEE
EECCCTTTHHHHHHHHHHTTTTCCEEEEEGGGCSSCCCSHHHHHHHHHHHHHHSCTTCEEEEEECCHHHHHHCSSCHHHHH
HHHHHHHHTTCCCEEEEECHHHHSSCSSTTTTTTHHHHHHHHHHHCC

secondary sequence (in 3-states DSSP assignment)
CCEEEEEEECCCCCCCCCCCCCCCCCCCCCEEEEEEECCEEECECCCCCECCCEEECCCHHHHCHHHHHHHHHHCCCCEEE
EEEEECCCCCCECECCCCCHHHHHHHHHHHHHHHCEECCEECCCEEEEEECCECCCCCHHHHHHHHHHHHHHCCCCCCCEE
EECCCCCCHHHHHHHHHHCCCCCCEEEEEHHHCCCCCCCHHHHHHHHHHHHHHCCCCCEEEEEECCHHHHHHCCCCHHHHH
HHHHHHHHCCCCCEEEEECHHHHCCCCCCCCCCCHHHHHHHHHHHCC
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Protein Structure

Tertiary and Quaternary structures
– the overall shape of a single (or a multi) protein molecule 

• a spatial arrangement of the secondary structural motifs 
• formed by hydrophobic interactions, hydrogen bonds, ionic 

interactions and disulfide bonds
human hemoglobin immunoglobulin narbonin

colors show individual proteins colors show individual proteins colors shown secondary structures
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Protein Structure

Why is it important to know the structure?
– in short: knowing the structure allows us to modify, e.g. 

enhance or block, certain protein functions
• example: if a protein is involved in cell division and we block 

this function, we effectively stop the cell from dividing
– when would that be useful?
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Protein Structure

Why is it important to know the structure?
• various molecules/ions can bind to specific protein sites

– the sites are called binding sites and exhibit chemical specificity
– the particle that binds is called a ligand
– the strength of ligand-protein binding is a property of the binding 

site known as affinity
• since proteins are involved in practically every function 

performed by a cell, the mechanisms for controlling these 
functions therefore depend on controlling protein activity 
– regulation can involve a changing protein's shape or 

concentration, e.g.:
• allosteric modulation: binding of a ligand at one site on a protein 

affects the binding of a ligand at another site
• covalent modulation: covalent modification of a protein affects the 

binding of a ligand or some other aspect of the protein's function
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Protein Structure

How do we learn the sequence?
– can be deduced from known DNA sequence
– can be learned based on Edman degradation and mass 

spectrometry methods

– relatively cheap and easy to perform for virtually all proteins
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Protein Structure

How to we learn the structure?
• tertiary structures are deduced through 

crystallography or multidimensional NMR
– secondary structure is computed from the tertiary structure
– crystallography = X-ray of a crystallized protein
– multidimensional NMR = Nuclear Magnetic Resonance 

Spectroscopy of aqueous samples of highly purified protein
• uses magnetic 

properties of a nuclei

– problems
• costly and labor extensive
• some proteins cannot be crystallized or purified

32116 Total

70 Other

79 Electron Microscopy

4436 NMR

27531 X-rayExperimental
method
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The Gap

So, what is the problem?
number of known proteins 

based on NCBI Reference Sequences at http://www.ncbi.nlm.nih.gov/RefSeq/
number of protein for which (tertiary) structure is known 
based on Protein Data Bank at http://www.rcsb.org/pdb
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Protein Databases

Databases
• PDB

– the single worldwide repository for the processing and 
distribution of 3-D structure of proteins

– manually curated and annotated (by experts) database of 
known tertiary protein structures

– URL: http://www.rcsb.org/pdb
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Protein Databases

Databases
• SWISS-PROT

– protein knowledgebase established in 1986 and maintained 
since 2003 by the UniProt Consortium

• a collaboration between the Swiss Institute of Bioinformatics
and the Department of Bioinformatics and Structural Biology 
of the Geneva University, the European Bioinformatics 
Institute (EBI) and the Georgetown University Medical Center's 
Protein Information Resource (PIR)

– manually annotated and curated (by experts) database of 
known protein sequences and relevant information

• protein function, domain structure (if known), variants, post-
translational modifications, similarities to other proteins

– URL: http://ca.expasy.org/sprot/sprot_details.html

33/61

© Lukasz Kurgan, 2006

Protein Databases

Databases
• NCBI 

– integrated access to a variety of sources, including 
SwissProt, PIR, PRF, PDB, and translations from annotated 
coding regions in GenBank and RefSeq

– proteins are submitted and managed by individual 
researchers

• they are not curated by experts
– contains mainly protein sequences and relatively little 

additional information
– URL: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=protein

34/61

© Lukasz Kurgan, 2006

The Gap

So, what is the problem here?
• # of known proteins (NCBI): 2,273,764 (January, 2006)
• # of proteins for which structure is known (PDB): 32,116 (January 2006)

• # of protein for which high quality information 207,132 (February 2006) 
(i.e. sequences, partial secondary structure, etc.)
is known (SWISS PROT):
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The Gap

What can we do to close the GAP?
• develop computational method to predict the 

structure based on the available information
– mainly the primary sequence is used, but we could also use 

protein function and other known information
• see SWISS-PROT

– computational = cheap and can work without the 
restrictions enforced by experimental conditions

….so far the quality of the computational methods is 
not sufficiently good, but it is constantly improving
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Protein Structure Prediction

Computational prediction
– the ultimate goal is to predict the native conformation of a 

protein from its primary sequence
• the prediction boils down to spatial placement of the central 
α-C atoms for each AA in the sequence

H Ri-1 H Ri H Ri+1
|      |              |      | |      |

…N – C – C  – N – C – C  – N – C – C  – …
|     ║ |     ║ |     ║
H    O      H    O H    O

i-1th AA ith AA i+1th AA

• since direct methods are not successful, a number of other 
prediction methods is researched
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Protein Structure Prediction
INPUT: primary sequence (narbonin 1NAR)

KPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVISIGGRGVNTPFDPAEENVWVSNA
KESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKDDDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVDYQFSNQQKPVSTDDAFVEIF

KSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTLQQLLAAR

tertiary structure

contact map

secondary structure

• mainly-α
• mainly-β

• α–β
• α/β

structural class

36% helix
22% strand

42% coil

secondary structure 
content
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PKPIFREYIGVKPNSTTLHDFPTEIINT
ETLEFHYILGFAIESYYESGKGTGTFE
ESWDVELFGPEKVKNLKRRHPEVKV
VISIGGRGVNTPFDPAEENVWVSNAK
ESLKLIIQKYSDDSGNLIDGIDIHYEHIR
SDEPFATLMGQLITELKKDDDLNINVV
SIAPSENNSSHYQKLYNAKKDYINWV
DYQFSNQQKPVSTDDAFVEIFKSLEK
DYHPHKVLPGFSTDPLDTKHNKITRDI
FIGGCTRLVQTFSLPGVFFWNANDSV
IPKRDGDKPFIVELTLQQLLAAR

NARBONIN (1NAR) protein
PKPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVISIGGRGVNTPFDPAEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITE
LKKDDDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVDYQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTLQQLLAAR

0.2544 0.1154 0.2198 0.2893 0.1343 -0.02268 138.8 0.4788 139.6 
0.05426 -0.05693 0.01952 0.03342 ….

0.3207 0.1103 0.2793 0.1414 0.1483 0.2793 0.2379 0.2276 0.4931 
0.2172 0.2414 0.2241 0.169 0.1897 0.1724 ….

0.0345 0.0034 0.0759 0.0724 0.0586 0.0586 0.031 
0.0828 0.0793 0.0759 0.0034 ….

33071.5

HYDROPHOBICITY based residue propertiesRESIDUE PROPERTIES
(electric charge, chemical group, etc.)

AA COMPOSITIONMolecular 
Weight

secondary structure content prediction
helix 35.9%; strand 21.7%; coil 42.4%

structural class classification
α-β proteins

secondary structure classification (black coil, yellow strand, red helix)
PKPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVISIGGRGVNTPFDPAEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITE
LKKDDDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVDYQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTLQQLLAAR 

Protein Structure Prediction

contact map
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Protein Structure Prediction

Main computational prediction tasks
– overall tertiary structure

INPUT: primary sequence (narbonin 1NAR)
KPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVISIGGRGVNTPFDP
AEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKDDDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVD
YQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTL
QQLLAAR

OUTPUT: tertiary structure
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Protein Structure Prediction

Main computational prediction tasks
– overall tertiary structure

• de novo (ab initio) methods
– they build tertiary protein models "from scratch“
– they attempt to mimic protein folding or apply some stochastic 

method to search possible solutions (i.e. global optimization of a 
suitable energy function)

– they require vast computational resources (supercomputers, 
such as Blue Gene or distributed computing) and thus have only 
been carried out for very small proteins
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Protein Structure Prediction

Main computational prediction tasks
– overall tertiary structure

• comparative methods
– they use previously solved structures (or templates) as starting

point
» research shows that there are only around 2000 distinct 

protein folds in nature, though there are many millions of 
different proteins

– homology-based methods are based on an assumption that two 
homologous proteins (proteins with similar sequence) will share 
very similar structures

– threading-based methods scan sequence of an unknown 
structure against a database of solved structures and a scoring 
function is used to assess the compatibility of the sequence to 
the structure, thus yielding possible three-dimensional models
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Protein Structure Prediction

Main computational prediction tasks
– contact maps

INPUT: primary sequence (narbonin 1NAR)
KPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVISIGGRGVNTPFDP
AEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKDDDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVD
YQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTL
QQLLAAR

OUTPUT: contact map

predicted

true
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Protein Structure Prediction

Main computational prediction tasks
– contact maps

• tertiary structure of a protein can be captured to a large extent 
by its distance map

– the distance map is a two-dimensional symmetric matrix that 
shows which tuples of protein elements are close to each other in 
the overall molecule

» elements range between atoms, through AAs, to segments of 
secondary structure

» in case of amino-acids distances are usually calculated between α-C 
atoms 
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Main computational prediction tasks
– overall secondary structure

INPUT: primary sequence (narbonin 1NAR)
KPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVISIGGRGVNTPFDP
AEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKDDDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVD
YQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTL
QQLLAAR

OUTPUT: secondary structure
CCEEEEEEECCCCCCCCCCCCCCCCCCCCCEEEEEEECCEEECECCCCCECCCEEECCCHHHHCHHHHHHHHHHCCCCEEEEEEEECCCCCCEC
ECCCCCHHHHHHHHHHHHHHHCEECCEECCCEEEEEECCECCCCCHHHHHHHHHHHHHHCCCCCCCEEEECCCCCCHHHHHHHHHHCCCCCCEE
EEEHHHCCCCCCCHHHHHHHHHHHHHHCCCCCEEEEEECCHHHHHHCCCCHHHHHHHHHHHHHCCCCCEEEEECHHHHCCCCCCCCCCCHHHHH
HHHHHHCC
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Main computational prediction tasks
– overall secondary structure

• comparative methods (dominant)
– they use previously solved structures (or templates) as starting

point
– for the predicted sequence a search for known homologous

sequence is used and the structure is inferred based on the 
structure of these sequences
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Main computational prediction tasks
– secondary structure content

INPUT: primary sequence (narbonin 1NAR)
KPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVISIGGRGVNTPFDP
AEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKDDDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVD
YQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTL
QQLLAAR

TRANSFORMED INPUT: feature space representation of the sequence

OUTPUT: secondary structure content
helix 0.359, strand 0.217, coil 0.424

0.2544 0.1154 0.2198 0.2893 0.1343 -0.02268 138.8 
0.4788 139.6 0.05426 -0.05693 0.01952 0.03342 ….

0.3207 0.1103 0.2793 0.1414 0.1483 0.2793 0.2379 
0.2276 0.4931 0.2172 0.2414 0.2241 0.169 0.1897 
0.1724 ….

0.0345 0.0034 0.0759 0.0724 0.0586 0.0586
0.031 0.0828 0.0793 0.0759 0.0034 ….

33071.5

HYDROPHOBICITY based residue 
properties

RESIDUE PROPERTIES
(electric charge, chemical group, etc.)

AA COMPOSITIONMolecular 
Weight
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Main computational prediction tasks
– secondary structure content

• classical prediction uses a feature-based representation of a 
sequence as the input

• percentage amount of each of the three main secondary 
structures (helices, strands and coils is predicted)

– either neural networks or multiple-regression methods are used
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Main computational prediction tasks
– secondary structure content (and structural class – next)

• classical prediction uses a feature-based representation of a 
sequence as the input

– protein sequence length
– molecular weight
– isoelectric point
– composition vector
– composition moment vector
– dipeptide composition
– AA groups: R-groups, exchange groups, hydrophobicity groups, electronic 

groups, chemical groups, other groups

– for details see
Kurgan L and Homaeian L, Prediction of Secondary Protein Structure Content from Primary 
Sequence Alone - a Feature Selection Based Approach, Proceedings of the International 
Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2005), pp. 
334-345, 2005
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Main computational prediction tasks
– structural class

INPUT: primary sequence (narbonin 1NAR)
KPIFREYIGVKPNSTTLHDFPTEIINTETLEFHYILGFAIESYYESGKGTGTFEESWDVELFGPEKVKNLKRRHPEVKVVISIGGRGVNTPFDP
AEENVWVSNAKESLKLIIQKYSDDSGNLIDGIDIHYEHIRSDEPFATLMGQLITELKKDDDLNINVVSIAPSENNSSHYQKLYNAKKDYINWVD
YQFSNQQKPVSTDDAFVEIFKSLEKDYHPHKVLPGFSTDPLDTKHNKITRDIFIGGCTRLVQTFSLPGVFFWNANDSVIPKRDGDKPFIVELTL
QQLLAAR

TRANSFORMED INPUT: feature space representation of the sequence

OUTPUT: structural class
α/β class

0.2544 0.1154 0.2198 0.2893 0.1343 -0.02268 138.8 
0.4788 139.6 0.05426 -0.05693 0.01952 0.03342 ….

0.3207 0.1103 0.2793 0.1414 0.1483 0.2793 0.2379 
0.2276 0.4931 0.2172 0.2414 0.2241 0.169 0.1897 
0.1724 ….

0.0345 0.0034 0.0759 0.0724 0.0586 0.0586
0.031 0.0828 0.0793 0.0759 0.0034 ….

33071.5

HYDROPHOBICITY based residue 
properties

RESIDUE PROPERTIES
(electric charge, chemical group, etc.)

AA COMPOSITIONMolecular 
Weight
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Main computational prediction tasks
– structural class

• a number of definitions of a structural class were developed

manual classificationN/AN/Aα proteins
β proteins
α+β proteins
α/β proteins
+ 7 other classes

SCOP
Murzin
et al., 1995

otherwise< 10%
> 10%
> 10%

> 15%
< 15%
> 15%

α proteins
β proteins
mixed proteins
irregular

Eisenhaber
et al., 1996

more than 60% antiparallel β-sheets
more than 60% parallel β-sheets

≤ 5%
≥ 40%
≥ 15%
≥ 15%
≤ 10%

≥ 40%
≤ 5%
≥ 15%
≥ 15%
≤ 10%

α proteins
β proteins
α+β proteins
α/β proteins
ξ proteins

Chou, 1995

contains dominantly antiparallel β-sheets
contains dominantly parallel β-sheets
otherwise

< 10%
> 10%
> 10%
> 10%

> 15%
< 15%
> 15%
> 15%

α proteins
β proteins
α+β proteins
α/β proteins
irregular

Nakashima
et al., 1986

additional constrains and commentsstrand (β) amounthelix (α) amountstructural classreference
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Main computational prediction tasks
– structural class

• Structural Classification of Proteins (SCOP) structural classes
– URL: http://scop.mrc-lmb.cam.ac.uk/scop/
– does not incorporate hard-coded rules for structural classes
– classification is manual based on structural elements that are 

located in individual domains that constitute the protein
– includes eleven classes: 1) all-α proteins; 2) all-β proteins; 3) α/ β

proteins; 4) α+ β proteins; 5) multi-domain proteins; 6) membrane 
and cell surface proteins; 7) small proteins; 8) coiled coils 
proteins; 9) low resolutions proteins; 10) peptides; and 11) 
designed proteins

– usually, only the first four categories are considered for 
computational prediction purposes as they include significant 
majority of the protein sequences
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State-of-the-art
– “chaotic progress”

• over a dozen prediction methods, which were never 
comprehensively compared, were proposed

• very basic protein representation 
– composition vector + polypeptide composition

• no established test beds
– each method tested on a different datasets
– variable homology
– “cheating”
– test types: resubstitution and jackknife
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Chou & Cai, 
2004

98.8---Chou & Cai, 2004yes20%22307 classes SCOPAA comp vector 
functional 
domain 
composition

Intimate sorting 
classification

84.187.0yesunkn, but 
homologous

16017 classes SCOPAA comp vector Cai et al., 2003

95.293.0
Chou & 

Maggiora, 1998

yesunkn, but 
homologous

3594 classes SCOPAA comp vectorSupport Vector 
Machines

75.0---Jin et al., 2003yes30%14014 classes SCOP
Jin et al., 2003

95.8---Chou & 
Maggiora, 1998

yesunkn, but 
homologous

3594 classes SCOPpolypeptidesInformation 
discrepancy based 
classification

55.866.2yes40%10544 classes SCOPAA comp vector
Luo et al., 2002

75.291.7
Luo et al., 2002

yes40%10544 classes SCOPAA&polypeptide 
comp vector 

Discriminant 
analysis

48.066.7yes30%675
53.863.8Wang & Yuan, 

2000
yes40%11894 classes

SCOP

66.779.6nounknown471
62.786.5Eisenhaber

et al., 1996
nounknown2603 classes 

Eisenhaber et al., 1996

53.3100Chou, 1995nounknown1204 classes
Chou, 1995 Wang & Yuan, 

2000

42.799.2Nakashima
et al., 1986

nounknown1314 classes 
Nakashima et al., 1986

AA comp vectorBayes classification

90.596.7yesunkn, but 
homologous

359
4 classes SCOP

energy auto-
correlation 
functions

Bu at al., 1999

84.794.4yesunkn, but 
homologous

3594 classes SCOPAA comp vectorComponent 
coupled geometric 
classification

Chou & 
Maggiora, 1998

84.194.3

Chou & 
Maggiora, 1998

yesunkn, but 
homologous

3594 classes SCOPAA comp vectorGeometric 
classification

57.358.2nounknown471
Eisenhaber
et al., 1996

57.760.8Eisenhaber
et al., 1996

nounknown2603 classes
Eisenhaber et al., 1996

AA compos. 
vector

Vector 
decomposition

referencejackkniferesubreferencedomainshomologysize
classification accuracydatasetclassesrepresen-

tation
classification 
algorithm 

sequence
representation

size and homology of
test datasets

cheating in design 
and testing
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Our study
– multi-goal study, which includes investigation of eight 

prediction algorithms
• Naïve Bayes (NB), Radial Basis Function neural network (RBF), Instance Based classifier (IB1), 

C4.5 (C4.5), Random Forest (RF), Repeated Incremental Pruning to Produce Error Reduction 
(RIP), Support Vector Machine (SVM), and Logistic Regression (LR)

– three datasets with different homologies 
• two low homology (1189 and 2340 sequences) and one high homology (359 sequences)

– three protein sequence representations
• 1) composition vector, 2) energy autocorrelation, 3) newly proposed representation based on 

composition and composition moment vectors vector, chemical group composition, 
hydrophobic autocorrelations and molecular weight

– and finally three test procedures
• resubstitution, jackknife, 10-fold-cross-validation
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Prediction (classification) algorithms 
– hard problem 

50+% accuracy 
– best are SVMs and

logistic regression

0

5

10

15

20

25

30

35

RIP IB1 C4.5 RBF NB RF SVM LR

accuracy lif t
25PDB 1189 average

baseline accuracy for 25PDB = 26.5%
baseline accuracy for 1189 = 30.6%

this paper
(best result)53.962.066 featuresLogistic 

regression

Wang and 
Yuan, 200053.863.8AA composition 

vector
Bayes
classification

this paper
(2nd best result)52.357.8AA composition 

vector
Support Vector 
Machine

referencejackk
nife

resubsti
-tution

classification accuracy
representation

classification 
algorithm
(1189 dataset)
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Sequence homology
– a paired t-test between the results achieved by the eight algorithms on the

25PDB and 359 datasets gave t-score of 10.0 and between the 1189 dataset 
and 359 dataset gave t-score of 13.0

• the difference is statistically significant
– a paired t-test between the results for the 25PDB and 1189 datasets 

resulted in t-score of 1.0
• the difference is statistically not significant

0

10

20

30

40

50

60

70

80

RIP IB1 C4.5 RBF NB RF SVM LR

accuracy lift
25PDB 1189 359

baseline accuracy for 25PDB = 26.5%
baseline accuracy for 1189 = 30.6%
baseline accuracy for 359 = 28.3%
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Sequence representation
– high quality of the composition vector with respect to structural class 

prediction was confirmed
– increase of accuracy lift due to using the new representation is 2.0% for 

support vector machines and 4.3% for logistic regression
• the improvements concern the most accurate classifiers

-11

-6

-1

4

9

14

19

24

29

RIP IB1 C4.5 RBF NB RF SVM LR

 average accuracy lift 
(25PDB and 1189 datasets)

auto-correlation functions composition vector 66 attributes

baseline accuracy for 25PDB = 26.5%
baseline accuracy for 1189 = 30.6%
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Test procedures
– resubstitution test is unreliable and should not be reported
– 10-fold cross-validation is shown to be at least the same good as the 

jackknife test
• execution of the jackknife test requires substantial computational time, in 

comparison with less demanding and commonly performed 10-fold cross-
validation (evaluation of the logistic regression method using 10-fold cross-
validation requires about 50 minutes, and using jackknife test about 8400 minutes)

>99.5%N/A> 99%N/AN/A> 97%N/AN/AN/Aconfidence level
3.81.83.00.80.92.51.11.30.1t-score
--=--==--===t-test result10 fold cross-

validation 
compared
with jackknife

66ACCV 66ACCV 66ACCV 
359118925PDBdataset

representation
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The study have shown that
– sequence homology is found to significantly affect accuracy
– new to the field logistic regression prediction algorithm generates 

results that are competitive or better when compared with the past 
results

– for eight considered prediction algorithms, state-of-the-art 
sequences representation and low, about 30%, homologous 
dataset, the best results are in the range of 57% accuracy

– the newly proposed sequence representation is beneficial for high 
quality prediction algorithms

– the resubstitution tests are shown to significantly overestimate the 
prediction accuracy, and the commonly performed jackknife test 
procedure leads to unnecessarily high computational demand

• therefore 10-fold cross-validation should be used for the future studies
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Where to get started?
• tertiary structure

– overall tertiary structure
Kolinski A, Protein modeling and structure prediction with a reduced representation, Acta Biochim Pol., 51(2), pp.349-71, 2004
Bujnicki JM, Protein-structure prediction by recombination of fragments, Chembiochem, 7(1), pp.19-27, 2006

– contact maps
Pollastri G and Baldi P, Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all 

four cardinal corners, Bioinformatics, 18, Suppl 1:S62-70, 2002
MacCallum RM, Striped sheets and protein contact prediction, Bioinformatics, 20, Suppl 1, I224-I231, 2004
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Where to get started?
• secondary structure

– overall secondary structure
Heringa J, Computational methods for protein secondary structure prediction using multiple sequence alignments, Curr Protein 

Pept Sci., 1(3), pp.273-301, 2000
Przybylski D and Rost B, Alignments grow, secondary structure prediction improves, Proteins, 6(2), pp.197-205, 2002

– structural class
Chou KC, Progress in protein structural class prediction and its impact to bioinformatics and proteomics, Curr Protein Pept Sci., 

6(5), pp.423-36, 2005
Wang Z-X, and Yuan Z, How Good is the Prediction of Protein Structural Class by the Component-Coupled Method?, Proteins, 

38, pp.165-175, 2000

– secondary structure content
Lee S, Lee BC and Kim D, Prediction of protein secondary structure content using amino acid composition and evolutionary 

information, Proteins, 62(4), pp.1107-14, 2006
Lin Z and Pan XM, Accurate prediction of protein secondary structural content, J Protein Chem, 20(3), pp.217-20, 2001 


