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MATERIALS AND METHODS 

Selection of Amino Acid Indices 

We collected 531 amino acid (AA) indices from the version 9.1 of the AAindex database (1-4), after removing 13 

AA indices with unknown values. We collected disordered segments with a given functional annotations (set A) 

and all other segments (including disordered and ordered segments; set B) from the TRAINING dataset. Next, we 

randomly selected 40% of segments from set A and the same number of segments from set B (the choice of 40% 

is motivated by the size of the annotation sets to assure that they can be matched), and considered a given AA 

index by averaging the corresponding numerical values in all segments in each of the two sets. This was repeated 

ten times for a given AA index. Consequently, we obtained two vectors of ten averages. We evaluated signifi-

cance of the differences between these two vectors. If the measurements are normal, as tested with the Ander-

son-Darling test (5) at the 0.05 significance, then we utilized the t-test; otherwise we used the non-parametric Wil-

coxon rank sum test (6). Since we considered the disordered DNA-, RNA- and protein-binding, we obtained three 

p-values for each AA index. We averaged these three p-values for each AA index and asserted that a lower aver-

age indicates stronger relations between the corresponding AA index and the disordered DNA-, RNA- and pro-

tein-binding regions. The averages were used to rank the AA indices in the ascending order. Next, to remove re-

dundant indices, we selected the top ranked index to initialize the set of selected indices and added a subse-

quently ranked index if its PCC (7,8) with each AA index that is already in the selected set is < 0.75; otherwise we 

rejected a given index since it is similar (redundant) (i.e., has PCC ≥ 0.75) with the already chosen indices. The 

entire list of ranked indices was scanned once. In total, 159 AA indices were selected. 

Feature Extraction and Selection 

We utilize a sliding window to represent information used to perform prediction of the central (in the center of the 

window) residue; this was done for each residue in the input sequence. The window sizes ws were set to 55, 21, 

and 33 for the disordered RNA-, DNA- and protein-binding residues, respectively. Each position/residue in the 

input sequence is represented by the following six sets of features: 

1. Amino acid (AA) composition, which is defined as the fraction of a given AA type within the sliding window (20 

features). 

2. Features based on sequence complexity generated by SEG algorithm (9) (7 features). Within a given sliding 

window, we calculated the fraction of AAs in low complexity regions (1 feature), and the average/maximum/min-

imum length of the low/high complexity segments that is normalized by dividing the number of corresponding 



complexity segments (2*3 = 6 features). If there is no low (high) complexity region in the sliding window then 

we set the normalized average/maximum/minimum length of the low (high) complexity segments to 0. 

3. Features based on the secondary structure predicted with the fast PSIPRED (without using PSI-BLAST) (10) 

(12 features). Using the sliding window, we computed the fraction of AAs in helix, strand and coil confirmations, 

respectively (3 features), and the average/maximum/minimum segments length for a given type of the second-

ary structure that is normalized by dividing by the number of segments of the corresponding type (3*3 = 9 

features). 

4. Features based on the putative disorder and globular domain that are predicted with IUPred (11,12) (11 fea-

tures). Based on IUPred prediction for long and short disordered segments and globular domains, we computed 

the disorder content (i.e., fraction of disordered residues) and the fraction of AAs in globular domains (3 fea-

tures), the normalized average/maximum/minimum length of disordered segments with at least 4 residues (3*2 

= 6 features), and the average of the two raw propensity values generated by IUPred (2 features). 

5. Features based on the selected AA indices (i.e., physicochemical properties of AAs) (159 features). We aver-

aged the numerical values of a given AA index in the sliding window.  

6. Aggregated features that consider difference between an average value of particular property of the near neigh-

bors, i.e., (ws-1)/2 residues in the middle of the sliding window, and remote neighbors, i.e., (ws-1)/4 residues 

at each termini of the sliding window (189 features). We compute these differences for the values of AA com-

position (20 features), the fractions of residues in low complexity regions (1 features) and in a given type of 

secondary structure (3 features), the content of predicted disordered and structured residues (3 features) and 

the average of predicted propensity scores (3 features) using IUPred’s outputs, and the average of the selected 

AA indices to represent the physicochemical properties (159 features). 
In total, we considered 398 features.  

 

A subset of predictive and non-redundant features was empirically selected from the considered feature set in two 

steps. Step 1 removes the irrelevant features, i.e., features that have poor predictive quality. We analyzed the 

strength of relations between values of a given feature and the annotation of disordered RNA-, DNA-, and protein- 

binding residues in the TRAINING dataset; the relation was quantified with the point-biserial correlation (PBC) 

(13). If the strength of the relation for a given feature is low, i.e., |PBC value| < 0.02, then we removed this fea-

ture. In step 2, we further filtered out the redundant and irrelevant features using wrapper feature selection (14) 

utilizing logistic regression as the classifier (prediction model). This step maximizes predictive quality measured 

with AUC by varying feature sets; the predictions were done using 3+1-fold cross validation on the TRAINING da-

taset. This type of cross validation was introduced in Ref. (15) to reduce overfitting. In the 3+1-fold cross valida-

tion, we fixed one of the four cross validation folds as a test dataset and the remaining three folds are used to per-

form three-fold cross validation. We tested each predictive model twice: based on the three-fold cross validation 

and based on the fourth test fold. The selection process starts by ranking all features in the descending order of 

their absolute PBCs computed on the TRAINING dataset. The set of selected features is initialized with the top 

ranked feature, which has consistent sign and at least 0.02 absolute PBC values across all four folds. We added 

a subsequently ranked feature to the set of selected features if it satisfies the same condition and if this addition 

improves AUC on both the three-fold cross validation and the independent fourth test fold by at least 0.001. We 

scanned the ranked feature list once. 

Consensus-based Disorder Prediction on Whole Proteomes 



We applied two predictors: IUPred (11,12) and ESpritz (16), to obtain putative disordered residues that were used 

to analyze our predictions. These methods were shown to provide good predictive quality (12,17,18) and are com-

putationally efficient. Two versions of IUPred were designed for the predictions of long and short disordered seg-

ments, respectively. ESpritz has three versions that consider disorder annotations based on the X-ray crystal 

structures, nuclear magnetic resonance structures, and the experimental annotations from the DisProt database 

(19). Thus, these two predictors cover the main characteristics of the intrinsic disorder including the two types of 

disordered segments (short and long) and the three sources of the disorder annotations. The resulting five predic-

tions were combined together using the majority vote-based consensus, motivated by the observation that con-

sensus-based approaches provide improved predictive quality (18,20,21). Our use of the consensus-based ap-

proach is a marked improvement over the previous studies that utilized only one (22,23) or two (24,25) predictors 

to characterize disorder. This consensus-based approach was used to perform disorder prediction on the four 

considered complete proteomes: H. sapiens, M. musculus, C. elegans and D. melanogaster. The putative disor-

der was used to calculate the disorder content (i.e., fraction of disordered residues in a given chain), see Support-

ing Table S2. 

Selection of Methods to Include in the Comparative Evaluation of DisoRDPbind 

The prediction of RNA-binding (26,27) and DNA-binding (28) residues was pursued extensively over the last few 

years. However, these predictors focused on annotations of these binding events in ordered regions, i.e., that 

were annotated from crystal structures. These methods can be either structure-based (predictors that use protein 

structure as the input) or sequence-based. Table S4 lists recent (i.e., published after 2006) methods for the pre-

diction of the ordered RNA- and DNA-binding residues. We note that DisoRDPbind focuses on different RNA- and 

DNA-binding regions that are located in IDRs. Since DisoRDPbind is the first method that predicts such binding 

events from the protein sequence, we compare it against representative sequence-based methods that predict 

ordered DNA- and RNA-binding residues, as the closest alternatives. We selected BindN+ (29), RNABindR v2.0 

(30) and DNABR (31) (shown in bold in Table S4) to represent the predictors of ordered binding. BindN+ is a pop-

ular method that predicts both of RNA- and DNA-binging and was recently evaluated to provide accurate predic-

tion (32). RNABindR v2.0 and DNABR are the latest sequence-based methods for the prediction of ordered RNA- 

and DNA-binding residues, respectively. The methods shown in italics in Table S4 are structure-based and thus 

could not be selected for the comparative analysis. Moreover, methods that do not provide real-valued probability 

outputs (propensity values) but only binary predictions (column “Prob. (Y/N)” set to “N” in Table S3), also could 

not be used.  

We include the MoRFpred (15), DISOPRED3 (33) and ANCHOR (34,35) methods to compare predictions of the 

disordered protein-protein binding. We did not include PepBindPred (36) due to the relatively long runtime required 

for the molecular dynamics simulations used by this method. 

  



 

Supporting Table S1. Definition of the RNA-, DNA-, and protein-binding and summary of the TRAINING, 

TEST115 and TEST36 datasets. The RNA-, DNA-, and protein-binding (2nd column) are defined by combining 

several functional subclasses listed in the 3rd column. The “Others” row (given in italic) includes all other functional 

subclasses which were not included in these datasets. The data were taken from release 6.01 of DisProt. 

 

Dataset Function Functional subclass # disordered residues
TRAINING Protein-RNA binding Protein-tRNA binding 308 

Protein-genomic RNA binding 435 
Protein-rRNA binding 971 
Protein-mRNA binding 319 
Protein-RNA binding 0 
Total number 2033 

Protein-DNA binding Protein-DNA binding 5091 
DNA unwinding 90 
DNA bending 0 
Total number 5146 

Protein-protein binding Protein-protein binding 22535 
Autoregulatory 1670 
Intraprotein interaction 1292 
Protein inhibitor 679 
Regulation of proteolysis in vivo 237 
Total number 24290 

TEST114 Protein-RNA binding Protein-tRNA binding 761 
Protein-genomic RNA binding 123 
Protein-rRNA binding 600 
Protein-mRNA binding 0 
Protein-RNA binding 387 
Total number 1271 

Protein-DNA binding Protein-DNA binding 1420 
DNA unwinding 0 
DNA bending 102 
Total number 1420 

Protein-protein binding Protein-protein binding 6689 
Autoregulatory 197 
Intraprotein interaction 208 
Protein inhibitor 48 
Regulation of proteolysis in vivo 0 
Total number 6940 

TEST36 Protein-RNA binding Protein-tRNA binding 42 
Protein-genomic RNA binding 0 
Protein-rRNA binding 0 
Protein-mRNA binding 0 
Protein-RNA binding 280 
Total number 322 

Protein-DNA binding Protein-DNA binding 948 
DNA unwinding 0 
DNA bending 5 
Total number 948 

Protein-protein binding Protein-protein binding 2634 
Autoregulatory 61 
Intraprotein interaction 1217 
Protein inhibitor 65 
Regulation of proteolysis in vivo 0 
Total number 2752 

Other 26501 
 

  



Supporting Table S2. Summary of the datasets extracted from the four considered complete genomes/proteo-

mes: H. sapiens, M. musculus, C. elegans and D. melanogaster. The table shows the number of proteins and the 

average disorder content (fraction of disordered residues) for the proteins sets in the GO_RNA, GO_DNA, 

RBPDB, animalTFDB, DB_RNA, DB_DNA, ELM, and mentha datasets, where GO_RNA, RNPDB and DB_RNA 

include RNA-binding proteins; GO_DNA, animalTFDB and DB_DNA include DNA-binding proteins; mentha is the 

integrated source of protein-protein interaction (PPI) networks; and ELM includes motifs involved in the protein-

protein interactions. The predRNA_UniProt, predDNA_UniProt, and predProtein_UniProt denotes the set of disor-

dered DNA-, RNA-, and protein-binding proteins from UniProt, respectively, defined as those that have at least 

one disordered DNA-, RNA-, and protein-binding region (≥4 consecutive AAs) predicted by DisoRDPbind. For 

convenience, the ELMs located in the disordered regions are named disordered ELMs. A given ELM is defined as 

overlapping with the disordered protein-binding region (≥4 consecutive AAs) predicted by DisoRDPbind if there is 

at least one residue located in both of these two regions. PredProtein_mentha represents the predicted disor-

dered protein-binding proteins from the mentha database. N/A indicates that a given species was not included in 

the corresponding dataset. 

 

Species (taxID) H. sapiens
(9606)

M. musculus
(10090)

C. elegans 
(6239) 

D. melano-
gaster (7227)

# proteins collected from UniProt 42426 33181 25159 19656
% proteins with localization annota-

tions 57% 72% 32% 44%
Average disorder content in UniProt 0.24 0.21 0.17 0.23
# proteins in GO_RNA 1209 1101 420 568
Average disorder content in GO_RNA 0.28 0.28 0.23 0.29
# proteins in RBPDB 398 339 204 73
Average disorder content in RBPDB 0.37 0.37 0.32 0.39
# proteins in DB_RNA 1068 802 N/A N/A
Average disorder content in DB_RNA 0.33 0.32 N/A N/A
# proteins in predRNA 2769 1401 722 792
Average disorder content in predRNA 0.37 0.34 0.32 0.35
# proteins in GO_DNA 3153 2686 1074 967
Average disorder content in GO_DNA 0.32 0.37 0.23 0.41
# proteins in animalTFDB 1464 1375 654 596
Average disorder in animalTFDB 0.32 0.34 0.22 0.41
# proteins in DB_DNA 677 126 N/A N/A
Average disorder in DB_DNA 0.43 0.44 N/A N/A
# proteins in predDNA 2475 2231 1241 1140
Average disorder content in predDNA 0.31 0.31 0.30 0.40
# proteins in mentha 14547 8006 5005 8096
Average number of interactors in 

mentha 21.4 6.7 5.2 7.3 

# proteins in ELM 791 161 N/A N/A
# ELMs in ELM 1242 206 N/A N/A
# disordered ELMs in ELM 568 118 N/A N/A
# disordered ELMs that overlap with 

the disordered protein-binding re-
gions predicted by DisoRDPbind 

539 115 N/A N/A 

# proteins in predProtein_UniProt 36150 28243 19683 17439
# proteins in predProtein_mentha 13525 7559 4553 7431

 

  



 

Supporting Table S3. Summary of the recent (developed after 2006) methods that predict ordered (annotated 

based on crystal structures) RNA- and DNA-binding residues. The methods for the prediction of the RNA- and 

DNA-binding are listed above and below the dash line, respectively. Each corresponding set of predictors is 

sorted by the year of publication. The "3-D" column indicates whether a given method performs predictions from 

3-D structure or from sequence. The methods based on 3-D structure cannot be used to predict disordered RNA- 

and DNA-binding residues since structure cannot be provided for the intrinsically disordered regions. The "prob." 

and “binary” columns indicate whether it outputs probability (i.e., propensity score) and binary prediction, respec-

tively. The “inactive" keyword in the “webserver URL” column indicates that we could not access a given web-

server. Methods selected for comparative analysis are shown in bold. Methods shown in italics use structure for 

the prediction and thus could not be used in the comparative analysis. 

 

Method (reference) Year 3-D 
(Y/N) 

Profile  
(Y/N) 

Binary 
(Y/N)

Prob. 
(Y/N)

Webserver URL

RNABindR v2.0 (30) 2012 N Y Y Y http://einstein.cs.iastate.edu/RNABindR/
SPOT-Seq (37) 2011 N Y Y N http://sparks.informatics.iupui.edu/ 
SPOT-Stru (37) 2011 Y N Y N http://sparks.informatics.iupui.edu/ 
PRBR (38) 2011 N Y Y Y http://www.cbi.seu.edu.cn/PRBR/ 
BindN+ (29) 2010 N Y Y Y http://bioinfo.ggc.org/bindn+/ 
NAPS (39) 2010 N Y Y Y http://proteomics.bioengr.uic.edu/NAPS (inactive)
PRIP (40) 2009 Y Y Y Y http://www.qfab.org/PRIP (inactive) 
PiRaNhA (41) 2009 N Y Y Y http://www.bioinformatics.sussex.ac.uk/PIRANHA (inactive)
Struct-NB (42) 2008 Y N Y Y http://www.public.iastate.edu/~ftowfic (inactive)
PPRINT (43) 2008 N Y Y Y http://www.imtech.res.in/raghava/pprint/ 
PRINTR (44) 2008 N Y Y Y http://210.42.106.80/printr/ (inactive) 
BindN (45) 2006 N N Y Y http://bioinfo.ggc.org/bindn/
preDNA (46) 2013 Y Y Y Y http://202.207.14.178/predna/index.aspx 
DR_bind (32) 2012 Y Y Y N http://dnasite.limlab.ibms.sinica.edu.tw 
DNABR (31) 2012 N Y Y Y http://www.cbi.seu.edu.cn/DNABR/ 
metaDBsite (47) 2011 N Y Y N http://projects.biotec.tu-dresden.de/metadbsite/
DNABINDPROT (48) 2010 Y Y Y N http://www.prc.boun.edu.tr/appserv/prc/dnabindprot/
BindN+ (29) 2010 N Y Y Y http://bioinfo.ggc.org/bindn+/ 
NAPS (39) 2010 N Y Y Y http://proteomics.bioengr.uic.edu/NAPS 
BindN-RF (49) 2009 N Y Y Y http://bioinfo.ggc.org/bindn-rf/ 
DISPLAR (50) 2007 Y Y Y N http://pipe.scs.fsu.edu/displar.html 
Dp-bind (51) 2007 N Y Y Y http://lcg.rit.albany.edu/dp-bind/ 
DISIS (52) 2007 N Y Y Y http://cubic.bioc.columbia.edu/services/disis (inactive)
BindN (45) 2006 N N Y Y http://bioinfo.ggc.org/bindn/

 

Supporting Table S4. Fraction of known and putative binders with GO annotations of cellular component (cellular 

localization). The known DNA-binding (RNA-binding) proteins were collected from GO_DNA and animalTFDB 

(GO_RNA and RBPDB). The putative binders were predicted by DisoRDPbind and exclude the known binding 

proteins. 

 

Protein type Species % of known binders % of putative binders

RNA-binding H. sapiens 80.6% 32.7%
 M. musculus 80.7% 61.9%
 C. elegans 58.3% 26.5%
 D. melanogaster 76.0% 37.4%
DNA-binding H. sapiens 91.4% 56.6%
 M. musculus 93.8% 64.8%
 C. elegans 77.8% 30.2%
 D. melanogaster 77.1% 37.3%

 



 
Supporting Figure S1. The predictive performance of BLAST in the function of the e-value thresholds based on 

the 4-fold cross-validation on the TRAINING dataset. The y-axis shows average (over the predictions of the disor-

dered RNA-, DNA-, and protein-binding residues) value of the ratio of TP-rate and FP-rate; ratio>1 indicates good 

predictive performance, i.e., fraction of predicted true positives is higher compared to fraction of false positives.  

 

 

 
 

Supporting Figure S2. ROC curves for the prediction of the disordered RNA- (left most panels), DNA- (panels in 

the middle column), and protein-binding (right most panels) residues on the TEST114 datasets (top three panels) 

and the TEST36 dataset (lower three panels), respectively. Dotted black line denotes baseline, which corre-

sponds to the results obtained with a random predictor. The “DisoRDP w/o BLAST” denotes DisoRDPbind without 
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the use of the BLAST-based alignment; we note that the ROC curves for the “DisoRDP w/o BLAST” in the left 

most panels overlap with the curves for DisoRDPbind.  

 

 

  
Supporting Figure S3. FP-rate for the prediction of the disordered RNA- (left panel), DNA- (middle panel), and 

protein-binding (right panel) residues on the two datasets of non-binding regions collected from the TEST114 da-

taset: disordered regions annotated with functions excluding a given binding type (non-binding disordered); and 

regions not located in disordered regions (non-binding, non-disordered). The “DisoRDP w/o BLAST” denotes Dis-

oRDPbind without the use of the BLAST-based alignment. 
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