## **Supplement for**

## "Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus"

Xiao Fan<sup>1</sup> and Lukasz Kurgan<sup>1\*</sup>

<sup>1</sup>Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

<sup>\*</sup>corresponding author; lkurgan@ece.ualberta.ca; phone: 780-492-5488

**Table S1. Summary of the considered disorder predictors.** The constrained AUC is reported based on the predictions on the entire TRAINING dataset; except for MFDp for which the predictions are based on 5 fold cross validation. The methods are sorted by the constrained AUC in the descending order. The three types of availability are standalone program (SP), web server (WS) and upon request (UR).

| Method          | Constrained | Year      | Type of disorder | Availability | / URL                                              |
|-----------------|-------------|-----------|------------------|--------------|----------------------------------------------------|
|                 | AUC         | published | d predictor      |              |                                                    |
| ESpritz-Disprot | 0.546       | 2012      | machine learning | SP+WS        | http://protein.bio.unipd.it/espritz/               |
| CSpritz-long    | 0.540       | 2011      | consensus        | WS           | http://protein.bio.unipd.it/cspritz/               |
| SPINE-D         | 0.504       | 2012      | machine learning | SP+WS        | http://sparks.informatics.iupui.edu/SPINE-D/       |
| CSpritz-short   | 0.499       | 2011      | consensus        | WS           | http://protein.bio.unipd.it/cspritz/               |
| MFDp            | 0.490       | 2010      | consensus        | SP+WS        | http://biomine-ws.ece.ualberta.ca/MFDp.html        |
| MD              | 0.476       | 2009      | consensus        | SP           | https://rostlab.org/owiki/index.php/Metadisorder   |
| IUPRED-short    | 0.465       | 2005      | propensity       | SP+WS        | http://iupred.enzim.hu/                            |
| ESpritz-NMR     | 0.459       | 2012      | machine learning | SP+WS        | http://protein.bio.unipd.it/espritz/               |
| IUPRED-long     | 0.458       | 2005      | propensity       | SP+WS        | http://iupred.enzim.hu/                            |
| ESpritz-Xray    | 0.457       | 2012      | machine learning | SP+WS        | http://protein.bio.unipd.it/espritz/               |
| DISOclust       | 0.456       | 2008      | 3D prediction    | SP+WS        | http://www.reading.ac.uk/bioinf/DISOclust/         |
| VSL2B           | 0.453       | 2006      | machine learning | SP+WS        | http://www.dabi.temple.edu/disprot/Predictors.html |
| DISOPRED2       | 0.452       | 2003      | machine learning | SP+WS        | http://bioinf.cs.ucl.ac.uk/disopred/               |
| PONDR-FIT       | 0.447       | 2010      | consensus        | UR           | http://www.disprot.org/predictors.php              |
| PrDos           | 0.439       | 2007      | 3D prediction    | WS           | http://prdos.hgc.jp/cgi-bin/top.cgi                |
| RONN            | 0.420       | 2005      | machine learning | SP+WS        | http://www.strubi.ox.ac.uk/RONN                    |
| Norsnet         | 0.388       | 2007      | machine learning | SP           | https://www.rostlab.org/owiki/index.php/Norsnet    |
| DRIP-PRED       | 0.377       | 2004      | machine learning | SP+WS        | https://www.sbc.su.se/~maccallr/disorder/          |
| Ucon            | 0.367       | 2008      | propensity       | SP           | https://rostlab.org/owiki/index.php/UCON           |
| Profbval        | 0.334       | 2006      | machine learning | SP           | https://rostlab.org/owiki/index.php/Profbval       |



Figure S1. ROC curves on the TRAINING dataset for the disCoP (based on jackknife test) and the other 20 predictors from the Supplementary Table S1. The legend lists the methods that are sorted in the descending order by their values of the constrained AUC.



**Figure S2.** Values of the constrained AUCs with the increasing number of features selected in the second step of the feature selection. The results are based on three-fold cross validation on the TRAINING dataset. The first part of the feature name (*x*-axis) identifies the input predictor; the second part shows the particular type of output and aggregation where median*i* and mean*i* correspond to median and mean probability in window of size 2\**i*+1, respectively, and content*i* and Lcontent*i* correspond to content of binary and ternary predictions in window of size 2\**i*+1, respectively.



Figure S3. ROC curves of the disCoP, disCoP\_WS and the other 20 predictors on the TEST dataset.

Table S2. Constrained AUC values measured on the TEST\_FUNCTION dataset for disCoP, disCoP and 20 other predictors for the six functional types of disorder. The constrained AUC values are averages over the 10 repetitions with different randomly selected sets of structured residues (see "Datasets and evaluation protocols" section for details). Methods that are used as inputs to disCoP are shown in bold font. The highest value for each functional type is given in bold font. The methods are sorted by average rank of constrained AUC, which is the average over the ranks for individual functional types. disCoP\_WS is a web server version of disCoP that excludes ESpritz and CSpritz predictors (see "disCoP predictor" section for details).

| Method          | Functional | types related | to binding | Other functional types |            |            | average     | average rank   |
|-----------------|------------|---------------|------------|------------------------|------------|------------|-------------|----------------|
|                 | Protein-   | Substrate     | Protein-   | Flexible               | Phosphoryl | Autoregula | constrained | of constrained |
|                 | protein    | or ligand     | DNA        | linkers or             | -ation     | -tory      | AUC         | AUC            |
|                 | binding    | binding       | binding    | spacers                |            |            |             |                |
| ESpritz-Disprot | 0.689      | 0.504         | 0.574      | 0.507                  | 0.733      | 0.664      | 0.612       | 1.33           |
| disCoP          | 0.642      | 0.481         | 0.492      | 0.535                  | 0.709      | 0.687      | 0.591       | 1.83           |
| disCoP server   | 0.583      | 0.415         | 0.486      | 0.502                  | 0.697      | 0.631      | 0.553       | 2.83           |
| MD              | 0.573      | 0.408         | 0.522      | 0.495                  | 0.704      | 0.619      | 0.553       | 3.17           |
| CSpritz-long    | 0.549      | 0.400         | 0.437      | 0.502                  | 0.669      | 0.668      | 0.538       | 4.17           |
| SPINE-D         | 0.529      | 0.395         | 0.412      | 0.490                  | 0.651      | 0.621      | 0.516       | 6.17           |
| CSpritz-short   | 0.471      | 0.397         | 0.425      | 0.485                  | 0.569      | 0.569      | 0.486       | 8.17           |
| MFDp            | 0.519      | 0.379         | 0.429      | 0.454                  | 0.615      | 0.577      | 0.495       | 8.67           |
| DISOPRED        | 0.494      | 0.377         | 0.384      | 0.475                  | 0.623      | 0.612      | 0.494       | 8.83           |
| ProDos          | 0.475      | 0.359         | 0.386      | 0.497                  | 0.569      | 0.592      | 0.480       | 10.17          |
| ESpritz-Xray    | 0.478      | 0.404         | 0.403      | 0.453                  | 0.588      | 0.525      | 0.475       | 10.17          |
| DISOCLUST       | 0.487      | 0.369         | 0.372      | 0.464                  | 0.647      | 0.594      | 0.489       | 10.33          |
| VSL2B           | 0.481      | 0.391         | 0.419      | 0.412                  | 0.579      | 0.544      | 0.471       | 10.33          |
| Norsnet         | 0.471      | 0.335         | 0.431      | 0.373                  | 0.596      | 0.462      | 0.445       | 13.67          |
| PONDR-FIT       | 0.455      | 0.374         | 0.370      | 0.409                  | 0.514      | 0.463      | 0.431       | 14.83          |
| RONN            | 0.434      | 0.351         | 0.366      | 0.408                  | 0.529      | 0.488      | 0.429       | 15.17          |
| Ucon            | 0.433      | 0.365         | 0.400      | 0.384                  | 0.499      | 0.490      | 0.429       | 15.83          |
| IUPRED-long     | 0.461      | 0.357         | 0.354      | 0.405                  | 0.509      | 0.465      | 0.425       | 16.00          |
| IUPRED-short    | 0.439      | 0.363         | 0.352      | 0.423                  | 0.496      | 0.464      | 0.423       | 16.50          |
| ESpritz-NMR     | 0.433      | 0.345         | 0.339      | 0.378                  | 0.528      | 0.503      | 0.421       | 16.67          |
| Profbval        | 0.381      | 0.343         | 0.370      | 0.351                  | 0.470      | 0.450      | 0.394       | 18.50          |
| DRIP-PRED       | 0.375      | 0.290         | 0.296      | 0.384                  | 0.500      | 0.466      | 0.385       | 20.00          |

**Table S3. Summary of 9 features used in the disCoP\_WS consensus.** The features are sorted by their constrained AUC when used individually to predict the disorder based on three-fold cross validation on the TRAINING dataset. The biserial correlation was computed against the native disorder annotation in the TRAINING dataset. The "Constrained AUC then added to consensus" gives the value of the constrained AUC when a given feature was added into the consensus during the feature selection. The last column lists weights in the regression including a bias (free weight), which is listed in the last row. The features with negative weights are given in bold font. The first part of the feature name (before underscore) identifies the input predictor; the second part shows the particular type of output and aggregation where mediani and meani correspond to median and mean probability in window of size 2\*i+1, respectively, and contenti and Lcontenti correspond to content of binary and ternary predictions in window of size 2\*i+1, respectively (see "Feature generation and selection" for details).

| Features            | Predictive performanc | e of individual features    | Constrained AUC | Regression weights |
|---------------------|-----------------------|-----------------------------|-----------------|--------------------|
|                     | constrained AUC of    | <b>Biserial correlation</b> | when added to   |                    |
|                     | individual features   | with native disorder        | consensus       |                    |
| SPINE-D_median12    | 0.508                 | 0.460                       | 0.508           | 0.186              |
| MD_mean7            | 0.490                 | 0.455                       | 0.519           | 0.366              |
| DISOCLUST_median13  | 0.472                 | 0.390                       | 0.526           | 0.050              |
| SPINE-D_content14   | 0.472                 | 0.451                       | 0.532           | 0.192              |
| DISOPRED_mean15     | 0.471                 | 0.416                       | 0.538           | -0.036             |
| DISOPRED_Lcontent22 | 0.437                 | 0.386                       | 0.546           | -0.160             |
| DISOCLUST_content29 | 0.425                 | 0.367                       | 0.554           | -0.010             |
| SPINE-D_median12    | 0.508                 | 0.460                       | 0.508           | 0.186              |
| MD_mean7            | 0.490                 | 0.455                       | 0.519           | 0.366              |
| bias                |                       |                             |                 | 0.206              |